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Figure 1. We propose a method that reconstructs 3D object shape from single view real-world images. Our method learns high-quality

reconstruction through single-view supervision without known viewpoint and can reconstruct shapes of various objects.

Abstract

We present ShapeClipper, a novel method that recon-

structs 3D object shapes from real-world single-view RGB

images. Instead of relying on laborious 3D, multi-view

or camera pose annotation, ShapeClipper learns shape re-

construction from a set of single-view segmented images.

The key idea is to facilitate shape learning via CLIP-based

shape consistency, where we encourage objects with simi-

lar CLIP encodings to share similar shapes. We also lever-

age off-the-shelf normals as an additional geometric con-

straint so the model can learn better bottom-up reasoning

of detailed surface geometry. These two novel consistency

constraints, when used to regularize our model, improve its

ability to learn both global shape structure and local ge-

ometric details. We evaluate our method over three chal-

lenging real-world datasets, Pix3D, Pascal3D+, and Open-

Images, where we achieve superior performance over state-

of-the-art methods.1

1Project website at: https://zixuanh.com/projects/

shapeclipper.html

1. Introduction

How can we learn 3D shape reconstruction from real-

world images in a scalable way? Recent works achieved

impressive results via learning-based approaches either with

3D [4, 9, 11, 28, 36, 41, 43–45, 48, 49, 53] or multi-view su-

pervision [16, 19, 23, 25, 32, 42, 50, 51]. However, such su-

pervised techniques cannot be easily applied to real-world

scenarios, because it is expensive to obtain 3D or multi-

view supervision at a large scale. To address this limitation,

recent works relax the requirement for 3D or multi-view

supervision [1, 8, 10, 14, 15, 17, 18, 22, 24, 29, 31, 38, 46, 55,

57]. These works only require single-view self-supervision,

with some additionally using expensive viewpoint annota-

tions [17, 18, 24, 38, 57]. Despite this significant progress,

most methods still suffer from two major limitations: 1) In-

correct top-down reasoning, where the model only explains

the input view but does not accurately reconstruct the full

3D object shape; 2) Failed bottom-up reasoning, where the

model cannot capture low-level geometric details such as

concavities. How can we address these limitations while

also remaining scalable to a wide range of object types?

To improve top-down reasoning, our inspiration comes
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Input Image CLIP Nearest Neighbors

Figure 2. CLIP-based semantic neighbors. Samples that have

similar CLIP encodings often have similar shapes. Note the view-

point variability in the neighbors.

from the recent success of large-scale image-text modeling.

The most successful image-text models such as CLIP [33]

are trained on a vast corpus of captioned images and are able

to extract fine-grained semantic features that correlate well

with the language descriptions. CLIP further demonstrates

a great generalization ability to images across various do-

mains. Can we leverage such a powerful and generalizable

model to learn 3D reconstruction in a real-world scenario?

We observe that natural language descriptions of images

often contain geometry-related information (e.g. a round

speaker, a long bench) and many nouns by themselves

have characteristic shape properties (e.g. “desks” usually

have four legs, and “benches” normally include a flat sur-

face). Motivated by this intrinsic connection between ob-

ject shapes and language-based semantics, we examine the

latent space of CLIP’s visual encoder. In our study, we find

(via k-NN queries) that objects with similar CLIP embed-

dings usually share similar shapes (see Fig. 2 for an ex-

ample). Another key characteristic we identify with CLIP

embeddings is that they have some robustness to viewpoint

changes, meaning that changes in viewpoint generally do

not produce drastic changes in CLIP embeddings.

Inspired by these findings, we propose to learn shapes

using a semantic-based shape consistency (SSC) constraint

using CLIP. Specifically, we use CLIP’s semantic encodings

as guidance to form pseudo multi-view image sets. For each

image in the training set, we extract its CLIP embedding

and find images with the most similar semantics across the

training set. We then leverage these retrieved images as ad-

ditional supervision to the input view, as illustrated in Fig. 3.

This approach greatly benefits global shape understanding,

because each predicted shape is required to simultaneously

explain a set of images instead of only explaining the single

input image.

On the other hand, we address the limitation of poor

Input Image

SSC Constraint

E

Reconstruction Semantic Neighbors

Figure 3. Semantic-based Shape Consistency (SSC) Con-

straint. We find the semantic neighbors of the input image across

the training set and use these neighbors to regularize the shape

learning.

bottom-up geometric reasoning by constraining the sur-

face normals of the predicted shapes. Common failure

cases include noisy surface reconstruction and failed con-

cavity modeling, which are extremely hard to learn even

with multi-view supervision. Inspired by the recent success

of large-scale 2.5D estimation that generalizes to various

scenes [7, 34, 35], we propose to use off-the-shelf surface

normals as additional geometric supervision for our task.

However, unlike scenes, off-the-shelf normals for object-

centric images are much noisier due to occlusion, trunca-

tion, and domain gaps. To mitigate this issue, we introduce

a noise-tolerant optimization process via outlier dropout,

which stabilizes the training and improves the overall re-

construction performance.

Overall, our contributions are threefold:

• We propose a novel CLIP-based shape consistency

regularization that greatly facilitates the top-down un-

derstanding of object shapes.

• We successfully leverage off-the-shelf geometry cues

to improve single-view object shape reconstruction for

the first time and handle noise effectively.

• We perform extensive experiments across 3 differ-

ent real-world datasets and demonstrate state-of-the-

art performance.

2. Related Work

There has been an emerging interest in 3D object shape

reconstruction from images via learning-based approaches.

Our work focuses on learning single-view shape reconstruc-

tion with limited supervision on real-world images, where

the training set only contains a single view per object in-

stance. We briefly survey the relevant literature on single

image shape reconstruction using both fully-supervised and

weakly-supervised approaches.

Single-View Supervision. Most closely related to this pa-

per are works that learn 3D shape reconstruction through
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supervision from single-view images [1, 10, 13–15, 17, 18,

22, 24, 29, 31, 46, 55, 57]. These works can be organized as

in Tab. 1 and largely differ in their choice of 1) shape repre-

sentation (e.g. implicit SDF vs explicit mesh); 2) known vs.

unknown viewpoint supervision; 3) large-scale evaluation

on various real-world objects. We are one of the earliest

works to demonstrate the feasibility of single-view learning

of an implicit SDF representation upon diverse real-world

images under unknown viewpoints.

Within this body of work, SSMP [55], Cat3D [15], and

SS3D [1] are the most closely related ones given their large-

scale evaluation, which we describe in details below.

SSMP [55] is the earliest work that shows success of

shape learning via only single-view supervision on large-

scale real-world data. A key property of this method is

adversarial regularization during training, which can make

training unstable. Thus it is hard for SSMP to learn recon-

struction on categories with complex shapes or textures. In

contrast, our method leverages the SSC and geometric con-

straints which are more stable and result in superior perfor-

mance over SSMP across various objects.

Similar to our method, Cat3D [15] explores semantic

regularization for implicit shape learning. In contrast, their

semantic regularization is based on category labels, which

fails on categories with significant intra-category shape

variations. Moreover, Cat3D relies on unstable adversarial

regularization which has similar drawbacks as SSMP [55]

and is only successful on a few real-world categories.

SS3D [1] proposes a 3-step learning pipeline for scal-

able learning of shapes, which includes synthetic data (e.g.

ShapeNet [3]) pretraining. This step plays a crucial role as

it provides the necessary initialization for the camera multi-

plex optimization. Unlike SS3D, synthetic pretraining is not

a hard constraint for our method—we demonstrate success

on Pix3D [39] without any synthetic pretraining. On the

other hand, SS3D does not explore the usage of semantic

and geometric consistency. As a result, our model captures

both global structures and local surfaces more accurately

than SS3D and outperforms SS3D quantitatively.

Shape Supervision. Instead of using image supervision,

many prior works use explicit 3D geometric supervision and

achieve great reconstruction results [4, 9, 11, 28, 36, 41, 43–

45,48,49,53]. Nevertheless, the assumption of 3D supervi-

sion is not yet practical on a large scale. To make the learn-

ing more scalable, subsequent works leverage multi-view

images as supervision and employ differentiable rendering

as the core technique. Specifically, differentiable rendering

allows images and masks to be rendered from 3D assets dif-

ferentiably and thus the multi-view reprojection loss can ef-

fectively carve the reconstructed shape. These methods can

be classified based on their representation of shape, includ-

ing voxels [42,50,51], pointclouds [16,23], meshes [19,25]

and implicit representations [32]. Compared to these works,
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Figure 4. Network overview. Given the input image, the encoder

E infers the shape latent code s and texture latent code t. By con-

ditioning these two codes upon shape MLP fS and texture MLP

fT , we obtain the shape and texture reconstruction of the input

object. On the other hand, the viewpoint estimator V estimates

the input viewpoint v. The differentiable volume renderer R then

renders shape and texture fields under the estimated viewpoint, so

that we can compute the reconstruction loss LI and LM . We fur-

ther leverage our SSC and geometric constraints, LSSC and LN ,

to effectively harness the shape learning.

a major benefit of our method is scalability, as our model

can be trained using single-view real-world images.

3. Method

In this section, we first present an overview of our model

in Sec. 3.1, and then introduce our proposed SSC and ge-

ometric constraints in Sec. 3.2 and Sec. 3.3. Finally, we

present implementation details in Sec. 3.4.

3.1. Overview

Given a collection of n images segmented with fore-

ground masks {Ii ∈ R
h×w×3,Mi ∈ R

h×w×1}ni=1
, we aim

to learn a single-view 3D reconstruction model without re-

lying on 3D, viewpoint, or multi-view supervision of these

images. The shape representation of our model is an im-

plicit SDF function, represented by a multi-layer percep-

tron (MLP) conditioned on the input image. Specifically,

our model consists of four submodules (see Fig. 4 for an

overview) as described below.

Image encoder. The image encoder E takes a segmented

image I ∈ R
h×w×3 as input and infers the shape latent code

s ∈ R
l and the texture latent code t ∈ R

l. These two codes

encode the necessary information to reconstruct the shape

and texture field respectively.

Shape and texture reconstructor. Our model represents

shape and texture reconstruction with two MLPs, fS :
R

3 → R and fT : R3 → R
3, which predict signed dis-

tance function (SDF) and RGB values of queried 3D co-

ordinates respectively. The MLPs are conditioned on the

latent codes, with a similar design to VolSDF [54]. Specifi-

cally, the shape MLP fS is conditioned on s and the texture

MLP fT is conditioned on t.
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Table 1. Single-view supervised methods for object shape reconstruction. M: mesh, V: voxel, P: pointcloud, D: depth, O: occupancy

function, S: signed distance function, Diverse R-Res.: real-world results on diverse categories.

Model [17] [18] [24] [38] [57] [10] [22] [14] [13] [31] [46] [29] [15] [55] [1] Ours

3D Rep. M M S M M M M V M P D M S M O S

Viewpoint Free - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Diverse R-Res. - - - - - - - - - - - - - ✓ ✓ ✓

Viewpoint estimator. The viewpoint estimator V estimates

the viewpoint of the input image with respect to the shape

reconstruction. Following [2, 15], we represent the view-

point with the trigonometric functions of Euler angles, i.e.

v = [cosγ, sinγ] where γ denotes the three Euler angles.

Differentiable renderer. We use a volume renderer R to

render the reconstructed SDF and texture fields following

VolSDF [54]. In the renderer, the SDF field is first con-

verted into densities, and then the densities are used to-

gether with the texture field to render the RGB and mask

in an accumulative way (via ray-marching). We refer the

readers to VolSDF [54] for more details, with the exception

that we use uniform sampling instead of error-bound based

sampling. Formally, we denote the renderer as a functional,

R(fS ,fT ,v), which maps the implicit functions and the

viewpoint into image Î , mask M̂ and surface normal N̂ .

Reprojection loss. One of the major learning signals of our

model comes from the reprojection loss that compares input

images with reconstructed images. This can be achieved via

the differentiable renderer. Our model first infers shape, tex-

ture, and viewpoint of the object from the input image. The

renderer can then render them into an image reconstruction,

which will be matched to the input.

Specifically, we can denote the RGB and the mask repro-

jection loss for each image as follows:

LI = ∥I − Î∥2
2
, LM = 1− IOU(M, M̂), (1)

IOU(M, M̂) =

∑
p M

p · M̂p

∑
p M

p + M̂p −M · M̂p
. (2)

Here Mp denotes the mask value at pixel p.

Facilitating shape learning. When we do not have direct

viewpoint or shape supervision, simply minimizing the re-

projection loss almost always leads to degeneration. There

are two major issues: 1) incorrect top-down reasoning,

where shapes can only explain the input view; 2) wrong

bottom-up reasoning, examples include the inability to infer

concavity or noisy surface reconstruction. To mitigate these

issues, we propose the semantic and geometric consistency

constraints that effectively facilitate the shape learning.

3.2. Semantic Constraint

Preliminary findings about CLIP. To leverage CLIP for

shape regularization, our main hypothesis is that objects

with similar CLIP encodings share similar shapes. To ver-

ify this hypothesis, we perform a study using the large-scale

fine-grained CompCars [52] dataset. This dataset contains

more than 136K images of 163 car makes with 1716 car

models. We perform CLIP inference on this dataset and

compute 5-nearest neighbor for each sample based on the

CLIP embeddings. By iterating over each neighbor of all

query images, we calculate the percentage of neighbors that

match their query images’ model (same car model usually

shares quite similar shapes). In our experiment, CLIP is

able to find the exact same car models for 51.2% of all the

neighbors (on average 2.6 out of 5 neighbors belong to the

query images’ model). We believe this is a promising find-

ing given 1) the large number of images and models in Com-

pCars and 2) the fact that different models can still have

similar shapes, so the percentage of shape matches can be

higher than exact model matches. As a comparison, the per-

centage of model matches for ImageNet-pretrained ViT [6]

is only 27.8%. This study verifies our hypothesis and en-

ables us to design our Semantic-based Shape Consistency

(SSC) constraint based on CLIP.

Semantic-based Shape Consistency. The key idea of SSC

is to pull instances with similar CLIP embeddings together,

so that a single shape reconstruction can receive supervi-

sion from all these instances. In our experiments, we find

CLIP encodings have some robustness to viewpoint change

(see supplement for more details). Therefore it enables us

to find additional pseudo views for many objects, which sig-

nificantly facilitate the learning of better top-down reason-

ing.

We first form the per-instance clusters by performing K-

nearest neighbors with CLIP encodings. Formally, given

our training set {Ii}, we extract the CLIP encoding for each

image, denoted as {ci}. We calculate the cosine similar-

ity of all pairs of encodings. With such similarity measure-

ment, we can query the K-nearest neighbors for any specific

input encoding {ci} and identify images and masks of these

neighbors.

We then use these semantic neighbors to supervise the

shape reconstruction as in Fig. 5. The high-level idea is

that 1) the shape reconstructed for the input should explain

neighbors’ masks and normals, and 2) when combining in-

put’s shape with neighbor’s texture, we should be able to

render the neighbor image.

Formally, for input I , we denote its shape latent code

and shape MLP as s and fS . Meanwhile, we sample an

image and its mask Ik and Mk from the semantic neighbor

set {Ik,Mk}
K
k=1

. The encoder E then predicts the latent

texture code tk for Ik, which is used to generate its texture
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Figure 5. Semantic-based Shape Consistency (SSC) constraint.

We improve shape learning via the SSC constraint. The shape

reconstructed for the input object has to explain its CLIP semantic

neighbor as well.

function fT k. We also obtain the viewpoint prediction vk

through the viewpoint estimator V . We can then combine

the input shape fS with the neighbor texture fT k and view-

point vk, and render them into an image Î ′, a mask M̂ ′ and a

normal map N̂ ′. Namely, (Î ′, M̂ ′, N̂ ′) = R(fS ,fT k,vk).
By replacing input maps in Eq. (1) with semantic neigh-

bors, we can obtain the SSC losses for this sample in the

same form:

LSSCI
= ∥Ik − Î ′∥2

2
, LSSCM

= 1− IOU(Mk, M̂ ′). (3)

3.3. Geometric Constraint

We further propose to facilitate shape learning via ge-

ometric constraints to encourage the model to learn better

low-level geometric reasoning. The idea here is to estimate

the surface normal of our implicit shape, and make it con-

sistent with the surface normal prediction from off-the-shelf

models. The off-the-shelf normal estimator we use is Om-

nidata [7], which is a state-of-the-art normal estimator. Re-

cent work has also proven its effectiveness for multi-view

scene reconstruction [56].

Formally, we denote our surface normal estimation as

N̂ ∈ R
h×w×3 and the off-the-shelf unit normal as N ∈

R
h×w×3. The estimated normal is calculated as the nor-

malized gradient of the density and aggregated via volume

rendering similar to MonoSDF [56]. Unlike the setup in

MonoSDF, our normal estimation lies in the object-centric

canonical frame instead of the view-centric frame. There-

fore, we use our estimated viewpoint to rotate the off-the-

shelf normal N to be in the same canonical frame as N̂ .

In addition to aligning the coordinate frames, this approach

enables the viewpoint estimator to receive additional train-

ing signals from local geometry alignment, which is a sig-

nificant benefit that naive approaches like the closed-form

rotation alignment cannot provide. After the rotation, we

can then match the normals following [7]:

LN = β · ∥RN − N̂∥1 − cos(RN, N̂), (4)

where R refers to the rotation matrix derived from the esti-

mated viewpoint and cos denotes the cosine similarity. We

set β = 5 across all the experiments.

This geometric loss is calculated at the pixel level and

averaged over a minibatch. However, unlike scene recon-

struction [56], off-the-shelf normals can be noisy for object-

centric images due to inaccurate masks and domain gaps.

As a result, naively using off-the-shelf normals results in

training instability. Inspired by online hard example min-

ing [37], we propose to dropout off-the-shelf normals that

are likely to be outliers via batchwise ranking. Specifically,

we sort the normal loss LN within the current minibatch

and exclude a fixed percentage of high-loss pixels from the

final loss aggregation. We find that this strategy stabilizes

the training and improves the reconstruction quality overall.

Finally, we can combine the geometric constraint with

the semantic constraint by having a SSC normal loss,

LSSCN
. This can be calculated similarly to LN , the only

difference is that we replace the input off-the-shelf normals

and rotations with the semantic neighbor’s as in Eq. (3).

3.4. Implementation Details

Architecture. The image encoder we use is a

ResNet34 [12], which projects the input image into two

64-d latent vectors representing shape and texture. We use

lightweight MLPs to represent the SDF and texture fields,

where the shape MLP has 5 hidden layers of 64 neurons

and the texture MLP has 3 hidden layers of 64 neurons.

The 3D coordinates are positionally encoded [27] before fed

into the MLPs. The conditioning of the MLPs is achieved

via concatenation, and the shape latent code is additionally

skip-connected to the first and the second hidden layers of

the shape MLP. Following VolSDF, we condition the tex-

ture MLP with the shape MLP’s last-layer feature as well.

The differentiable renderer we use renders the volumes by

uniformly sampling 64 points along each ray.

Loss function. Our overall loss function is a summation of

the reconstruction loss and the SSC losses (with our geo-

metric constraint included):

Lrecon = LI + λ1LM + λ2LN , (5)

LSSC = LSSCI
+ λ1LSSCM

+ λ2LSSCN
, (6)

L = Lrecon + LSSC . (7)

We set λ1 = 0.5 and λ2 = 0.01 across all datasets.

Training. We use the Adam [20] optimizer with a learning

rate of 0.0001 and a batch size of 12. We did not use weight

decay or learning rate scheduling. Instead of using all pix-

els at once, we sample 512 rays to perform ray-marching

for each image. Our model is trained on a single NVIDIA

GTX TITAN Xp for 200 to 400 epochs depending on the

dataset size, which usually takes 1 to 3 days to train. Fol-

lowing SS3D [1], we initialize the model by pretraining on
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ShapeNet for our experiments on Pascal3D+ and OpenIm-

ages, where we compare to SS3D. We use the commonly

used symmetry constraint [30, 55] and regularize the az-

imuth with a uniform prior. We further regularize the SDF

field with the eikonal loss so the gradient norm is close to 1.

For Pix3D we did not use synthetic pretraining, and instead

we pretrain the shape to a sphere for a better initialization

similar to Cat3D [15].

4. Experiments

We present the findings of applying our method across

three real-world datasets in this section, including state-of-

the-art comparison and detailed ablations. We first intro-

duce the datasets we use and then describe the evaluation

metrics as well as the baselines. Finally, we show detailed

experiment results on each dataset.

4.1. Datasets

We evaluate our method across three real-world datasets,

including Pix3D [39], Pascal3D+ [47] and OpenIm-

ages [21].

Pix3D. Pix3D is a real-world 3D object dataset where each

image is annotated with a corresponding object mask, a

CAD model, and the input viewpoint. This 3D informa-

tion is obtained via manual alignment between shapes and

images. We use the chair category, which is the dom-

inant category of this dataset. We follow the 70/10/20

split of [15], resulting in 2007, 303, 584 images for train-

ing/validating/testing respectively.

Pascal3D+. Pascal3D+ is a real-world 3D object dataset

obtained similarly to Pix3D. Compared to Pix3D, this

dataset is more challenging because 1) it includes 12 diverse

categories with a high-variance viewpoint distribution, and

2) object masks are quite noisy and some objects are oc-

cluded. We use all categories in the ImageNet [5] subset

of this dataset, with a similar split to [15, 24], resulting in

11317, 11421 images for training and testing respectively.

OpenImages. Unlike Pix3D and Pascal3D+, OpenImages

do not contain any 3D annotation, which prevents us from

evaluating methods quantitatively. We use 20 diverse cate-

gories (more in supplement) to train our model and lever-

age the occlusion scores from [55] to filter out highly oc-

cluded images. Each category includes 1000 to 3000 im-

ages, which are split into 90/10 for training and testing.

4.2. Evaluation

To evaluate the implicit shapes, we sample SDF val-

ues with a 1003 spatial grid and extract the 0-isosurface

via Marching Cubes [26]. We further align the coordinate

frames between predicted meshes and ground truth (GT)

meshes, by transforming all meshes into the view-centric

coordinate frame. We also align the scales of these meshes

Input SS3D-view1 SS3D-view2 Ours-view1 Ours-view2

Figure 6. Qualitative comparison on OpenImages. Our method

learns both better global 3D structure and shape details on various

categories.

using the size of their projections on the image plane. After

these steps, we can sample points from mesh surfaces and

calculate Chamfer Distance and F-score as our quantitative

metrics following [11, 15, 24, 40, 41].

Chamfer Distance. Following [15], Chamfer Distance

(CD) is defined as an average of accuracy and complete-

ness. Given two pointclouds S1 and S2, CD can be written

as:

d(S1, S2) =
1

2|S1|

∑

x∈S1

min
y∈S2

∥x−y∥2+
1

2|S2|

∑

y∈S2

min
x∈S1

∥x−y∥2

(8)

F-score. F-score (FS@d) is a joint measurement of accu-

racy and completeness with a given threshold d. Specif-

ically, precision@d is the percentage of predicted points

that have at least one GT neighbor within distance d. Simi-

larly, recall@d is the percentage of ground truth points that

have at least one neighboring predicted points within dis-

tance d. FS@d is then calculated as the harmonic mean of

precision@d and recall@d. It can be intuitively understood

as the percentage of surface that are correctly reconstructed.
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Table 2. Quantitative results on Pix3D. Our method performs

favorably to baselines and other SOTA methods.

Methods FS@1↑ FS@5↑ FS@10↑ CD↓
w/o LSSC 0.0958 0.4309 0.7093 0.749

w/o normal 0.0815 0.3913 0.6982 0.766

w/o noise-tol 0.1277 0.5319 0.7861 0.640

Ours 0.1317 0.5473 0.8002 0.618

Cat3D [15] 0.0960 0.4410 0.7262 0.679

SSMP [55] 0.0948 0.4261 0.7168 0.707

4.3. Baselines

We consider three different baselines in this work, in-

cluding SSMP [55], Cat3D [15] and SS3D [1].

SSMP learns single-view supervised voxel reconstruction

via adversarial regularization.2 We compare our method to

SSMP over Pix3D and Pascal3D+.

Cat3D learns multi-class shape reconstruction without us-

ing any 3D/viewpoint annotation. It uses a similar implicit

SDF representation. We compare our method to Cat3D over

Pix3D and Pascal3D+.

SS3D learns single-view supervised implicit shape recon-

struction by pretraining on ShapeNet first. They use a per-

instance camera multiplex optimization, which is too com-

putationally expensive for us to train their model (based

on their paper, even training on a single category-specific

model takes 64 V100 days on average). Therefore, we use

their publicly available pretrained weights instead and eval-

uate their method on Pascal3D+ by selecting 11 categories

that SS3D has seen during training. Additionally, because

SS3D cannot predict viewpoints during inference, we use

the brute-force evaluation to evaluate shape reconstruction

when comparing our method to SS3D. Specifically, for each

instance, we align the scales of the reconstructed shape and

the GT shape, and search for the rotation that leads to the

lowest Chamfer Distance. We also compare our method to

SS3D on OpenImages qualitatively.

4.4. Pix3D

We perform experiments on Pix3D and show quantitative

and qualitative results in Tab. 2 and Fig. 7.

Ablation Study. We first analyze the results of ablating

the techniques we propose. In Tab. 2, ‘w/o LSSC’ refers

to our model without the CLIP-based semantic constraint,

‘w/o normal’ refers to our model without the geometric con-

straint, ’w/o noise-tol’ refers to our model without outlier

dropping in the geometric constraint. Because we do not

perform synthetic pretraining on Pix3D, we find the final

performance of the baselines sensitive to the initialization.

Therefore we average the quantitative results over 5 runs

2SSMP has an optional test-time optimization to further convert voxels

into meshes. Using the authors’ public implementation of this optimization

did not improve their results in our experiments, so we use their voxel

prediction for evaluation.
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Figure 7. Qualitative comparison on Pix3D. Our method learns

better global 3D structure and shape details than other baselines.

with different random seeds. By comparing the baselines to

our final model, we clearly see our semantic and geomet-

ric constraints improve the reconstruction performance, and

the outlier dropping benefits the shape learning as well. In

the qualitative results (Fig. 7), we find our semantic con-

straint leads to better global structures, while our geometric

constraint significantly improves the reconstruction of ob-

ject surfaces.

SOTA Comparison. Comparing with SOTA methods

(Tab. 2, last 3 rows), we see our approach outperforms

Cat3D and SSMP significantly. Qualitatively, our approach

captures better overall shape topology and local geomet-

ric details than Cat3D and SSMP. These results all demon-

strate the effectiveness of our proposed method. Note that

for comparisons on this dataset there is no synthetic pre-

training for any methods.
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Table 3. Quantitative results on Pascal3D+. Our method per-

forms favorably to baselines and other SOTA methods.

Methods FS@1↑ FS@5↑ FS@10↑ CD↓
w/o LSSC 0.1363 0.5268 0.7307 0.898

w/o normal 0.1185 0.4648 0.6712 0.952

w/o noise-tol 0.1548 0.5875 0.7874 0.707

Ours 0.1519 0.5914 0.7981 0.693

Cat3D [15] 0.0858 0.3977 0.6155 1.118

SSMP [55] 0.1014 0.4366 0.6614 1.000

Table 4. Additional quantitative comparison to SS3D on Pas-

cal3D+. Shapes are aligned via brute-force search. Our method

performs favorably to SS3D on Pascal3D+.

Methods FS@1↑ FS@5↑ FS@10↑ CD↓
SS3D [1] 0.0533 0.4879 0.7702 0.696

Ours 0.0585 0.5388 0.8507 0.572

4.5. Pascal3D+

We perform experiments on Pascal3D+ and show quan-

titative and qualitative results in Tab. 3, Tab. 4 and Fig. 8.

Ablation Study. We perform a similar ablation to Pix3D

on Pascal3D+. The results corroborate the findings from

Pix3D; we verify the effectiveness of our proposed tech-

niques both quantitatively (Tab. 3) and qualitatively (Fig. 8).

SOTA Comparison. We first compare our method with

Cat3D and SSMP. Due to the instability of adversarial reg-

ularization and the lack of synthetic pretraining, both meth-

ods cannot scale up well to more diverse real-world sce-

narios and compare poorly to our method as demonstrated

in Tab. 3. In Tab. 4, we further compare to SS3D which also

uses synthetic pretraining. Because SS3D cannot predict

viewpoints, we evaluate reconstructed shapes via the brute-

force pose alignment for both our method and SS3D. In the

quantitative comparison, our method outperforms SS3D by

a large margin; we also learn better global structures and

more accurate local details in the qualitative examples, as

shown in Fig. 8.

4.6. OpenImages

We perform experiments on OpenImages and show a

qualitative comparison to SS3D in Fig. 6 across various cat-

egories. As shown in the figure, our method performs favor-

ably to SS3D by reconstructing more accurate shapes both

globally and locally. These results verify the effectiveness

and scalability of our method.

4.7. Limitations

Although the results we achieve are promising, we find

our method still can not work well for categories that are of-
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Figure 8. Qualitative comparison on Pascal3D. Our method

learns better global 3D structure and shape details than other base-

lines.

ten occluded, or for largely deformable categories. We also

do not handle the shape misalignment in our semantic con-

straint explicitly, which can be detrimental for categories

with complex/deformable shapes. We think future explo-

ration along these directions would be exciting.

5. Conclusion

We present a novel model that reconstructs 3D object

shapes over real-world single-view images in a scalable

way. Our model is driven by two key techniques, the

CLIP-based semantic constraint and the local geometric

constraint. These two techniques significantly benefit the

global shape understanding and local geometry reconstruc-

tion. They enable us to achieve SOTA performance on three

challenging real-world datasets containing various objects.
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