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Abstract

Existing vector quantization (VQ) based autoregressive
models follow a two-stage generation paradigm that first
learns a codebook to encode images as discrete codes,
and then completes generation based on the learned code-
book. However, they encode fixed-size image regions into
fixed-length codes and ignore their naturally different in-
formation densities, which results in insufficiency in impor-
tant regions and redundancy in unimportant ones, and fi-
nally degrades the generation quality and speed. More-
over, the fixed-length coding leads to an unnatural raster-
scan autoregressive generation. To address the problem,
we propose a novel two-stage framework: (1) Dynamic-
Quantization VAE (DQ-VAE) which encodes image re-
gions into variable-length codes based on their informa-
tion densities for an accurate & compact code represen-
tation. (2) DQ-Transformer which thereby generates im-
ages autoregressively from coarse-grained (smooth regions
with fewer codes) to fine-grained (details regions with
more codes) by modeling the position and content of codes
in each granularity alternately, through a novel stacked-
transformer architecture and shared-content, non-shared
position input layers designs. Comprehensive experiments
on various generation tasks validate our superiorities in
both effectiveness and efficiency. Code will be released
at https://github.com/CrossmodalGroup/
DynamicVectorQuantization.

1. Introduction
The vision community has witnessed the rapid progress

of deep generative models, pushing image generation qual-
ity to an unprecedented level. As a fundamental task, gen-
erating realistic images from arbitrary inputs (e.g., class la-
bels) can empower humans to create rich and diverse visual
content and bring numerous real-world applications. Unify-

*Zhendong Mao is the corresponding author.

Figure 1. Illustration of our motivation. (a) Existing fixed-length
coding ignores information densities, which results in insuffi-
ciency in dense information regions like region ② and redundancy
in sparse information regions like region ①, generating poor de-
tails and inconsistent structure. Our information-density-based
variable-length coding encodes accurately and produces rich de-
tails and consistent structure. (b) Comparison of existing unnatu-
ral raster-scan autoregressive generation order and our natural and
more effective coarse-to-fine autoregressive generation order.
Error map: l1 loss of each 322 region between original images and recon-
structions, higher (redder) worse. Existing examples are taken from [13].

ing the realism of local details and the consistency of global
structure is the eternal pursuit for all image generations.

Recently, vector quantization (VQ) [37] has been a foun-
dation for various types of generative models as evidenced
by numerous large-scale diffusion models like LDM [32],
autoregressive models like DALL-E [30], etc. These mod-
els follow a two-stage generation paradigm, i.e., the first
stage learns a codebook by VQ to encode images as dis-
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crete codes, where each code represents a local visual pat-
tern, while the second stage learns to generate codes of lo-
cal regions and then restores to images. The importance
lies in that the local details could be well encoded in the
first stage and thus the second stage could effectively focus
on global structure modeling, leading to better generation
quality and scalability. Existing models mainly focus on the
second stage to better generate codes for improving genera-
tion quality, such as raster-scan autoregression [11, 30, 43],
bi-direction [7, 24, 44], or diffusion [5, 14, 32]. Only a few
works aim to improve the fundamental code representation
itself in the first stage, including perceptual and adversar-
ial loss for context-rich codebook [13], residual quantiza-
tion [23], and more expressive transformer backbone [42],
etc. Their commonality is that they all focus on encoding
more information of all image regions together.

However, existing fundamental encoding works inher-
ently fail to effectively encode image information for an
accurate and compact code representation, because they ig-
nore the naturally different information densities of dif-
ferent image regions and encode fixed-size regions into
fixed-length codes. As a result, they suffer from two lim-
itations: (1) insufficient coding for important regions with
dense information, which fails to encode all necessary in-
formation for faithful reconstruction and therefore degrades
the realism of local details in both stages. (2) redundant
coding for unimportant ones with sparse information, bring-
ing huge redundant codes that mislead the second stage to
focus on the redundancy and therefore significantly hinder
the global structure modeling on important ones. As shown
in Figure 1(a), the fixed-length codes result in large recon-
struction errors in important cheetah regions and produce
poor local details (e.g., face, hair) in both stages. Mean-
while, the fixed-length codes are overwhelmed for unimpor-
tant background regions, which misleads the second stage
to generate redundant background and inconsistent cheetah
structure. Moreover, as shown in Figure 1(b), since all re-
gions are encoded into fixed-length codes, there is no way
for the second stage to distinguish their varying importance
and thus results in an unnatural raster-scan order [13] for ex-
isting autoregressive models [11, 23, 30, 42, 43], which fails
to consider the image content for an effective generation.

To address this problem, inspired by the classical in-
formation coding theorems [18, 33, 34] and their dynamic
coding principle, we propose information-density-based
variable-length coding for an accurate and compact code
representation to improve generation quality and speed.
Moreover, we further propose a natural coarse-to-fine au-
toregressive model for a more effective generation. Specif-
ically, we propose a novel two-stage generation frame-
work: (1) Dynamic-Quantization VAE (DQ-VAE) which
first constructs hierarchical image representations of mul-
tiple candidate granularities for each region, and then uses

a novel Dynamic Grained Coding module to assign the
most suitable granularity for each region under the con-
straint of a proposed budget loss, matching the percent-
age of each granularity to the desired expectation holis-
tically. (2) DQ-Transformer which thereby generates im-
ages autoregressively from coarse-grained (smooth regions
with fewer codes) to fine-grained (details regions with
more codes) to more effectively achieve consistent struc-
tures. Considering the distribution of different granulari-
ties varying, DQ-Transformer models the position and con-
tent of codes in each granularity alternately through a novel
stacked-transformer architecture. To effectively teach the
difference between different granularities, we further design
shared-content and non-shared-position input layers.

Our main contributions are summarized as follows:
Conceptual contribution. We point to the inherent in-

sufficiency and redundancy in existing fixed-length cod-
ing since they ignore information density. For the first
time, we propose information-density-based variable-
length coding for accurate & compact code representations.

Technical contribution. (1) We propose DQ-VAE to
dynamically assign variable-length codes to regions based
on their different information densities through a novel Dy-
namic Grained Coding module and budget loss. (2) We pro-
pose DQ-Transformer to generate images autoregressively
from coarse-grained to fine-grained for the first time, which
models the position and content of codes alternately in
each granularity by stacked-transformer architecture with
shared-content and non-shared position input layers design.

Experimental contribution. Comprehensive experi-
ments on various generations validate our superiority, e.g.,
we achieve 7.4% quality improvement and faster speed
compared to existing state-of-the-art autoregressive model
on unconditional generation, and 17.3% quality improve-
ment compared to existing million-level parameters state-
of-the-art models on class-conditional generation.

2. Related Works

2.1. Vector Quantization for Image Generation

Existing VQ-based models follow a two-stage paradigm
that first learns a codebook to encode images into discrete
space and then models the underlying distribution in this
discrete space. The VQ-based paradigm has attracted in-
creasing interest and is adopted by most milestone gener-
ative models, such as latent diffusion [32], DALL-E [30],
Parti [43], etc. Most works focus on the second stage for
better learning in the discrete space, such as discrete dif-
fusion [1, 14, 32, 36, 45], bidirection [5, 7, 24, 44], and the
most popular raster-scan autoregression [11, 13, 14, 23, 30,
31, 37, 43]. Only a few works aim to improve the funda-
mental encoding, e.g., VQGAN [13] introduces perceptual
and adversarial loss for a context-rich codebook. [23] intro-
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Figure 2. The overview of our proposed two-stage framework. (1) DQ-VAE dynamically assigns variable-length codes for each image
region through Dynamic Grained Coding (DGC) module. (2) DQ-Transformer models the position and content of codes alternately by
the stacked Position-Transformer and Content-Transformer, generating images autoregressively from coarse-grained to fine-grained. To
effectively teach the difference between granularities, we further design shared-content, non-shared-position, and granularity input layers.

duces residual-quantization. [42] proposes a more expres-
sive transformer backbone. Recently, [44] proposes to in-
sert spatially variant information. However, existing fixed-
length coding ignores information density and is thus lim-
ited by insufficiency and redundancy. For the first time, we
propose information-density-based variable-length coding
and a more natural coarse-to-fine autoregression.

2.2. Dynamic Network

Designing dynamic architectures is an effective approach
for efficient deep learning and yields better representation
power and generality [15]. Literately, current research can
be mainly categorized into three directions, i.e., dynamic
depth for network early exiting [4] or layer skipping [39],
dynamic width for skipping neurons [3] or channels [26]
and dynamic routing for multi-branch structure networks
[17, 25, 35, 41]. Our work belongs in the last direction. To
the best of our knowledge, the dynamic network has never
been studied in VQ-based generation and we present the
first work to realize the variable-length coding of classical
information coding theorems through the dynamic network.

3. Methodology
Our overall two-stage framework is depicted in Figure 2.

In the following, we will first briefly revisit the formulation
of VQ and then describe our proposed method in detail.

3.1. Preliminary

Vector Quantization (VQ) [37] denotes the technique
that learns a codebook to encode images into discrete code
representations. Formally, the codebook is defined as C :=
{(k, e(k))}k∈[K], where K is the codebook size and nz is
the dimension of codes. An image X ∈ RH0×W0×3 is first
encoded into grid features Z = E(X) ∈ RH×W×nz by the
encoder E, where (H,W ) = (H0/f,W0/f) and f is the
downsampling factor. For each vector z ∈ Rnz in Z, the
quantization operation Q(·) replaces it with the code that
has the closest euclidean distance with it in the codebook C:

Q(z; C) = arg min
k∈[K]

||z − ek||22. (1)

Here, Q(z; C) is the quantized code. zq = e(Q(z; C)) is
the quantized vector. Therefore, the quantized encoded fea-
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tures are Zq ∈ RH×W×nz . The decoder D is used to recon-
struct the original image by X̃ = D(Zq). Here each code
roughly represents a fixed f2 size visual pattern and each
image region is represented by the same length of codes
without distinguishing their different information densities.
As a result, existing works suffer from both insufficiency in
important regions and redundancy in unimportant ones.

3.2. Stage 1:Dynamic-Quantization VAE(DQ-VAE)

Different from existing works that adopt a fixed down-
sampling factor f to represent image regions as fixed-length
codes, DQ-VAE first defines a set of candidates:

F = {f1, f2, ..., fK},where f1 < f2 < ... < fK , (2)

and encodes images into hierarchical features Z =
{Z1,Z2, ...,ZK} through a hierarchical encoder Eh, where
Zi ∈ RHi×Wi×nz and (Hi,Wi) = (H0/fi,W0/fi) for
each i ∈ {1, 2, ...,K}. The image region’s size is set as the
maximum downsampling factor, i.e., S = fK , and there-
fore each S2 size image region now has multiple granular-
ity representations containing different numbers of features.
Then the Dynamic Grained Coding (DGC) module assigns
the most suitable granularity for each region and results in
multi-grained representations, which are further quantized
by VQ. To deal with the irregular code map that different re-
gions have different numbers of codes, we further propose a
simple but effective nearest-neighbor replication, that is, in
each region the quantized codes are replicated to the code
number of the finest granularity if the finest granularity is
not assigned for it, resulting in a regular code map that could
be conveniently decoded by the convolutional decoder D.

Dynamic Grained Coding (DGC) module. As illus-
trated in Figure 3, given the encoded hierarchical image
features Z = {Z1,Z2, ...,ZK}, we implement a discrete
gating network with Gumbel-Softmax technique [19] to de-
termine the granularity for each image region. Specifi-
cally, each granularity feature is first normed by group-
normalization to stabilize training and then pooled to the
size of the coarsest granularity feature by average-pooling,
except the coarsest granularity (i.e., fK) feature itself. The
pooled features are denoted as Z

′
= {Z′

1,Z
′

2, ...,Z
′

K} and
Z

′

i ∈ RHs×Ws×nz for i ∈ {1, 2, ...,K}, where (Hs,Ws) =
(H0/fK ,W0/fK). The gating logits G are generated as:

G = (Z
′

1∥Z
′

2∥...∥Z
′

K)Wg ∈ RHs×Ws×k, (3)

where ∥ is the concatenation operation along the channel
dimension and Wg ∈ R(K×nz)×K is the learnable weight.
For each region (i, j), its gating logits gi,j ∈ RK is used to
decide the granularity by calculating the gating index:

θi,j = argmax
k

(gi,j,k) ∈ {1, 2, ...,K}. (4)

Figure 3. Illustration of our Dynamic Grained Coding module.

To enable the end-to-end training of this discrete process,
inspired by [40, 46], the determined decisions in Eq.(4) are
replaced with the stochastic sampling process. Mathemat-
ically, given a categorical distribution with unnormalized
log probabilities, discrete gating indices can be yielded with
noise samples drawn from a standard Gumbel distribution:

θi,j = argmax
k

(gi,j,k + nk),where nk ∼ Gumbel(0,1). (5)

To enable the back-propagation of the above hard decision,
we adopt the Gumbel-Softmax technique [19] to give a con-
tinuous and differentiable approximation by replacing the
argmax with a softmax operation. The soft gating score pi,j
for each region is then selected by the gating indices:

pi,j =
exp((gi,j,θi,j + nθi,j ))/τ∑K

k exp((gi,j,k + nk)/τ)
∈ [0, 1], (6)

where the temperature τ = 1. We use a straight-through es-
timator for the gradients of gating logits, which are obtained
through the soft gating score pi,j during the backward pass.
The above stochastic process is only adopted during train-
ing and no random sampling is required during inference.

Budget Loss. We adopt the training loss of VQGAN
[13] as Lvanilla, which includes reconstruction loss (l1 loss,
perceptual loss, adversarial loss) and quantization loss. In
the absence of a budget constraint, the DGC module typ-
ically prefers to assign the finest granularity for all image
regions, which is in contrast to our purpose. Therefore, we
further propose a budget loss to match the percentage of
each granularity to our desired expectation. Specifically,
we denote the desired ratio of each granularity k as rk and∑K

k rk = 1. For an image sample whose current assigned
ratio of each granularity k is r

′

k, we define budget loss as:

Lbudget =

K−1∑
k

(rk − r
′

k)
2, (7)

where we only calculate on K − 1 granularities since the
ratio of the last granularity is determined by 1−

∑K−1
k rk.

The final loss for DQ-VAE is defined as:

Lstage1 = Lvanilla + λLbudget, (8)
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where λ is a loss balance hyper-parameter. The expected ra-
tio of each granularity is holistic on the dataset level. There-
fore, since important regions contribute more to the recon-
struction quality, the variable-length coding is realized from
two aspects, i.e., inter-dynamic, longer code sequence for
complex images while shorter code sequence for easy ones;
intra-dynamic, for each image, more codes for important
regions while fewer codes for unimportant ones.

3.3. Stage 2: DQ-Transformer

Different images share different perceptually important
regions and different complexities. Therefore, DQ-VAE en-
codes images as the code sequence of variable lengths and
the distribution of each granularity region in images is also
completely different. Though learning this dynamic under-
lying prior is very challenging, it also opens a promising
potential for autoregressive image generation, that is, a nat-
ural and more effective coarse-grained to fine-grained gen-
eration order since DQ-VAE naturally divides coarse re-
gions (smooth regions with fewer codes) apart from fine
regions (details regions with more codes). Imagine im-
age generation as a jigsaw puzzle problem, it is more ef-
fective and efficient that we first fill in the large and easy
pieces (coarse regions) and then fill in the small and difficult
ones (fine regions). With this motivation, DQ-Transformer
first constructs the codes’ content and position sequence in
each granularity separately and then concatenates them in
a coarse-to-fine manner to autoregressively predict the next
code’s position and content through the stacked Position-
Transformer and Content-Transformer. The distinction of
different granularities is realized by the shared content,
non-shared-position, and granularity input layers designs.

Training sequence construction. As illustrated in stage
2(a) in Figure 2, the sequence of each granularity is con-
structed separately. As for the content sequence, each index
is the quantized code index. As for the position sequence,
each index is the position of the corresponding code index
in the position map of current granularity. We add a spe-
cial <sos> code at the beginning of all content and position
sequences to indicate the start of the sequence, and another
special <eos> code at the end of them to indicate the end
of the sequence. To enable batch training and sampling, we
use a special <pad> code to pad all samples to the same
length in each granularity. Finally, we concatenate all gran-
ularities’ content and position sequences in a coarse-to-fine
manner, which we denote as C and P , respectively.

Position-Transformer. We first learn to predict the next
code position conditioned on all previous codes and their
positions. The input of Position-Transformer consists of
four parts: (1) content embedding which is calculated from
C by a shared-content layer for all granularities, (2) posi-
tion embedding which is calculated from P by non-shared-
position layers for each granularity separately, (3) granular-

ity embedding which is used for distinguishing each gran-
ularity, and (4) a learned absolute position embedding for
making the network aware of the absolute position of the se-
quence, which is the same as most transformer-architecture
[13, 36, 38]. After processing by Position-Transformer, the
output hidden vector Hp encodes both code and their po-
sition information and is used for next position predicting.
The negative log-likelihood (NLL) loss for the next code
position autoregressive training is:

Lposition = E(− log p(Pl|P<l, C<l)) (9)

Content-Transformer. We then learn to predict the next
code’s content conditioned on all previous codes and the po-
sition of current code. Specifically, The input of Content-
Transformer is two parts: (1) the output of Position-
Transformer Hp and (2) the ground-truth information of the
current position which also is calculated by the non-shared-
position layers. For example, if the input position sequence
for Position-Transformer is P[0:−2], then the input ground-
truth position sequence for Content-Transformer is P[1:−1].
The negative log-likelihood (NLL) loss for the next code’s
content autoregressive training is:

Lcontent = E(− log p(Cl|P≤l, C<l)) (10)

Training & Inference. During training, the total loss for
DQ-Transformer is defined as:

Lstage2 = Lposition + Lcontent. (11)

Our proposed DQ-Transformer is a general visual genera-
tive model which could be easily extended to various other
generation tasks. As for the class-conditional generation,
we replace the <sos> code in the content sequence of each
granularity with the class-label code. During inference, we
could also autoregressively generate images from coarse-
grained to fine-grained, as illustrated in Algorithm 1, where
we take the unconditional generation as an example and
other conditional generations can be derived accordingly.

4. Experiments
Benchmarks. We evaluate our method on unconditional

FFHQ [20] benchmark and class-conditional ImageNet [9]
benchmark with 256× 256 image resolution.

Metrics. Following previous works [13,23,44], the stan-
dard Fréchet Inception Distance (FID) [16] is adopted for
evaluating the generation and reconstruction quality (de-
noted as rFID). rFID is calculated over the entire test set. In-
ception Score (IS) [16] is also adopted for class-conditional
generation on the ImageNet benchmark.

Implementation. DQ-VAE follows the architecture of
VQGAN [13] except for the lightweight DRC module,
which is trained with the codebook size K = 1024 and λ =
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Figure 4. Qualitative results. Left: Our unconditional generation on FFHQ. Right: Our class-conditional generation on ImageNet.

Algorithm 1 Unconditional batch sampling.
Input: The granularity number K and batch size B;

The initial empty position (code) sequence P (C).
Output: The generated image I.

1: for each k ∈ [1,K] do
2: // sample each granularity in a coarse-to-fine order
3: P = concat(P,<sos>), C = concat(C,<sos>)
4: while NOT all samples have sampled <eos> do
5: mask sampled position indexes to avoid repeat
6: sample next code position Pi ∈ RB

7: if Pi,b ==<eos>, for b ∈ [1, B] then
8: P>i,b = <pad>
9: // if sampled <eos>, the following will only can be

<pad> for this sample in current granularity
10: end if
11: sample next code Ci

12: C = concat(C,Ci), P = concat(P, Pi)
13: end while
14: end for
15: return decoded image I from P and C

10. DQ-Transformer adopts a stack of causal self-attention
blocks [38] and is trained with two different settings, i.e.,
DQ-Transformerb(base) with 6 layers Position-Transformer
and 18 layers Content-Transformer of a total 308M param-
eters, and DQ-Transformerl(large) with 6 layers Position-
Transformer and 42 layers Content-Transformer of a total
608M parameters to demonstrate our scalability. All mod-
els are trained with eight RTX-3090 GPUs. Top-k and top-p
sampling are used to report the best performance. More de-
tails can be found in the supplementary.

4.1. Comparison with state-of-the-art methods

The main results are reported on dual granularities of
F = {8, 16}, and the ratio rf=8 = 0.5 (640 average length).

Unconditional generation. As shown in Table 1, our
model outperform all existing autoregressive state-of-the-
art models including the strongest large-scale ViT-VQGAN
[42] by a 7.4% quality improvement. We compare with
other types of state-of-the-art models in Table 4 and also
achieve top-level performance. The qualitative results of
unconditional generation are shown on the left of Figure 4.

Class-conditional generation. The comparison is split

Model L #Params FID↓
VQGAN(′21) [13] 256 (72.1+307)M 11.4
DCT(′21) [28] >1024 738M 13.06
ViT-VQGAN(′22) [42] 1024 (599+1697)M 5.3
RQ-VAE(′22) [23] 256 (100+355)M 10.38
Mo-VQGAN(′22)) [44] 1024 (82.7+307)M 8.52
DQ-Transformerb 640 (47.5+308)M 4.91

Table 1. Comparison of unconditional autoregressive generation on
FFHQ. L is coding length. #Params splits in (VAE+autoregressive model).

Type Model L #Params FID↓ IS↑
GAN BigGAN-deep [6] - 160M 6.95 198.2
diffusion [29] - 280M 12.26 -
diffusion ADM [10] - 554M 10.94 101.0
bi-direct MaskGIT [7] 1024 227M 6.18 182.1
ARM VQGAN* [13] 256 379M 17.5 75
ARM DCT [28] >1024 738M 36.5 -
ARM RQ-VAE [23] 256 480M 15.72 86.8
ARM RQ-VAE [23] 256 821M 13.11 104.3
ARM Mo-VQGAN [44] 1024 389M 7.12 138.3
ARM DQ-Transformerb 640 355M 7.34 152.8
ARM DQ-Transformerl 640 655M 5.11 178.2

Table 2. Comparison of class-conditional generation with million-level
parameters on ImageNet. L is coding length. ARM denotes for autore-
gressive model. * denotes for our reproduction.

into Million/Billion according to whether they can be
trained under normal computing resources (i.e., 24G mem-
ory 3090). We first compare with all million-level param-
eters state-of-the-art in Table 2. Our model with 355M pa-
rameters already outperforms all autoregressive and diffu-
sion models. Moreover, our model with 655M outperforms
GAN-based and bi-direct state-of-the-art, which demon-
strates our effectiveness and scalability. We further com-
pare with large-scale billion-level state-of-the-art in Table 3,
where we achieve top-level performance with fewer param-
eters. The qualitative results of class-conditional generation
are shown on the right of Figure 4.

4.2. Ablations & Analysis

Analysis on DQ-VAE. We first demonstrate that our
variable-length coding has better reconstruction compared
to the existing fixed-length one in Table 5. We take VQ-

22601



Figure 5. Visualization of the variable-length coding of our DQ-VAE, where our coding map exactly matches the error map of VQGAN
and therefore leads to better reconstruction quality, i.e., the information-dense regions where VQGAN has higher reconstruction error
are assigned to more codes, while information-sparse regions where VQGAN has lower reconstruction error are assigned to few codes.

Type Model L #Params FID↓ IS↑
Diffusion ImageBART [12] - 3.5B 21.19 61.6
ARM VQ-VAE-2 [31] 5120 13.5B 31.11 45
ARM VQGAN [13] 256 1.4B 15.78 78.3
ARM ViT-VQGAN [36] 1024 2.2B 4.17 175.1
ARM RQ-VAE [23] 256 3.8B 7.55 134
ARM DQ-Transformerb 640 355M 7.34 152.8
ARM DQ-Transformerl 640 655M 5.11 178.2

Table 3. Comparison between our million-level model and large-scale
billion-level big models of class-conditional generation on ImageNet.

Model Type Model FID↓
GAN BigGAN [6] 12.4
GAN StyleGAN2 [21] 3.8
VAE VDVAE [8] 28.5
Diffusion ImageBART [12] 9.57
Diffusion UDM [22] 5.54
Autoregressive DQ-Transformerb 4.91

Table 4. Comparison with other types of state-of-the-art on unconditional
FFHQ, where we further improve the quality of autoregressive models.

GAN [13] of f = 16 as the baseline, and DQ-VAE adopts
triple granularities of F = {8, 16, 32} and subject to:

rf=32 = 4× rf=8, (12)

which ensures DQ-VAE’s expected mean code length is the
same as VQGAN (i.e., 256). We could conclude: (1) With
a proper ratio, DQ-VAE’s variable-length coding achieves
better reconstruction quality compared to VQGAN’s fixed-
length one (ours 4.08 vs. VQGAN’s 4.82). The reason
is that important regions require more codes to encode
necessary information, while fewer codes are enough for

Model F ratio rFID↓
VQGAN [13] 16 - 4.82
DQ-VAE {8,16,32} {0.05, 0.75, 0.3} 4.57
DQ-VAE {8,16,32} {0.075, 0.625, 0.3} 4.08
DQ-VAE / random {8,16,32} {0.075, 0.625, 0.3} 7.32
DQ-VAE {8,16,32} {0.1, 0.5, 0.4} 4.96
DQ-VAE {8,16,32} {0.125, 0.375, 0.5} 6.39

Table 5. Ablations of the proposed variable-length coding on ImageNet.
Here F denotes the granularity candidates set. “ratio” denotes the ratio of
each granularity. We show that variable-length coding could bring better
reconstruction compared to fixed-length coding on the same code length.

unimportant ones since they are less informative. The
phenomenon also reveals that existing fixed-length coding
is both insufficient in important regions and redundant in
unimportant ones. (2) When we improperly increase rf=8,
we get a larger rf=32 which will inevitably assign some
important regions with fewer codes and thus degrade the
reconstruction quality. (3) Moreover, DQ-VAE’s adaptive
assignment significantly outperforms the random one (ours
4.08 vs. random’s 7.32) which demonstrates that DQ-VAE
could distinguish important regions from unimportant ones.

We then analyze the impact of different ratio percent-
ages in Table 6, where DQ-VAE adopts dual granularities
of F = {8, 16}. We show that: (1) The mean code length of
each ratio matches the expectation well, which validates our
proposed budget loss. (2) The results are consistent with the
Pareto principle, which is also known as 20/80 laws. To be
specific, when increasing rf=8 from 0 to 0.3, we get 1.44
FID improvement while only a slight codebook usage drop,
which indicates that the first 30% percentage important re-
gions contribute the most valid information of images and
existing fixed-length coding is insufficient in them. Mean-
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Model rf=8 mean (expected) var rFID↓ usage ↑
VQGAN 0 256 - 4.46 63.89%
DQ-VAE 0.1 332 (333) 760.6 3.6 63.02%
DQ-VAE 0.3 494 (486) 621.3 3.02 62.3%
DQ-VAE 0.5 646 (640) 348.3 2.38 59.9%
DQ-VAE 0.7 792 (794) 285.6 2.09 56.01%
DQ-VAE 0.9 945 (947) 132.4 1.87 52.32%
VQGAN 1 1024 - 1.8 46.41%

Table 6. Ablations of different granularity ratios of DQ-VAE with F={8,
16} on FFHQ. Here rf=8 denotes the ratio of f = 8. “mean” and “var”
denote the mean and variance of dynamic coding length. The codebook
usage is calculated as the percentage of used codes over the entire test set.

Content Position Granularity Absolute position FID↓
shared non-shared ! ! 4.91

non-shared non-shared ! ! 5.54
shared shared ! ! 18.28
shared non-shared % ! 16.87
shared non-shared ! % 5.06

Table 7. Ablations of DQ-Transformer input designs on FFHQ. Here
“granularity” denotes for DQ-Transformer’s granularity layer.

while, when increasing rf=8 from 0.7 to 1.0, we only get a
subtle 0.21 FID improvement but a significant 9.6% code-
book usage drop, which indicates that the last 30% percent-
age unimportant regions contribute little valid information
of images but most redundancy. The experimental results
strongly support our motivations for variable-length coding
to get rid of insufficiency and redundancy simultaneously.

We visualize our variable-length coding on ImageNet in
Figure 5, where DQ-VAE adopts dual granularities of F =
{8, 16} and rf=8 = 0.3. The error map is calculated by l1
loss of each 162 size region between images and VQGAN
(f = 16) reconstructions. The red regions in our coding
map are assigned to f = 8 (4 codes) while the blue ones are
assigned to f = 16 (1 code). We show that our coding map
matches VQGAN’s error map, i.e., important regions are
assigned to more codes and unimportant ones are assigned
to few codes, leading to better reconstruction quality.

Analysis on the effectiveness of DQ-Transformer. We
first validate our input layers designs in Table 7. The non-
shared-position and granularity layers are very important
since they distinguish different granularities. Without these
designs, DQ-Transformer fails to know which granularity
of code should be generated next, and thus performs worse.

We then analyze the generation quality of different ra-
tios in Figure 6 left. The generation speed of autoregressive
models mostly depends on their code length. The Pareto
curve shows that the generation quality (FID) saturates
when rf=8 reaches 0.5. The experimental phenomenon re-
veals that a proper ratio is important for the unity of a high
generation quality and fast generation speed since it guar-
antees effective coding in both important regions and unim-

Figure 6. Left: The Pareto curves of the different ratios between gen-
eration quality (FID) and generation speed (code length) on FFHQ. Right:
The speed comparison between large-scale ViT-VQGAN [42] and our DQ-
Transformer(base) according to different batch sizes on FFHQ.

portant ones for an accurate & compact code representation.
Analysis on the efficiency of DQ-Transformer. We

compare our generation speed to the existing state-of-the-art
autoregressive model ViT-VQGAN [42] according to differ-
ent batch sizes in Figure 6 right. The generation speeds are
evaluated on a single RTX-3090 GPU and the setup of ViT-
VQGAN is implemented the same as its original paper. Our
model achieves a much faster generation speed for all batch
sizes which validates the efficiency brought by our accurate
and compact code representation.

5. Conclusion & Future Direction
In this study, we point out that the existing fixed-length

coding ignores the naturally different information densi-
ties of image regions and is inherently limited by insuffi-
ciency and redundancy, which degrades generation quality
and speed. Moreover, the fixed-length coding brings an un-
natural raster-scan autoregression. We thereby propose a
novel two-stage generation framework: (1) DQ-VAE which
dynamically assigns variable-length codes to regions based
on their information densities for an accurate and compact
code representation. (2) DQ-Transformer which then mod-
els the position and content of codes alternately, generat-
ing images autoregressively in a more natural and effec-
tive coarse-to-fine order for the first time. To effectively
teach the difference between different granularities, we fur-
ther design shared-content, non-shared-position, and gran-
ularity input layers. Comprehensive experiments on various
image generations validate our effectiveness and efficiency.

Future Direction. VQ is the foundation for mod-
ern autoregressive [11, 23, 30, 43, 44], discrete diffusion
[14,32], and bidirectional [7] generation, and even pretrain-
ing [2, 27]. Our study validates the effectiveness and effi-
ciency of the variable-length coding for autoregressive gen-
eration, but its great potential for diffusion, bi-direction, and
pretraining is worth further exploration in the future.
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