
Style Projected Clustering for Domain Generalized Semantic Segmentation

Wei Huang1* Chang Chen2† Yong Li2 Jiacheng Li1

Cheng Li2 Fenglong Song2 Youliang Yan2 Zhiwei Xiong1

1University of Science and Technology of China 2Huawei Noah’s Ark Lab
{weih527,jclee}@mail.ustc.edu.cn, zwxiong@ustc.edu.cn,

{chenchang25,liyong156,licheng89,songfenglong,yanyouliang}@huawei.com

Abstract

Existing semantic segmentation methods improve gen-
eralization capability, by regularizing various images to a
canonical feature space. While this process contributes to
generalization, it weakens the representation inevitably. In
contrast to existing methods, we instead utilize the differ-
ence between images to build a better representation space,
where the distinct style features are extracted and stored
as the bases of representation. Then, the generalization to
unseen image styles is achieved by projecting features to
this known space. Specifically, we realize the style projec-
tion as a weighted combination of stored bases, where the
similarity distances are adopted as the weighting factors.
Based on the same concept, we extend this process to the
decision part of model and promote the generalization of
semantic prediction. By measuring the similarity distances
to semantic bases (i.e., prototypes), we replace the common
deterministic prediction with semantic clustering. Compre-
hensive experiments demonstrate the advantage of proposed
method to the state of the art, up to 3.6% mIoU improve-
ment in average on unseen scenarios. Code and models
are available at https://gitee.com/mindspore/
models/tree/master/research/cv/SPC-Net.

1. Introduction

Domain generalization methods aim to promote the per-
formance of model (trained on source datasets), when ap-
plying it to unseen scenarios (target domains) [9, 19, 29, 36,
62, 74, 75]. Recently, domain generalization for semantic
segmentation (DGSS) has attracted increasingly more at-
tention due to the rise of safety-critical applications, such
as autonomous driving [3, 12, 22, 45].

Existing DGSS methods improve the pixel-wise gen-
eralization performance by learning domain-agnostic rep-
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Figure 1. Illustration of instance normalization/whitening (IN/IW)
[5, 20, 40] and our proposed style projected clustering method.
IN and IW regularize image features from different domains to a
canonical space (a-c). Our method builds style and semantic rep-
resentation spaces based on the data from known domains (d).

resentations [5, 16, 20, 25, 40, 42, 66, 72]. Researches in
this line share the similar goal in general, that is to cap-
ture the domain-invariant characteristics of object contents,
and eliminates the domain-specific ones (i.e., image styles).
As two representatives, Instance Normalization (IN) [56]
and Instance Whitening (IW) [17] regularize image fea-
tures from different domains to a canonical space, as illus-
trated in Fig. 1(a) and 1(b). Specifically, IN achieves center-
level feature alignment via channel-wise feature normaliza-
tion [33,40], and IW realizes uniform feature distribution by
removing linear correlation between channels [5,41]. More-
over, the combination of these two methods is proposed
in [42] for a better generalization, as shown in Fig. 1(c).

Nevertheless, feature regularization inevitably weakens
the representation capability, as a part of feature informa-
tion is eliminated. Theoretically, it works under a strong
assumption that the eliminated information is strictly the
domain-specific ones. Yet in practice, the perfect disen-
tanglement between image style and content is difficult to
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achieve. It means that a part of content features will also be
eliminated in the process of feature regularization, and thus
degrades the segmentation performance.

Instead of seeking common ground by feature regular-
ization, we aim to address DGSS in a different way. In this
paper, we propose style projection as an alternative, which
utilizes the features from different domains as bases to build
a better representation space, as shown in Fig. 1(d). The
motivation of style projection comes from a basic concept of
generalization, that is to represent unseen data based on the
known ones. Specifically, following the common practice,
we adopt the statistics (i.e., mean and variance) of features
in channel dimension to represent image styles. The im-
age styles from source domains are iteratively extracted and
stored as the bases of representation. Then, we project the
style of given unseen images into this representation space
to promote generalization. This projection process is im-
plemented as a weighted combination of stored style bases,
where the similarity distance between styles are adopted as
the weighting factors, i.e., λ1 and λ2 shown in Fig. 1(d).

Based on the projected style features, we further devise
the decision part of model, which is elaborated for semantic
segmentation. Typically, existing methods learn a paramet-
ric function to map pixel-wise features to semantic predic-
tions. We replace this deterministic prediction with seman-
tic clustering, where the class of each pixel is predicted by
the minimal similarity distance to semantic bases, as shown
in Fig. 1(d). Notably, it follows the same concept of style
projection, that is to predict unseen data based on the known
ones. More concretely, to facilitate the performance of se-
mantic clustering, we propose a variant of contrastive loss
to align the semantic bases of same classes and enhance dis-
criminability between different classes.

We conduct comprehensive experiments on single- and
multi-source settings to demonstrate the superior general-
ization of our method over existing DGSS methods. In ad-
dition, we visually analyze the effective representation of
our proposed method for unseen images in both style and
semantic spaces.

Contributions of this paper are summarized as follows:

• Beyond existing feature regularization methods, we
propose style projected clustering, pointing out a new
avenue to address DGSS.

• We propose style projection, which projects unseen
styles into the style representation space built on
known domains for a better representation.

• We propose semantic clustering to predict the class of
each pixel in unseen images by the similarity distance
to semantic bases, which further improves the general-
ization capability for unseen domains.

• Our proposed method outperforms the current state of
the arts on multiple DGSS benchmarks.

2. Related Work
Domain adaptation and generalization. To reduce the
burden of pixel-wise annotations on target domains, do-
main adaptation (DA) technologies are proposed to narrow
the domain gap between source and target domains via im-
age translation [14, 24, 37], feature alignment [55, 60, 61],
self-training [2, 39, 77] and meta-learning [13, 34] strate-
gies. However, these DA methods require the access of
data on target domains. Domain generalization (DG) aims
to address a more practical problem where the target do-
main cannot be accessed. Numerous DG works have been
proposed for image classification via style augmentation
[19, 59, 68, 75], domain alignment [29, 31], feature disen-
tanglement [27, 44] and meta-learning [9, 26, 28].
Domain generalization for semantic segmentation. Sim-
ilar to image classification, DG for semantic segmentation
(DGSS) methods are proposed to learn domain-agnostic
representations, including style augmentation [16, 25, 43,
72], feature normalization/whitening [5, 40, 42, 66] and
meta-learning [20]. To avoid overfitting on source domains,
DRPC [72] and FSDR [16] adopt style augmentations in the
image space to extend the number of source samples, while
WildNet [25] realizes it in the feature space with the aid of
ImageNet [8]. Alternatively, normalization and whitening
are investigated to achieve distribution alignment between
different domains. IBN-Net [40] and RobustNet [5] adopt
instance normalization and whitening, respectively, to elim-
inate the specific style information of each domain. Further-
more, SAN-SAW [42] proposes semantic-aware instance
normalization and whitening to enhance the distinguishabil-
ity between classes. In addition, PintheMem [20] combines
the memory-guided network with the meta-learning strat-
egy and obtains competitive performances. Different from
these DGSS methods, our method embraces the differences
from multiple known domains and takes advantage of their
diversity to build a better representation space, realizing the
representation of unseen images by the known data.
Prototype learning. Inspired by the cognitive psychology
that human use the knowledge learned in the past to judge
the class of unknown things [51,69], prototype-based classi-
fication methods have attracted increasing attention, where
the class of unknown images is determined by its nearest
neighbors in the feature space [7, 10]. Owing to its excel-
lent interpretability and generalizability, prototype learning
shows good potential in many fields, such as few-shot learn-
ing [1, 52], zero-shot learning [67, 71], unsupervised learn-
ing [30,65]. Recently, prototype learning is also introduced
in the dense prediction task, including supervised [76], few-
shot [54,63] and domain adaptive [53,73] semantic segmen-
tation. To facilitate the learning of prototypes, metric learn-
ing [23,50,64] is often adopted to pull samples belonging to
the same class together and push those of different classes
away from each other in the embedding (i.e., feature) space.
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Figure 2. The framework of style projected clustering, which consists of two components, i.e., style projection and semantic clustering. We
iteratively extract the style and semantic information of seen domains as style bases (pµm, pσm) and semantic bases pcm. In style projection,
we first calculate the similarity between the unseen style (µm, σm) from the shallow feature F s

m and style bases (pµm, pσm) as weighted
factors λm. Then, the weighted combination of style bases (µ′

m, σ′
m) is projected on Fn

m to obtain the projected feature F r
m. In semantic

clustering, we calculate the similarity between pixel embeddings in the deep feature F d
m and semantic bases pcm. Then, the class of

each pixel is determined by the nearest semantic base. During the training phase, the cross-entropy loss LCE , variance loss Lvar and
discrimination loss Ldis are adopted to supervise the learning of style and semantic bases.

Similar to these methods, we adopt the form of prototypes
(i.e. bases) to represent semantics. Yet these semantic bases
are learned in a different way to facilitate domain general-
ization, by using a new variant of contrastive loss.

3. Style Projected Clustering
The overall architecture of our proposed method is de-

picted in Fig. 2, which consists of two components, i.e.,
style projection and semantic clustering. In style projec-
tion, we project the unseen style into the style representa-
tion space built on style bases, according to the similarity
between the unseen style and style bases. In semantic clus-
tering, we estimate the similarity between pixel embeddings
and semantic bases (i.e., prototypes) to determine the class
of pixels in unseen images by the nearest semantic base.

3.1. Problem Formulation

In the domain generalized semantic segmentation prob-
lem, we are given M source domains S = {S1,S2, ...,SM}
that are from multiple datasets with different data distribu-
tions. The m-th source domain Sm can be represented as
Sm = {(xm, ym)}, where xm ∈ RH×W×3 is an image
from the m-th source domain, ym ∈ RH×W×C is the cor-
responding pixel-wise label, C is the number of semantic
classes, H and W are the height and width of the image
xm, respectively. In this work, our goal is to train a seman-
tic segmentation model ϕ to obtain the best generalization
performance on multiple target domains T which cannot be
accessed during the training phase.

3.2. Style Projection

The style difference of images is the main factor leading
to the domain shift, which limits the generalization ability
of the learned model. Pioneering works [11,18,40,75] have
demonstrated that the feature distribution shift caused by
style differences lies mainly in shallow layers of networks.
It also shows that the shallow feature distribution of net-
works can reflect the style information of the input image
xm. Thus, existing works always adopt the channel-wise
mean and variance of the shallow feature to represent the
style distribution of xm [18,25]. Following these works, let
F s
m ∈ RD×Hs×Ws be the shallow feature of xm from the

network ϕ, where D denotes the number of channels. The
channel-wise mean µm ∈ RD and variance σm ∈ RD of
the feature F s

m can be calculated as follows:

µm =
1

HsWs

∑Hs

h=1

∑Ws

w=1
F s
m,

σm =

√
1

HsWs

∑Hs

h=1

∑Ws

w=1
(F s

m − µm)2.

(1)

To eliminate the specific style information of images, in-
stance normalization [40] is adopted to standardize the fea-
ture F s

m to a standard distribution (i.e., zeros mean and one
standard deviation) as follows:

Fn
m =

F s
m − µm

σm + ϵ
, (2)

where Fn
m stands for the normalized feature, and ϵ is a small

value to avoid division by zero.
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Although instance normalization achieves to remove the
specific style information of images, it also eliminates the
natural differences between domains, which weakens the
representation for target domains and produces limited gen-
eralization performance. Therefore, to preserve the specific
style information of each domain, we propose style bases
Psty = {(pµm, pσm)}Mm=1 to store the style information of
source domains, and then leverage the preserved style bases
Psty to build a style representation space, realizing the pro-
jection of unseen style, as shown in Fig. 2. Specifically, we
first leverage Wasserstein distance [57] to estimate the style
distribution discrepancy between the input image xm and
the m-th style bases (pµm, pσm) as follows:

dm = ||µm − pµm||22 + (σm
2 + pσm

2 − 2σmpσm), (3)

where dm denotes the distribution distance between the cur-
rent image xm and the m-th source domain. Then, we use
the reciprocal of dm to characterize the similarity between
xm and m-th style bases as follows:

λm =
exp(1/(1 + dm))∑M

m=1 exp(1/(1 + dm))
, (4)

where the softmax operation is utilized to make the sum
of λ = {λm|m = 1, 2, ...,M} equal to 1. Based on the
estimated similarity λ, we can obtain the projected style
(µm

′, σm
′) by the weighted sum of style bases as follows:

µm
′ =

M∑
m=1

λmpµm, σm
′ =

M∑
m=1

λmpσm. (5)

Finally, following previous works [11, 18, 19, 25], we inject
the projected style (µm

′, σm
′) into the normalized feature

Fn
m to obtain the projected feature as follows:

F r
m = σm

′Fn
m + µm

′. (6)

During the training phase, we adopt the momentum up-
date strategy to achieve the online collection of style infor-
mation as follows:

pµm = αpµm + (1− α)µm,

pσm = αpσm + (1− α)σm,
(7)

where α ∈ [0, 1] is a momentum coefficient. In addition, we
randomly initialize Psty to start training, where pµm and pσm
are initialized with zero-mean and one-mean distribution,
respectively. By Eq. 7, we realize the style statistic of source
domains and store it as style bases efficiently.

After style projection, the projected feature F r
m is input

into the next layer of the network ϕ. Our style projection
is designed as a plug-and-play module that can be applied
behind any network layer. However, as the layer is deeper,
the style information loosens while the semantic informa-
tion plays a more important role. Thus, in this work, style
projection is only used in the first two layers of ϕ to obtain
the best generalization performance.

3.3. Semantic Clustering

To obtain the final pixel-wise predictions, we further pro-
pose semantic clustering on the deep feature extracted by
the network ϕ. Let F d

m ∈ RD×Hd×Wd be the deep feature
of the input image xm from ϕ. Existing DGSS methods
generically apply a learnable segmentation classifier ϕcls

on F d
m for the dense prediction. However, the parameters

of ϕcls is learned on the deep features of source domains
S, and thus its generalization ability on target domain T
is limited. In addition, the semantic information between
different domains is implicitly encoded in the same param-
eter space, which causes the specific semantic information
of domains to be eliminated.

Based on the concept of style bases, we introduce seman-
tic bases Psem = {pcm}C,M

c,m=1 to preserve the semantic in-
formation of each domain and each class, where pcm ∈ RD

is the cluster center of training pixel embeddings belonging
to the c-th class from the m-th source domain in the feature
space. Following the prototype theory [7, 10, 76], the class
of each pixel embedding e ∈ F d

m can be determined by its
nearest semantic bases as follows:

c(e) = c∗,with(c∗,m∗) = argminc,m{dcm}C,M
c,m=1, (8)

where dcm = −cos(e, pcm) is the negative cosine distance
used to estimate the similarity between the current embed-
ding e and semantic bases pcm. In this work, the pixel em-
bedding e and semantic bases pcm are both l2-normalized.
Therefore, the similarity distance can be simply formulated
as dcm = −epcm. Different from the learnable segmentation
classifier ϕcls, Psem not only explicitly captures character-
istic properties of each class from each domain, but also
determines the class of pixels in unseen images without in-
troducing extra learnable parameters.

To facilitate the training of the network ϕ during the
training phase, we estimate the probability value of pixel
embedding e belonging to class c as follows:

v(c|e) = exp(−dc)∑C
c=1 exp(−dc)

, (9)

where dc = minm{dcm}Mm=1 denotes the similarity between
e and its closet semantic base belonging to class c. Then,
we adopt the standard cross-entropy loss to supervise the
training of the network ϕ as follows:

LCE = − 1

HdWd

Hd∑
h=1

Wd∑
w=1

C∑
c=1

ymlog(v(c|e)), (10)

where ym is the pixel-wise label corresponding to the input
image xm.

However, the naive cross-entropy loss only optimizes
the relative relations between intra-class and inter-class dis-
tance, which ignores the absolute distance constraint be-
tween pixel embeddings and semantic bases. That is to say,
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we expect that the pixel embedding belonging to class c is
closer to the c-th semantic base and is farther away from
the semantic bases belonging to other classes. Inspired by
metric learning [21, 23], we further propose variance and
discrimination terms as two extra training objectives. The
former is an intra-class cluster that pulls the pixel embed-
ding ecm belonging to class c from the m-th source domain
towards the semantic bases pcm:

Lvar =
1

MC

M∑
m=1

C∑
c=1

(1− ecmpcm)2. (11)

The latter is designed in a contrastive learning way which
encourages the current cluster center ēcm is closer to the c-th
semantic bases pc+ (i.e., positive keys) and to be far away
from semantic bases belonging to other class pc− (i.e., neg-
ative keys):

Ldis =
1

M

∑
pc+

−log
exp(ēcmpc+/τ)

exp(ēcmpc+/τ) +
∑

pc−
exp(ēcmpc−/τ)

,

(12)

where ēcm is the cluster center (i.e., mean embedding) of
pixel embedding ecm in the current feature F d

m, and τ is
a temperature hyper-parameter. By Eq. 12, we realize the
alignment of semantic bases belonging to the same class c
from different domains. Different from existing pixel-wise
contrastive learning paradigm [64], the positive and nega-
tive samples in Eq. 12 are semantic bases rather than pixel
embeddings. Thus, we don’t need to construct a memory
bank to store sufficient embedding samples, which also sig-
nificantly reduces the computational cost.

To achieve the online collocation of semantic informa-
tion from source domains, we adopt the same momentum
update strategy to update semantic bases Psem as follows:

pcm = αpcm + (1− α)ēcm, (13)

where α the momentum coefficient. Like style bases, we
also randomly initialize the semantic bases Psem with zero-
mean distribution to start our training.

3.4. Training and Inference

During the training phase, we combine above three loss
terms for the end-to-end training as follows:

Ltotal = LCE + βLvar + γLdis, (14)

where β and γ are weighting coefficients to balance these
three terms. For each training iteration, in addition to the
parameter update of the network ϕ, the style and semantic
bases are also updated online by Eq. 7 and Eq. 13.

During the inference phase, we leverage Eq. 8 to obtain
final pixel-wise predictions by the nonparametric cluster of
pixel embeddings outputted from the learned network ϕ.

4. Experiments
4.1. Datasets

Synthetic datasets. GTAV [47] contains 24966 images
with a resolution of 1914× 1052 captured from the GTA-V
game engine. Synthia [48] contains 9400 images with a res-
olution of 1280× 760 generated from virtual urban scenes.
Real-world datasets. IDD [58] contains 10004 images
with an average resolution of 1678 × 968 captured from
Indian roads. Cityscapes [6] contains 5000 fine annotated
images with a resolution of 2048 × 1024 captured from
50 different cities primarily in Germany. BDD100K [70]
contains 10000 image with a resolution of 1280× 720 cap-
tures from different locations in US. Mapillary [38] contains
25000 images with an average resolution of 1920 × 1080
captured from all around the world.

4.2. Implementation Details

Following the previous work [5], we adopt DeepLabV3+
[4] with ResNet-50, ResNet-101 [15], MobileNetV2 [49]
and ShuffleNetV2 [35] backbones as our segmentation net-
works, where all backbones are pre-trained on ImageNet
[8]. During the training phase, we adopt the SGD optimizer
[46] with a momentum of 0.9 and weight decay of 5e − 4.
The initial learning rate is set to 0.01 and is decreased using
the polynomial scheduling with a power of 0.9. We train all
models for 40K iterations, except for the three-source set-
ting, the model is trained for 100K iterations. In addition
to some common data augmentations used in [5], we adopt
extra strong style augmentations to enrich the style informa-
tion of urban-scene images [32], which aims to enhance the
proposed style projection ability in networks. More details
can be found in our supplementary materials.

4.3. Results

Comparison methods. We extensively compare our pro-
posed method against existing DGSS methods, which can
be classified into three groups, including style augmenta-
tion (WildNet [25]), feature normalization/whitening (IBN-
Net [40], RobustNet [5] and SAN-SAW [42]), and meta-
learning (MLDG [26] and PintheMem [20]). Since SAN-
SAW [42] and WildNet [25] are only implemented on the
single-source setting in their paper, we reproduce them on
the multi-source setting to make a comparison. In partic-
ular, WildNet [25] utilizes the external dataset (i.e., Ima-
geNet) to extend the style and content information of source
domains. Thus, we re-implement it by replacing the exter-
nal dataset with the source dataset for a fair comparison,
which is marked with * in our tables.
Multi-source setting. To demonstrate the effectiveness
of our proposed method, we first conduct contrast exper-
iments on the multi-source DGSS setting, where multiple
source domains can be efficiently used to build a diverse
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Methods Publication Cityscapes BDD100K Mapillary Avg.-T GTAV Synthia Avg.-S Avg.-A

Baseline† - 35.46 25.09 31.94 30.83 68.48 67.99 68.24 45.79
IBN-Net† [40] ECCV 2018 35.55 32.18 38.09 35.27 69.72 66.90 68.31 48.49
RobustNet† [5] CVPR 2021 37.69 34.09 38.49 36.76 68.26 68.77 68.52 49.46

Baseline‡ - 33.42 29.07 32.19 31.56 69.63 63.93 66.78 45.65
MLDG‡ [26] AAAI 2018 38.84 31.95 35.60 35.46 64.61 51.69 58.15 44.54
PintheMem‡ [20] CVPR 2022 44.51 38.07 42.70 41.76 65.85 54.49 60.17 49.12

Baseline - 36.03 28.15 32.61 32.26 69.30 67.61 68.46 46.65
SAN-SAW [42] CVPR 2022 42.13 37.74 42.91 40.93 63.98 62.58 63.28 49.87
WildNet [25] CVPR 2022 43.65 39.90 43.28 42.28 68.05 63.98 66.02 51.77
WildNet* [25] CVPR 2022 39.33 34.76 41.06 38.38 69.70 62.11 65.91 49.39
Ours - 46.36 43.18 48.23 45.92 72.46 74.87 73.67 57.02

Table 1. Source (G+S) → Target (C, B, M): Mean IoU(%) comparison of existing DGSS methods, where all networks with the ResNet-50
backbone are trained with two synthetic (GTAV, Synthia) datasets. The best and second best results are highlighted and underlined. Avg.-
T , Avg.-S and Avg.-A denote the average results on target, source and all domains, respectively. Results with the † and ‡ sign are from [5]
and [20], respectively. * indicates that we replace the external dataset (i.e., ImageNet) used in WildNet [25] with the source dataset for a
fair comparison.

Methods Cityscapes BDD100K Mapillary Avg.-T GTAV Synthia IDD Avg.-S Avg.-A

Baseline‡ 52.51 47.47 54.70 51.56 70.31 67.13 71.56 69.67 60.61
IBN-Net‡ [40] 54.39 48.91 56.06 53.12 70.73 63.68 71.02 68.48 60.80
RobustNet‡ [5] 54.70 49.00 56.90 53.53 70.06 66.40 71.02 69.16 61.35
MLDG‡ [26] 54.76 48.52 55.94 53.07 69.53 59.79 67.73 65.68 59.38
PintheMem‡ [20] 56.57 50.18 58.31 55.02 69.99 62.99 67.58 66.85 60.94

Baseline 54.16 46.24 55.57 51.99 68.35 65.12 70.07 67.85 59.92
SAN-SAW [42] 54.89 46.50 56.38 52.59 64.49 64.76 66.37 65.21 58.90
WildNet [25] 55.58 50.31 57.93 54.61 67.65 61.35 70.07 66.36 60.48
WildNet* [25] 53.61 48.92 56.18 52.90 70.98 59.69 64.52 65.06 58.98
Ours 57.91 53.26 61.61 57.59 74.64 78.35 76.07 76.35 66.97

Table 2. Source (G+S+I) → Target (C, B, M): Mean IoU(%) comparison of existing DGSS methods, where all networks with the ResNet-
50 backbone are trained with two synthetic (GTAV, Synthia) and one real (IDD) datasets. Results with the ‡ sign are from [20].

representation space. As listed in Table 1, we quantita-
tively compare our results with existing DGSS methods on
both target and source datasets, where all networks with the
ResNet-50 backbone are trained with two synthetic datasets
(i.e., GTAV and Synthia). Remarkably, compared with
the state-of-the-art method (i.e., WildNet [20]), our method
not only shows superior generalization capability on target
datasets (up to 3.6% mIoU in average), but also significantly
improve the performance on source datasets (up to 7.6%
mIoU), which demonstrates our method can enhance the
representation ability of the learned model on both source
and target domains. Furthermore, We provide visual predic-
tion results for qualitative comparisons as shown in Fig. 3.
Our method obtains the best visual results on different target
datasets. Following [20], we add one real dataset (i.e., IDD)
to source domains to further verify the superiority of our
method on more source datasets. As listed in Table 2, our
method also outperforms existing methods on both source
and target domains by a large margin.
Single-source setting. We further implement our method in

the single-source setting to make a comprehensive compar-
ison, where all network with the ResNet-50 backbone are
trained with one synthetic (i.e., GTAV) dataset. As listed
in Table 3, our method shows superior generalization per-
formances over existing DGSS methods. Compared with
the naive baseline, our method brings approximately 14%
mIoU gains in average on target datasets.
Different backbones. To demonstrate the wide applica-
bility of our method, we compare our results with classic
DGSS methods (i.e., IBN-Net [40] and RobustNet [5]) with
different backbones. As listed in Table 4, our method shows
superior performances on both large (i.e., ResNet-101) and
lightweight (i.e., MobileNet and ShuffleNet) backbones.

4.4. Ablation Studies

We conduct comprehensive ablation studies with the
ResNet-50 backbone on two source domains (i.e., GTAV
and Synthia) as following.
Proposed strategies. As listed in Table 5, our method
shows the best generalization capability when two strategies
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Unseen images GroundtruthBaseline RobustNet PintheMem SAN-SAW WildNet Ours

Figure 3. Source (G+S) → Target (C, B, M): Visualization comparison with existing DGSS methods on three different target domains.

Methods C B M Avg.-T

Baseline 28.95 25.14 28.18 27.42
IBN-Net [40] 33.85 32.30 37.75 34.63
RobustNet [5] 36.58 35.20 40.33 37.37

Baseline 31.60 26.70 29.00 29.10
MLDG [26] 36.70 32.10 32.20 33.67
PintheMem [20] 41.00 34.60 37.40 37.67

Baseline 29.32 25.71 28.33 27.79
SAN-SAW [42] 39.75 37.34 41.86 39.65

Baseline 35.16 29.71 31.29 32.05
WildNet [25] 44.62 38.42 46.09 43.04

Baseline 32.01 26.04 29.35 29.13
WildNet* [25] 40.10 34.82 39.38 38.10
Ours 44.10 40.46 45.51 43.36

Table 3. Source (G) → Target (C, B, M): Mean IoU(%) com-
parison of existing DGSS methods, where all networks with the
ResNet-50 backbone are trained with the one synthetic (GTAV)
dataset. * indicates that we replace the external dataset (i.e., Im-
ageNet) used in WildNet [25] with the source dataset for a fair
comparison.

are adopted at the same time. Remarkably, compared with
the first and second lines, we can find that style projection
can approximately bring 12% mIoU gains in average over
the baseline, which fully demonstrates its effectiveness for
the generalization on unseen domains.
Different ways of style projection. As listed in Table 6,
we investigate the effect of different ways of style projec-
tion. There are two intuitive ways as follows. One way
is using the naive instance normalization to project images
from different domains into a normalized feature space (i.e.,
Normalization). The other way is using the extracted style
bases to directly substitute the unseen style (i.e., Substitu-
tion). We can find that the weighted combination of style
bases can effectively enhance the representation of unseen
style, producing better generalization on unseen domains.
Loss terms. As listed in Table 7, we conduct ablation ex-

Methods C B M Avg.-T

M
ob

ile
N

et Baseline 29.16 20.27 27.19 25.24
IBN-Net [40] 29.58 26.02 26.32 27.31
RobustNet [5] 30.67 25.02 28.27 27.99
Ours 39.88 34.83 38.91 37.87

Sh
uf

fle
N

et Baseline 29.48 26.27 31.35 29.03
IBN-Net [40] 32.61 29.55 33.20 31.79
RobustNet [5] 33.15 31.98 34.85 33.33
Ours 38.97 34.62 39.66 37.75

R
es

N
et

-1
01 Baseline 34.71 29.32 37.74 33.92

IBN-Net [40] 39.18 34.00 39.32 37.50
RobustNet [5] 39.96 34.94 41.72 38.87
Ours 47.93 43.62 48.79 46.78

Table 4. Source (G+S) → Target (C, B, M): Mean IoU(%) com-
parison of existing DGSS methods with different backbones.

Sty.-Pro. Sem.-Clu. C B M Avg.-T

36.03 28.15 32.61 32.26
44.87 42.42 46.37 44.55
39.01 30.60 35.19 34.93
46.36 43.18 48.23 45.92

Table 5. Ablation results for each strategy used in our method.
Sty.-Pro. and Sem.-Clu. indicate style projection and semantic
clustering, respectively.

Methods C B M Avg.-T

Normalization 43.83 40.95 44.92 43.23
Substitution 45.00 42.79 45.16 44.32
Ours 46.36 43.18 48.23 45.92

Table 6. Ablation results for different ways of style projection.

periments to demonstrate the effectiveness of two comple-
mentary loss functions in Eq. 11 and Eq. 12. Compared
with the naive cross-entropy loss, adding any complemen-
tary loss can bring the performance gain, which verifies
each of them can effectively supplement the main loss LCE .
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LCE Lvar Ldis C B M Avg.-T

44.00 41.82 45.97 43.93
45.57 42.78 46.61 44.99
45.92 42.42 47.08 45.14
46.36 43.18 48.23 45.92

Table 7. Ablation results for each loss term.

Methods # of Params GFLOPs Time (ms)

Baseline 45.08M 277.77 7.82
IBN-Net [40] 45.08M 277.82 8.74
RobustNet [5] 45.08M 277.78 9.48
MLDG [26] 45.08M 277.77 9.67
PintheMem [20] 45.28M 278.31 11.64
SAN-SAW [42] 25.63M 421.86 57.58
WildNet [25] 45.21M 277.16 8.61
Ours 45.22M 286.09 9.98

Table 8. Comparison of computational cost. Tested with the image
size of 2048×1024 on one NVIDIA Tesla V100 GPU. We average
the inference time over 500 trials.

5. Discussion and Analysis

Distribution analysis. We adopt the t-SNE visualization
tool to analyze the effectiveness of our proposed style pro-
jection and semantic clustering strategies. As shown in
Fig 4, we show the variations of style distribution between
different domains before and after style projection. We
can find that the style distribution of different domains is
well separated before style projection (Fig. 4(a)), while their
style distribution is approximately constrained between two
style bases after style projection (Fig. 4(b)), which demon-
strates style projection successfully projects unseen styles
into the style representation space built on style bases.

Furthermore, we visualize the semantic distribution be-
tween different classes and domains as shown in Fig 5.
From Fig. 5(a), we can find that pixel samples belonging
to the same class are well clustered while those belonging
to different classes are well separated. In addition, the pre-
served semantic bases are approximately located in the clus-
ter center of pixel samples. From Fig. 5(b), we can find that
these pixel samples from different domains are well clus-
tered according to their classes, which demonstrates our se-
mantic clustering successfully achieves the class prediction
between different domains by the preserved semantic bases.
Complexity of networks. As listed in Table 8, we com-
pare the number of parameters and computational cost with
existing DGSS methods. Since we need to store style and
semantic bases and estimate the similarity between them
and unseen images, the number of parameters and compu-
tational cost in our method are slightly higher than the naive
baseline. However, our inference time is competitive to ex-
iting DGSS methods due to the efficient implementation of
distance measures by matrix multiplications.

Cityscapes BDD100K Mapillary
GTAV Synthia

Target:
Source:

(a) Before projection

Cityscapes BDD100K Mapillary
GTAV Synthia

Target:
Source:

(b) After projection

Figure 4. t-SNE visualization of style statistics between different
domains before (a) and after (b) style projection, where the style
statistics (concatenation of mean and variance) is computed from
the first layer’s feature map of the ResNet-50 trained on two syn-
thetic datasets. Triangles indicate the preserved style bases.

Light Sign Pole
TerrainRider Bicycle Motorcycle

Vegetation

(a) Class distribution

Cityscapes BDD100K Mapillary
GTAV Synthia

Target:
Source:

(b) Domain distribution

Figure 5. t-SNE visualization of semantic statistics between dif-
ferent classes (a) and domains (b), where the semantic statistics is
computed from the last layer’s feature map. Triangles indicate the
preserved semantic bases.

6. Conclusion
In this paper, we propose a novel style projected clus-

tering method for domain generalized semantic segmenta-
tion, which achieves the style and semantic representation
of unseen images based on known data. In particular, style
projection projects arbitrary unseen styles into the style rep-
resentation space of source domains and achieves the re-
tention of specific style information between different do-
mains. Semantic clustering predicts the class of each pixel
by the minimal similarity distance to semantic bases, which
realizes the semantic representation for unseen images and
promotes the generalization ability. Through the evaluation
on multiple urban-scene datasets, we demonstrate the su-
perior generalization performance of our proposed method
over existing DGSS methods.
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