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Figure 1. Example frames from the DogThruGlasses dataset. The videos were captured using the smart glasses.

Abstract

Most existing multiple object tracking (MOT) methods
that solely rely on appearance features struggle in tracking
highly deformable objects. Other MOT methods that use
motion clues to associate identities across frames have dif-
ficulty handling egocentric videos effectively or efficiently.
In this work, we present DogThruGlasses, a large-scale
deformable multi-object tracking dataset, with 150 videos
and 73K annotated frames, which is collected exclusively
by smart glasses. We also propose DETracker, a new MOT
method that jointly detects and tracks deformable objects
in egocentric videos. DETracker uses three novel mod-
ules, namely the motion disentanglement network (MDN),
the patch association network (PAN) and the patch memory
network (PMN), to explicitly tackle severe ego motion and
track fast morphing target objects. DETracker is end-to-end
trainable and achieves near real-time speed, which outper-
forms existing state-of-the-art method on DogThruGlasses
and YouTube-Hand.

1. Introduction
Wearable cameras have become an emerging trend, pro-

moted by the rapidly growing collection of consumer prod-
†Work done during Mingzhen’s internship with Meta.

ucts such as smart glasses. As the wearable cameras became
more powerful with increased battery capacity, sensor size,
on-board memory volume, and sophisticated in-device pro-
cessors, there is an increasing demand for real-time scene
understanding to run reliably and yet efficiently on-device.
The underlying computer vision algorithms, on the other
hand, frequently starts from the detection and tracking of
objects within the scene. For the egocentric videos captured
from wearable cameras, besides being challenged by oc-
clusion, morphing shapes, and multiple visually resembling
objects, the multiple object tracking (MOT) algorithms are
stressed by the constantly changing egocentric viewpoint.

Unique to wearable cameras, the large ego motion
caused by the head movements of the wearer is often dras-
tic, unpredictable, and largely uncorrelated to the object
motions. The reduced predictability of motion patterns
forces traditional MOT algorithms [45] to search in larger
regions to maintain same performance level, which in turn
compromises the running speed and makes them less suit-
able for on-device execution. In the meanwhile, the ego
motion may also exacerbate the deformation and occlu-
sion of objects, by imposing lens distortion, blurriness and
rolling shutter, especially those in the near field. The ego
motion also aggravates object occlusion due to the con-
stantly changing of points of view. These side effects fur-
ther downgrade the performance of appearance-based MOT
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approaches [16, 42, 53].
In this work, we propose an efficient end-to-end trainable

method, DETracker (Deformable Egocentric Tracker), for
tracking multiple deformable objects in egocentric videos.
DETracker has three major components, the motion disen-
tanglement network (MDN), the patch association network
(PAN), and the patch memory network (PMN). MDN is to
estimate the motion flow between two consecutive frames
efficiently. It explicitly separates a global camera motion
before estimating the local object motion and thus is robust
under severe ego motion. PAN tackles deformable object
tracking by dividing objects into patches and localizing in-
dividual patches by finding their best matched patches in
upcoming frames. PMN retains and updates feature embed-
dings of tracked objects within a prolonged time window
by leveraging a transformer network [40] and thus is able to
use historical patch features for long-term association.

Although there exist several large-scale MOT
datasets [7, 9, 14, 22], they are limited to either fixed
camera views [7] or simple ego motion, e.g., from car-
mount cameras [9, 52]. To build a large-scale, egocentric
MOT dataset, we collected DogThruGlasses, a video
set of dogs captured with the smart glasses. This dataset
represents the complexity of real-life object tracking
scenarios from wearable devices (see examples in Fig. 1).
In DogThruGlasses, we release 150 videos with 73K
annotated frames, 157K annotated bounding boxes, and
474 unique identities/trajectories. To our knowledge, this
is the first large-scale dataset for tracking multiple objects
in egocentric videos. It would serve as a challenging
benchmark for existing and future MOT methods. The
dataset and the code will be released for research purposes.

We summarize our major contributions as follows:

• We present DogThruGlasses, the first large-scale ego-
centric MOT dataset collected with smart glasses, of-
fering extensive coverage of object deformation, ego
motion, and diverse scenes.

• We propose DETracker, a new MOT algorithm that is
designed to be robust under severe ego motion and fast
object deformation.

• In DETracker, we use MDN to disentangle camera mo-
tion from object motion and predict a high-accuracy
object trajectory very efficiently. In addition, we de-
sign PAN and PMN to help with the detection and
long-term tracking of objects under large deformations
and heavy occlusions.

• Experimental results in Table 2 show that our pro-
posed method outperforms the state-of-the-art method
by 8.1% on DogThruGlasses. It also achieves compet-
itive results on YouTube-Hand [14] for hand tracking.

2. Related Works
Traditional MOT approaches mostly follow a tracking-

by-detection scheme [5, 28, 31, 37, 42, 43, 48, 54]: an ob-
ject detector is employed to detect objects, and then a spe-
cific association method is used to connect individual detec-
tions into continuous trajectories. Hungarian algorithm [23]
is a popular method for associating, where the affinity
cost is defined based on Intersection over Union (IoU) of
two bounding boxes. Bewley et al. [4] proposed to use
the Hungarian algorithm for associating detected bound-
ing boxes with predicted tracklet movement generated by
Kalman Filter [15]. ByteTrack [54] further improves the
tracking quality by recovering low confident detection re-
sults with a two-stage association. However, the rapid
camera motion leads to large offsets, which fails the tra-
ditional spatial location-based methods. Appearance-based
Re-Identification (ReID) module is another widely adopted
association method in MOT algorithms [11, 39, 42]. Those
methods are robust to objects and ego motion since the ob-
jects’ spatial location change is not used as a key for the
association. Wojke and Bewley [42] proposed to extract
ResNet [12] features for detected objects and then associate
them based on their feature cosine similarities. A common
drawback for those methods is that the detection and asso-
ciation modules are separately optimized, even though they
are trying to describe the same object. As a result, the de-
coupled outcomes from two modules cannot benefit each
other, and often yield sub-optimal final results.

Recently, the methods that jointly detect and track ob-
jects [20, 27, 34, 41, 45, 53, 57] became mainstream in
MOT. The detection and association networks are usually
trained end-to-end to avoid falling into local optimums.
Zhan et al. [53] proposes to leverage a Re-ID branch for
association jointly train it along with the detection net-
work. FairMOT [53] achieves competitive results on MOT
benchmarks [7, 22]. However, it is hard to handle highly
deformable objects with frequently changing appearance,
similar to appearance-based tracking-by-detection meth-
ods. Many other joint detection and tracking MOT ap-
proaches [10, 14, 31, 32, 35, 36, 45, 50, 57] achieve compet-
itive performance by leveraging a motion estimation mod-
ule for data association. However, such methods usually
limit the object motion search within a small spatial win-
dow. This setting can easily fail under dramatic camera mo-
tion. Zhou et al. [57] followed [56] to detect objects’ cen-
ter points as a heatmap and proposed to compute the object
center motion from concatenated features from two consec-
utive frames. Similarly, such methods estimate the motion
offset within a local window, and cannot tolerate rapid cam-
era motion. Inspired by RAFT [38], Wu et al. [45] extends
[57] by estimating the object’s movement offset from the
global cost volume for each pair of pixels. This operation
results in an affinity matrix M ∈ Rhw×hw, where h and w
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are the height and width of the input feature map. Different
from [57], the estimated motion offset is not constrained by
a small local neighborhood, but computing such an affin-
ity matrix is extremely expensive and is not achievable on
mobile devices.

Memory Network has been widely explored in video
analysis tasks [19, 26, 44], and tracking objects with mem-
ories is also widely adopted in recent MOT methods [6, 8,
49]. By maintaining and optimizing an appearance bank,
objects can be tracked in long term effects, with only a
minimal footprint. Alone this line, Cai et al. [6] use their
proposed Memory Aggregator Network to keep the appear-
ance feature embedding of tracked objects in memory and
use these memory embeddings to query current objects for
detecting and tracking.

3. DogThruGlasses Dataset

It is notable that, dramatic camera motion and fast chang-
ing object appearance caused by occlusion and deformation
are commonly seen from media captured with wearable de-
vices. Yet, their combined impact on object tracking meth-
ods is largely unexplored in past literature. Targeting this
absence, we present DogThruGlasses, a large-scale MOT
dataset collected with wearable devices.

In this dataset, we carefully choose dogs as targeting ob-
jects for multiple reasons. First of all, as companion ani-
mals, dogs are among the most frequently imaged targets in
consumer videos. Dog videos are also shared through so-
cial media in vast amounts on a daily basis. Also, dogs of
different breeds vary dramatically in size, color, shape, and
habit. They are also frequently in motion and demonstrate
rapid deformation. All these factors post-add-on challenge
the ego motion due to the wearers’ head movements.

Data source. Multiple individuals participate the collec-
tion of videos in DogThruGlasses via smart glasses, refer
to Fig. 1 for sample frames. The videos are captured in 30
frames per second (FPS) using the device domestic cam-
era application, and are then resized to 1000×1000 pixel
resolution. DogThruGlasses covers scene diversity by in-
cluding beaches, dog parks, roadsides, backyards, parking
lots, restaurants, etc. The videos are captured at different
time point of the day, as well as under different weather
condition. The dataset also aggressively covers object di-
versity by including up to 33 dog breeds. To name a few,
Labrador Retriever, Golden Retriever, German Shepherd,
Poodle, American Bulldog, Rottweile, Australian Shep-
herd, Beagle, etc.

The annotation task is carried out by two individual an-
notators, who are unfamiliar with any tracking algorithms.
They are asked to annotate tight boxes around visible part of
individual dogs, without hallucination about the occluded
parts. During the annotation process, annotators noticed

Unpred. Deform. Total Total Anno. Total Trajs
Dataset EgoMotion Objects #Videos #Frames Boxes #Trajs Length
MOT17 [22] ⋄ - 14 11K 215K 1342 110
MOT20 [7] - - 8 13K 1.6M 3457 453
KITTI [9] - - 50 13K 47K 917 51.5
YouTube-Hand [14] ⋄ ✓ 240 20K 60K 864 70.5
VIVA [29] × ✓ 20 6K 13K 45 64.5
DogThruGlasses ✓ ✓ 150 73K 156K 474 325

Table 1. Comparison among MOT datasets. The ⋄ denotes part
of the dataset contain unpredictable ego motion. The length of tra-
jectories we reported here is the median number of all trajectories
length.

Figure 2. Analysis of DogThruGlasses.

that some of the dog breeds are in particular challenging
to annotate due to very small size, all white/all black ap-
pearance, or highly similar patterns. These factors lead to
inconsistent annotations. So we enforce an additional round
of cross verification and correction between the two anno-
tators to guarantee the quality.

Data statistics. We show the statistics of DogThruGlasses
compared to other MOT datasets in Table 1. DogThru-
Glasses provides a complex combination of ego motion
(compared to fixed or in-vehicle-mounted cameras) and ob-
jects deformation. Meanwhile, it has a larger volume in
terms of both the number of videos and the number of anno-
tated images. Content-wise, DogThruGlasses offers a large
number of objects and longer trajectories. All these factors
render DogThruGlasses a unique and challenging dataset
for MOT benchmarking.

We further split the dataset into training and testing set.
Visual inspection was conducted to guarantee that enough
scene and object diversity is covered by both set. As a re-
sult, we included 120 videos/376 trajectories in the training
set, with about 60K frames and 125K annotated boxes. The
testing set contains 30 videos/98 trajectories, with about
13K frames and 31K annotated boxes.

Data analysis. Compared to existing MOT datasets,
DogThruGlasses aggressively covers ego motion and object
deformation. To qualitatively show data coverage, we com-
pare pairs of bounding boxes form adjacent frames in the
ground truth annotation. Refer to Fig. 2 for a detailed break
down of the statistics, where we see cases that, per frame
translation(distance between box centers) goes up to 300
pixels, and IoU drops to as low as 0. These numbers re-
flect the general challenge of object tracking on egocentric
videos.
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Figure 3. The overall processing pipeline of DETracker. This figure is best viewed in color.

4. Method

The overall architecture of DETracker is illustrated in
Fig. 3. Let I(t) be the frame at time t, we first obtain its
feature map pyramid {X(t)

l }(l ∈ [0, L) is the pyramid in-
dex) from a DLA-34 backbone [51]. Along with {X(t−1)

l }
from frame t-1, we estimate the pixel-wise motion flow
F (t) with motion disentanglement network, MDN. Next,
with a collection of tracked objects on frame t-1 and the
motion flows F (t), we propagate the bounding boxes into
frame t. Then the patch association network, PAN, as de-
scribed in Sec. 4.2, detects and associates objects by match-
ing sub-divided patches between the two frames. Different
from most prior MOT methods, the detection and associa-
tion are done by a single network to ensure both localization
and identity association accuracy. Finally, the patch mem-
ory network, PMN, retains unmatched patches from PAN
output in a fixed-length ring patch memory buffer Pmem to
help track deformable and occluded objects. Buffered and
novel patches from newly seen frames jointly participate in
patch-matching in the next time step.

4.1. Motion disentanglement network

The inputs to MDN are two pyramid feature maps
{X(t)

l } and {X(t−1)
l }. We follow [33] to estimate the op-

tical flow F (t) between frames according to simple and
well-established principles: pyramid processing, warping,
and the use of a cost volume. To handle large camera mo-
tion, which is common for egocentric videos, we expand
the cost volume search range to the whole frame pixels like
RAFT [38].

Let F (t)
l represents the estimated optical flow at the pyra-

mid level l. For level l = 0, we use the features X(t−1)
0 and

X
(t)
0 to construct a cost volume that costs for associating

each pixel with all pixels at the next frame as follow,

CV0(x1,x2) = (X
(t−1)
0 (x1))

⊤X
(t)
0 (x2) (1)

where ⊤ is the transpose operator and X
(t−1)
0 (x1) is the

1D feature vector extracted from X
(t−1)
0 at pixel x1. The

cost volume CV0 feeds to the optical flow estimator and
the context network [33] and produce F (t)

0 which is mainly
responsible for the large camera motion and it is self-
supervised as described in Sec. 4.4.

For the lth level(l ≥ 0), its cost volume CVl construc-
tion is different since global search over the whole image
is impractical, so we construct a cost volume that costs for
associating each pixel with only the neighboring pixels at
the next frame as follow,

CVl(x1,x2) = (X̃
(t−1)
l (x1))

⊤X
(t)
l (x2) (2)

where |x1 − x2|∞ ≤ r

X̃
(t−1)
l is the warped version of X

(t−1)
l under the up-

sampled flow F (t)
l−1. Finally, similar to the level 0, CVl

feeds to the optical flow estimator and the context network,
and produce F (t)

l . This is a recursive process, that goes all
the way down, till the layer L− 1 and produces full resolu-
tion flow F (t) = F (t)

L−1.

4.2. Deformable objects as patches

Given feature maps {X(t−1)
l } and {X(t)

l }, an estimated
flow F , and the bounding box of the tracked object B(t−1)

in I(t−1), we now extend the trajectory into I(t) by simulta-
neously detecting and tracking.

To start with, we use the ROI Align method [13] to ob-
tain features K(t−1) ∈ Rn×n×d for each tracked object in
I(t−1), where n is a hyper-parameter defining the feature
resolution, and d is the number of channels of the ROI fea-
ture embedding. Note that, by doing so, the obtained fea-
tures not only have translation invariant, but also has unified
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Figure 4. Illustration of MDN.

feature size. In other words, this operation can be viewed
as dividing the ROI into n × n super-pixels, where each
super-pixel is a small image patch P

(t−1)
i , i ∈ [0, n2). Fur-

ther, each patch is converted to a feature embedding of d-
dimension, which is denoted as κi ∈ R1×d and i is the patch
index.

The key steps for the proposed tracking algorithm are il-
lustrated in Fig. 5. To locate the position of B(t−1) on I(t)

and obtain B(t), we establish a potential searching region
by first propagating the center point of B(t−1) with flow F ;
then, we enlarge the region with a ratio α > 1.0 to produce
an expanded region that is large enough to capture the in-
tended object, even in case of zoom-in or stretched shape.
This expanded region is drawn as the dash-lined blue box
in Fig. 5. At this point, we can follow the same routine to
sub-divide the expanded region into αn × αn super pixels,
which yield features K(t) ∈ Rαn×αn×d. Now we are ready
for both detection and association.

Patch association network. We detect and track an object
by first associating each individual query patch in frame
t-1 and patch memory with candidate patches in frame
t. An intuitive way for patch-wise association is to com-
pute feature cosine similarity and solve patch-matching as
a bipartite graph matching problem. However, such simple
method treats each individual patch independently, and all
cross-patch relationships are disregarded. In a prior work
[58], the authors leverage a transformer encoder-decoder
network [40], to reason about the relations of detected ob-
jects and trajectories for object association. In a simi-
lar spirit, we propose PAN (see Fig. 6) to reason the re-
lations of all patches that belong to the same object and
solve the patch-wise association problem. For each ob-
ject, we compute a set of association scores Si between
each query patch and all candidate patches using standard
transformer encoder-decoder network g(·, ·) [40], and ob-
tain Si = g(κ

(t−1)
i ,K(t)) ∈ R1×α2n2

. We further use soft-
max to normalize each set of association scores Si between
a query patch from frame t-1 and all the candidate patches
in frame t.

Frame t-1 Frame t

refinement

Figure 5. Patch propagation and association for detection and
tracking.

Patch-based sub-grid localization. After obtaining the as-
sociation scores for all patches, a naive way is to select the
patch with the highest score. However, this will constrain
the matching to the predefined sparse patch grids. Increas-
ing the grid density allows a finer resolution; however, this
will increase the computation cost and lead to smaller patch
size, thus lowering quality association scores. To minimize
the computation cost and maintain high-quality association,
we propose using a simple yet effective sub-grid search. At
this point, all query patches that have the largest association
score smaller than threshold θ are declared as unmatched
since they might be either heavily occluded or going out of
view. Remaining patches are tagged as matched, and each
matched patch has scores Si represent the likelihood that
patch P

(t−1)
i corresponds to each of the target patches in

frame t. We then localize the matched patch in frame t by
the weighted sum of all possible grid locations, where the
normalized association scores are used as weights. Refer
to Fig. 5 for the localization of color-matched individual
patches.

Deformable object tracking with confidence. With all
the successfully localized patches, we take their minimum
bounding rectangle B(t)

trk as the initialization of tracked
object location. As a class-specific proposal, B(t)

trk can
be further refined based on the objectness, as in Faster-
RCNN [30]. We use such a regression branch for refinement
and get B(t), where a regression confidence P(B(t)|B(t)

trk)
is obtained in addition. Unlike the typical MOT methods,
whose confidence values solely indicate the objectness from
the detected regions, we aim to obtain confidence scores
that combine both detection and identity association confi-
dences. Thus, they can be used to monitor the healthiness
of active tracks and help to suppress false positives.

In particular, we define a tracklet T of length t as the
sequence of detected boxes in the past frames: T t =
{B(0), B(1)...B(t)}. Using chain rule, it’s confidence can
be computed recursively: P(T t) = P(T t|T t−1)P(T t−1),
where P(T t|T t−1) has two components, one is the regres-
sion confidence obtained during box refinement, and the
other is a ROI-wise association score St, obtained by aver-
aging the normalized association scores Si for all matched
patches inside the object. Putting these together, we get:

P(T t) = P(B(t)|B(t)
trk)P(T t−1)St (3)
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Figure 6. Patch association and patch memory. The Q, K and V
are the query, key and value in the transformer networks [40] and
⊗ is the matrix multiplication.

Naturally, confidence defined in this way drops for long
tracklets. Thus we concatenate old tracklets with new born
ones when necessary, to obtain complete tracks.

4.3. Patch Association and Memory

Temporal memory has been previously explored in MOT
algorithms [6] to deal with occlusion, periodical pose
change, etc. To adopt this scheme for deformable object
tracking, we proposed PMN. This network gathers a collec-
tion of representative yet unique patches Pmem to describe
the long-term appearance of each active tracklet. Pmem

participate during patch association, in addition to the con-
current patches on frame t-1. Refer to Fig. 6.

Recall that post PAN, we obtain a bucket of matched
patches (colored with solid yellow in Fig. 6) and a bucket of
unmatched ones (colored with lighter yellow in Fig. 6). Po-
tentially, the unmatched patches may carry a novel appear-
ance introduced by deformation or occlusion. Thus, we use
these unmatched patches as queries in PMN, to explore the
similarity between unmatched patches and all other patches,
including the Pmem inherited from the previous frame. We
obtain the updated unmatched patch features from PMN
outputs and roll those patches into the collection of Pmem.
In the meanwhile, all the matched patches in Pmem get re-
moved. The Pmem is managed in a FIFO manner, where
old patches will be kicked out automatically subject to a
fixed time window β.

4.4. Training and Inference

Online inference. For a new frame, DETracker tracks all
active objects {B(t−1)} from the previous frame. After the
tracking step, all objects {B(t)} with a confidence score
larger than ξ are marked as tracked, and all remaining ones
are marked as mis-tracked. The mis-tracked objects are
not discarded immediately, instead, they persist in memory
for another β frames, for potential resumable tracking af-
ter brief occlusion. In addition, we still rely on an object
detector [56] to promptly initialize newborn objects once
appeared. We define an object as a “newborn” and initialize
a trajectory for it, as long as its detection confidence score

is larger than ϕ and the IoUs are smaller than γ with any
existing object.

Training MDN. During training, the inputs to the network
are either two frames randomly sampled from same video
or with randomly shifted and rotated static images. Camera
flow estimator can be trained in a supervised fashion with
static images, where we convert the random transforms into
dense flow vector fields. Thus the camera loss Lcf is for-
mulated as a standard endpoint error between the predicted
camera flow and the generated dense camera flow. We set
Lcf = 0 when the inputs are video image sequence as the
ground truth camera flow is not available in video sequence.

Unfortunately, the ground truth dense motion flow anno-
tation is extremely difficult to obtain for real-world video
captures, which is thus not provided alone with DogThru-
Glasses. As an alternative, we propose to generate a sparse
pseudo-flow to enable the training. Given an annotated ob-
ject that appears on two distinct frames, we compute the
displacement of the bounding box central points p(t) and
p(t−1) and spread it into a small neighborhood of radius r:

Fgt
q = p(t) − p(t−1), q ∈ Nr(p) (4)

The overall motion flow loss is then set to the endpoint error,
accumulated across layers l in the feature pyramid. Note
that Lf is only calculated at the pixels that have a generated
ground truth flow.

Lf =
∑
l

∥Fl −Fgt∥2 (5)

Training PAN. PAN is supervised by a patch association
loss Lpm:

Lpm = −
n2∑
i

α2n2∑
j

σ(P
(t)
j )log(Si(j)) (6)

where i is the index of query patches, and Si(j) repre-
sents the matching score between the query patch and the
jth candidate patch. σ(P(t)

j ) = 1 if P(t)
j has an overlapping

with the ground truth bounding box. Otherwise σ is set to
zero. α is the scale adaptive ratio described in Sec. 4.2.

Loss function. To train all module in our network, we use
the following combined loss function: L = Lf + Lcf +
Lpm + Ldet, where Ldet is the standard detection loss in-
troduced in [56].

5. Experimental Results
In this section, we first describe all the related imple-

mentation details. Then we compare our method with ex-
isting state-of-the-art multi-object tracking methods in Ta-
ble 2 and report qualitative results in Fig. 7. At last, we
demonstrate the effectiveness and efficiency of each pro-
posed module with ablation studies.
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Methods IDF1↑ DetA ↑ AssA↑ FP(%) ↓ FN(%)↓ IDs(%)↓ MOTA↑ HOTA↑
SORT [43] 61.43 67.87 49.43 12.97 7.90 1.60 77.53 57.74

Tracktor [2] 60.47 63.61 46.01 2.40 21.83 1.45 74.32 53.97
FairMOT [53] 60.33 62.90 45.09 2.48 21.83 3.04 72.65 53.16

CenterTrack [57] 60.60 60.49 43.51 3.61 20.55 1.14 74.70 51.14
GTR [58] 66.88 69.59 52.63 6.73 10.19 0.86 82.22 60.38

ByteTrack w/ Re-ID [54] 71.93 64.33 57.75 4.95 16.41 0.61 78.02 60.75
BoT-SORT [1] 72.71 67.95 57.71 5.30 14.87 0.76 79.06 62.53

DETracker (Ours) 73.12 74.06 58.72 4.60 8.39 0.63 86.38 65.25

Table 2. Main Results. The best performance is highlight in blue and the second best performance in green.

5.1. Implementation details and evaluation metrics

Architecture Details. Our framework is implemented by
PyTorch and Detectron2 [46]. Specifically, we build upon
CenterNet [56] with a DLA-34 [51] for detection, and a
Cascaded-ROI head for bounding box refinement.

Training and testing scheme. We train DETracker for 30K
iterations using a SGD optimizer, with a learning rate of
2e−5 and a batch size of 64. The network can be trained
end-to-end and the inference speed is 24 FPS. Experiments
are performed on NVIDIA A100 GPUs. In all our experi-
ments, we set the hyper-parameters θ = 0.6, ξ = 0.4, β =
5, γ = 0.3 and ϕ = 0.65.

Evaluation metrics. We adopt the standard multiple-
object-tracking evaluation metrics [3, 21, 22] to evaluate the
performance, including: identification F1 score (IDF1), de-
tection accuracy (DetA), association accuracy (AssA), false
positives (FP), false negatives (FN), identity switches (IDs),
multiple object tracking accuracy (MOTA) and higher or-
der tracking accuracy (HOTA). Among these evaluation
metrics, MOTA and HOTA evaluate overall detecting and
tracking performance and are considered the most impor-
tant metrics. For detection, we use standard mAP as the
metric.
5.2. Main Results

We compare our proposed DETracker with other state-
of-the-art MOT approaches, the results are reported on
DogThruGlasses test set (see Table 2), DETracker out-
performs existing state-of-the-art algorithms on most met-
rics with a significant margin. For an apple-to-apple com-
parison, we adopted CenterNet [56] as detection backbone
for all methods reported in Table 2. We pretrained Center-
Net on COCO [18] dataset for object detection. To mini-
mize the computation cost and memory footprint, and move
toward mobile platform deployment, we set the input frame
window length to at most 4 consecutive frames. Compared
with the previous state-of-the-art, GTR [58], our DETracker
outperforms it by 8.1% in terms of HOTA.

5.3. Ablation Studies

Effectiveness of proposed modules. We now demonstrate
the effectiveness of each of our proposed modules in Ta-

(a) Tracking results by DETracker (bottom) and GTR (top). Each row visual-
izes tracking results across two frames. Dogs that belong to the same trajectory are
visualized with the same color and same ID. Benefit from our proposed PMN and
PAN, DETracker has less FP tracklet and more accurate tracked bounding box for
dog with ID of 1.

(b) Patch association results. The matched patches are visualized with the same
color and the bounding boxes in green are the minimum bounding rectangle of the
patches.

t-1 t-1
t

t

(c) DETracker produced ego motion compensation. The space in gray and black
is the compensated ego motion.

Figure 7. Qualitative results.

ble 3. We first show the baseline that removes all of our pro-
posed three components: MDN, PAN and PMN. Secondly,
we remove the flow estimation network and replace it with
a direct propagation of object location into the next frame.
Next, we remove PAN along with PMN and instead directly
propagate prior tracked objects to current frame with esti-
mated flow then refined with the regression branch. Finally,
we switch on-and-off the PMN to show the benefit of stor-
ing long-term memory.

Motion estimation. As we illustrated before, the global
matching flow estimation methods [38, 47] are robust to
ego motion but are not affordable in mobile device. We
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Methods IDF1 ↑ IDs(%) ↓ MOTA ↑ HOTA ↑
Baseline 60.47 1.45 74.32 53.97
w/o PAN&PMN 71.97 0.89 81.91 61.74
w/o MDN 70.14 1.21 81.76 62.99
w/o PMN 71.41 1.10 84.00 63.58
DETracker (ours) 73.12 0.63 86.38 65.25

Table 3. Effectiveness of each proposed components.
Methods IDF1 IDs(%) MOTA HOTA Time ↓
Global Matching Flow 73.38 0.68 86.28 65.13 151
Disentangled Flow 73.12 0.63 86.38 65.25 14

Table 4. Comparison of different motion estimation network.
Note that time indicts the running time in ms for flow estimation
network, experiments are performed on a NVIDIA V100 GPU.

Methods IDF1 ↑ IDs(%) ↑ MOTA ↑ HOTA ↑
IoU 68.74 0.86 83.88 61.58
Cosine Similarity 68.81 1.18 83.31 62.34
PAN 73.12 0.63 86.38 65.25

Table 5. Comparison of different association methods on
DogThruGlasses dataset testing set.

take sate-of-the-art global matching flow estimation method
GMFlow [47] as an alternative for MDN. In GMFlow, the
affinity of every pair of pixels has been computed to produce
a global matching result for flow estimation, which costs
much more computation resources than our MDN. Based
on the results in Table 4, we conclude that with an outcome
of comparable quality, MDN is far more efficient.

Patch association method. An intuitive way to associate
patches is to compute the cosine similarity Re-ID [55]
between each pair and select the one with the largest
score. However, cosine similarities are computed on each
pair independently, regardless of their temporal and spa-
tial relationships. PAN, in turn, is able to capture these
relationships, considering the candidate patches are sub-
components coming from one common object. Experimen-
tal results in Table 5 shows that the relation learned by PAN
would greatly benefit our proposed DETracker.

Detection performance. Our patch-based detection and
tracking algorithm not only boosts the tracking quality but
also helps improve the bounding box detection performance
by jointly utilizing temporal consistency. We evaluate our
method on DogThruGlasses testing test with common de-
tection metrics [17] and compare with other state-of-the-art
joint detection and tracking algorithms in Table 6. In addi-
tion, we provide results after switching the key components
on and off for a detailed insight into component-wise effec-
tiveness.

5.4. Performance on Other Datasets

Hand Tracking. To test the robustness of our proposed
method, we conducted a similar experiment on YouTube-
Hand [14] dataset, which is a multiple-hand tracking bench-

Methods w/ Flow w/ PAN w/ PMN mAP
CenterTrack [57] - - - 44.62
Tracktor [2] - - - 51.69
FairMOT [53] - - - 51.30
GTR [58] - - - 58.04

DETracker ✓ × × 60.99
DETracker ✓ ✓ × 62.12
DETracker ✓ ✓ ✓ 62.93

Table 6. Comparison of detection performance in term of mAP
on DogThruGlasses dataset testing set.

IDF1↑ FP↓ FN↓ IDs↓ MOTA↑ HOTA↑
LightTrack [25] 53.4 6240 12816 1955 30.8 48.5
FairMot [53] 41.4 2065 12753 3448 39.9 39.0
MPNTrack [5] 49.0 5918 11263 1039 40.0 40.7
CenterTrack[57] 37.2 2279 12379 3362 40.7 39.0
SORT [4] 48.3 2295 12960 1475 44.9 46.1
TraDeS [45] 53.6 3271 9102 1982 52.7 46.4

HandLer [14] 65.7 2875 6169 1256 66.1 57.2
DETracker (ours) 67.4 2781 6743 919 65.6 55.6

Table 7. Comparing different methods on YouTube-Hand.

mark. We choose this dataset because the appearance and
shape of hands change drastically and frequently, which
makes hands a highly deformable object. Even though
YouTube-Hands is not designed for egocentric tracking
which most videos are captured by fix cameras, some videos
from the YouTube-Hand [14] are captured by body-worn
or hand-held cameras; therefore, ego motion is partially
included in this dataset. Following [14], we pretrain DE-
Tracker on TV-Hand [24] and COCO-Hand [24] datasets
for hand detection and camera flow estimation. Then we
fine-tune the model on YouTube-Hand [14] dataset for hand
tracking. For a fair comparison, we consider hands as
individual objects but not part of humans, so for all the
methods reported here, we do not use the pose-based post-
processing method proposed in [14]. Experimental results
show that our proposed DETracker outperforms all other
general MOT approaches and achieves competitive per-
formance compared with HandLer [14]. However, Han-
dLer [14] is specifically designed for hand tracking. DE-
Tracker, on the other hand, can be adapted to track any ar-
bitrary objects.

6. Conclusion
In this work, we present DogThruGlasses, the first large-

scale multi-object tracking dataset captured with wearable
devices. The dataset is rich with deformation, occlusion,
and ego motion, representing a broad spectrum of chal-
lenges commonly seen in real-world scenarios. We also
proposed DETracker to explicitly tackle the two major
problems in MOT: deformation and ego motion. The pro-
posed method demonstrated proposing tracking quality on
the challenging dataset.
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