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Figure 1. Given only surround-camera RGB images as inputs, our model (trained using only sparse LiDAR point supervision) can predict
the semantic occupancy for all volumes in the 3D space. This task is challenging as it requires both geometric and semantic understandings
of the 3D scene. We observe that our model can produce even more comprehensive and consistent volume occupancy than the groundtruth
on the validation set (not seen during training) of nuScenes [4]. Despite the lack of geometric inputs like LIDAR, our model can accurately
identify the 3D positions and sizes of close and distant objects. Particularly, our model even successfully identifies the partially occluded
bicycle captured only by two LiDAR points, demonstrating the potential advantage of vision-based 3D semantic occupancy prediction.

Abstract

Modern methods for vision-centric autonomous driving
perception widely adopt the bird’s-eye-view (BEV) repre-
sentation to describe a 3D scene. Despite its better effi-
ciency than voxel representation, it has difficulty describing
the fine-grained 3D structure of a scene with a single plane.
To address this, we propose a tri-perspective view (TPV)
representation which accompanies BEV with two additional
perpendicular planes. We model each point in the 3D space
by summing its projected features on the three planes. To
lift image features to the 3D TPV space, we further pro-
pose a transformer-based TPV encoder (TPVFormer) to ob-
tain the TPV features effectively. We employ the attention
mechanism to aggregate the image features corresponding
to each query in each TPV plane. Experiments show that
our model trained with sparse supervision effectively pre-
dicts the semantic occupancy for all voxels. We demon-
strate for the first time that using only camera inputs can
achieve comparable performance with LiDAR-based meth-
ods on the LiDAR segmentation task on nuScenes. Code:
https://github.com/wzzheng/TPVFormer.

1. Introduction

Perceiving the 3D surroundings accurately and compre-
hensively plays an important role in the autonomous driving
system. Vision-based 3D perception recently emerges as
a promising alternative to LiDAR-based one to effectively
extract 3D information from 2D images. Though lacking
direct sensing of depth information, vision-based models
empowered by surrounding cameras demonstrate promising
performance on various 3D perception tasks such as depth
estimation [17,42], semantic map reconstruction [, 19,48],
and 3D object detection [27,30,46].

The core of 3D surrounding perceiving lies in how to ef-
fectively represent a 3D scene. Conventional methods split
the 3D space into voxels and assign each voxel a vector to
represent its status. Despite its accuracy, the vast number
of voxels poses a great challenge to computation and re-
quires specialized techniques like sparse convolution [13].
As the information in outdoor scenes is not isotropically
distributed, modern methods collapse the height dimension
and mainly focus on the ground plane (bird’s-eye-view)
where information varies the most [20,26,28,31,35,46,48].

*Equal contribution. tCorresponding author.
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Figure 2. An overview of our method for 3D semantic occupancy
prediction. Taking camera images as inputs, the proposed TPV-
Former only uses sparse LIDAR semantic labels for training but
can effectively predict the semantic occupancy for all voxels.

They implicitly encode the 3D information of each object in
the vector representation in each BEV grid. Though more
efficient, BEV-based methods perform surprisingly well on
the 3D object detection task [28, 31]. This is because 3D
object detection only demands predictions of coarse-level
bounding boxes for commonly seen objects such as cars
and pedestrians. However, objects with various 3D struc-
tures can be encountered in real scenes and it is difficult
(if not impossible) to encode all of them using a flattened
vector. Therefore, it requires a more comprehensive and
fine-grained understanding of the 3D surroundings toward
a safer and more robust vision-centric autonomous driving
system. Still, it remains unknown how to generalize BEV
to model fine-grained 3D structures while preserving its ef-
ficiency and detection performance.

In this paper, we advance in this direction and propose a
tri-perspective view (TPV) representation to describe a 3D
scene. Motivated by recent advances in explicit-implicit hy-
brid scene representations [7, 8], we generalize BEV by ac-
companying it with two perpendicular planes to construct
three cross-planes perpendicular to each other. Each plane
models the 3D surroundings from one view and combining
them provides a comprehensive description of the 3D struc-
ture. Specifically, to obtain the feature of a point in the 3D
space, we first project it into each of the three planes and use
bilinear interpolation to obtain the feature for each projected
point. We then sum the three projected features as the com-
prehensive feature of the 3D point. The TPV representation
is thus able to describe the 3D scene at an arbitrary resolu-
tion and produces different features for different points in
the 3D space. We further propose a transformer-based en-
coder (TPVFormer) to effectively obtain the TPV features
from 2D images. We first perform image cross-attention
between TPV grid queries and the corresponding 2D image
features to lift 2D information to the 3D space. We then per-
form cross-view hybrid-attention among the TPV features
to enable interactions among the three planes.

To demonstrate the superiority of TPV, we formulate a
practical yet challenging task for vision-based 3D semantic

occupancy prediction, where only sparse lidar semantic la-
bels are provided for training and predictions for all voxels
are required for testing, as shown in Figure 2. However,
as no benchmark is provided on this challenging setting,
we only perform qualitative analysis but provide a quanti-
tative evaluation on two proxy tasks: LiDAR segmentation
(sparse training, sparse testing) on nuScenes [4] and 3D se-
mantic scene completion (dense training, dense testing) on
SemanticKITTI [2]. For both tasks, we only use RGB im-
ages as inputs. For LiDAR segmentation, our model use
the LiDAR data only for point query to compute evalua-
tion metrics. Visualization results show that TPVFormer
produces consistent semantic voxel occupancy prediction
with only sparse point supervision during training, as shown
in Figure 1. We also demonstrate for the first time that
our vision-based method achieves comparable performance
with LIDAR-based methods on LiDAR segmentation.

2. Related Work

Voxel-based Scene Representation: Obtaining an ef-
fective representation for a 3D scene is the basic procedure
for 3D surrounding perception. One direct way is to dis-
cretize the 3D space into voxels and assign a vector to repre-
sent each voxel [49,51]. The ability to describe fine-grained
3D structures makes voxel-based representation favorable
for 3D semantic occupancy prediction tasks including lidar
segmentation [12,29,40,44,45,51] and 3D scene comple-
tion [5, 10,23, 38,43]. Though they have dominated the
3D segmentation task [44], they still lag behind BEV-based
methods on the 3D detection performance [26]. Despite the
success of voxel-based representations in LiDAR-centric
surrounding perception, only a few works have explored
voxel-based representations for vision-centric autonomous
driving [5,25]. MonoScene [5] first backprojects image fea-
tures to all possible positions in the 3D space along the opti-
cal ray to obtain the initial voxel representation and further
processes it using a 3D UNet. However, it is still challeng-
ing to generalize it to 3D perception with multi-view images
due to the inefficiency of voxel representations. This moti-
vates us to explore more efficient and expressive ways to
describe the fine-grained 3D structure of a scene.

BEV-based Scene Representation: The vast number
of voxels poses a great challenge to the computation effi-
ciency of voxel-based methods. Considering that the height
dimension contains less information than the other two di-
mensions, BEV-based methods implicitly encode the height
information in each BEV grid for a more compact repre-
sentation of scenes [22]. Recent studies in BEV-based per-
ception focus on how to effectively transform features from
the image space to the BEV space [20, 26, 27, 35, 36, 48].
One line of works explicitly predict a depth map for each
image and utilizes it to project image features into the 3D
space followed by BEV pooling [20, 26,28, 31, 35,36, 48].
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Another line of works employ BEV queries to implic-
itly assimilate information from image features using the
cross-attention mechanism [21,27]. BEV-based perception
achieves great success on vision-centric 3D detection from
multi-view images [26], demonstrating comparable perfor-
mance to LiDAR-centric methods. Yet, it is difficult to ap-
ply BEV to 3D semantic occupancy prediction which re-
quires a more fine-grained description of the 3D space.

Implicit Scene Representation: Recent methods have
also explored implicit representations to describe a scene.
They learn a continuous function that takes as input the
3D coordinate of a point and outputs the representation
of this point [32-34]. Compared with explicit represen-
tations like voxel and BEYV, implicit representations usu-
ally share the advantage of arbitrary-resolution modeling
and computation-efficient architectures [6, | 1,37]. These
advantages enable them to scale to larger and more com-
plex scenes with more fine-grained descriptions. Especially,
our work is inspired by recent advances in hybrid explicit-
implicit representations [7, 8]. They explicitly inject spatial
information into the continuous mapping of implicit repre-
sentations. Therefore, they share the computation-efficient
architecture of implicit representations and better spatial
awareness of explicit representations. Still, they mainly fo-
cus on small-scale complex scenes for 3D-aware image ren-
dering. To the best of our knowledge, we are the first to use
implicit representation to model outdoor scenes for 3D sur-
rounding perception in autonomous driving.

3. Proposed Approach
3.1. Generalizing BEV to TPV

Autonomous driving perception requires both expressive
and efficient representation of the complex 3D scene. Voxel
representation [25,40,45] describes a 3D scene with dense
cubic features V. € REIXWXDXC where H, W, D are the
spatial resolution of the voxel space and C' denotes the fea-
ture dimension. A random point located at (x,y, z) in the
real world maps to its voxel coordinates (h,w,d) through
one-to-one correspondence. Therefore, voxel representa-
tion preserves the dimensionality of the real world and
offers sufficient expressiveness with appropriate H, W, D.
However, the storage and computation complexity of voxel
features comes proportion to O(HW D), making it chal-
lenging to deploy them in real-time onboard applications.

As a popular alternative, BEV [21,26,27,31] representa-
tion uses a 2D feature map B € R7*W*C g encode the top
view of a scene. Different from the voxel counterpart, the
point at (x, y, z) is projected to its BEV coordinates (h, w)
using only the positional information from the ground plane
regardless of the z-axis. Each feature sampled from B cor-
responds to a pillar region covering the full range of z-axis
in the real world. Although BEV greatly reduces the storage

Voxel BEV TPV (ours)

Figure 3. Comparisons of the proposed TPV representation with
voxel and BEV representation. While BEV is more efficient than
the voxel representation, it discards the height information and
cannot comprehensively describe a 3D scene.

and computation burden to O(HW), completely omitting
the z-axis has an adverse effect on its expressiveness.

To address this, we propose a Tri-Perspective View
(TPV) representation which is capable of modeling the 3D
space at full scale without suppressing any axes and avoid-
ing cubic complexity, as illustrated in Figure 3. Formally,
we learn three axis-aligned orthogonal TPV planes:

T — [THW,TDH,TWD], THW c ]:RI{XVVXC'7

ey

DH DxHxC WD WxDxC
TV " e RP*7* T € RV XFxe)

which represent the top, side and front views of a 3D scene
respectively. H, W, D denote the resolution of the three
planes and C' is the feature dimension. Intuitively, a com-
plex scene, when examined from different perspectives, can
be better understood because these perspectives may pro-
vide complementary clues about the scene.

Point Querying Formulation. Given a query point at
(z,y, z) in the real world, TPV representation aggregates
its projections on the top, side and front views in order to
get a comprehensive description of the point. To elabo-
rate, we first project the point onto the TPV planes to ob-
tain the coordinates [(h, w), (d, h), (w, d)], sample the TPV
planes at these locations to retrieve the corresponding fea-
tures [th, w, td.n, tw,q), and aggregate them to generate the
final £, , .:

ti; = S(T, (i,4)) = S(T, P(z,y)), )

fr 4.2 = Altnw, tan twd), 3)

where the sampling function S and the aggregation func-
tion A are implemented with bilinear interpolation and sum-
mation respectively, and each projection function P simply
performs scaling on the two relevant coordinates since TPV
planes are aligned with the real-world axes.

Voxel Feature Formulation. The TPV planes, when re-
peated along respective orthogonal directions and summed
up, construct a full-scale 3D feature space similar to the
voxel feature space, but with storage and computation com-
plexity of only O(HW + DH + W D), which is an order
of magnitude lower than the voxel counterpart.
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Compared with BEV, as the three planes in TPV are per-
pendicular to each other, point features along the orthogonal
direction of one plane are diversified by features sampled
from the other two planes. Moreover, a grid feature in each
TPV plane is only responsible for view-specific information
of the corresponding pillar region rather than encoding the
complete information as in BEV. To sum up, TPV represen-
tation generalizes BEV from single top view to complemen-
tary and orthogonal top, side and front views and is able to
offer a more comprehensive and fine-grained understanding
of the 3D surroundings while remaining efficient.

3.2. TPVFormer

For vision-centric autonomous driving perception, a 2D
backbone is often employed to obtain image features before
feeding them into a 3D encoder. We present a transformer-
based TPV encoder (TPVFormer) to lift image features to
TPV planes through the attention mechanism.

Overall Structure: In TPVFormer, we introduce TPV
queries, image cross-attention (ICA) and cross-view hybrid-
attention (CVHA) to enable effective generation of TPV
planes, as shown in Fig. 4. In fact, TPV queries and
TPV planes refer to the same set of feature vectors de-
fined in (1). Each TPV query t € T is a grid cell fea-
ture belonging to one of the three planes and used to en-
code view-specific information from the corresponding pil-
lar region. Cross-view hybrid-attention enables direct in-
teractions among TPV queries from the same or different
tpv planes in order to gather contextual information. Inside
image cross-attention, TPV queries aggregate visual infor-
mation from image features through deformable attention.

We further construct two kinds of transformer blocks:
hybrid-cross-attention block (HCAB) and hybrid-attention
block (HAB). Composed of both CVHA and ICA atten-
tion, the HCAB block is employed in the first half of TPV-
Former to effectively query visual information from image
features. Following HCAB blocks, the HAB block contains
only CVHA attention and specializes in contextual infor-
mation encoding. Finally, we build TPVFormer by stacking
N7 HCAB blocks and N, HAB blocks.

TPV Queries: Although referring to the same list of 2D
features defined in (1), TPV queries and TPV planes are
used in attention and 3D representation contexts, respec-
tively. Each TPV query maps to a 2D grid cell region of
size s x s m? in the corresponding view, and further to a 3D
pillar region extending from the view in the perpendicular
direction. In our pipeline, TPV queries are first enhanced
with raw visual information from image features in HCAB
blocks, and then refined with contextual clues from other
queries in HAB blocks. As for implementation, we initial-
ize TPV queries as learnable parameters.

Image Cross-Attention: In TPVFormer, we use image
cross-attention to lift multi-scale and possibly multi-camera

image features to the TPV planes. Considering the high
resolution nature of TPV queries (~ 10* queries) and mul-
tiple image feature maps (~ 10° pixels each), it is unfea-
sible to compute full-scale vanilla cross-attention between
them. And thus we employ the efficient deformable atten-
tion [14,27,50] to implement image cross-attention.

We take the local receptive field as an inductive bias
when sampling the reference points. Specifically, for a TPV
query ty, ,, located at (h, w) in the top plane, we first calcu-
late its coordinates (z,y) in the top view in the real world
through the inverse projection function P;I%/V. Then we

sample uniformly N;Ief,’;/ reference points for the query tj, ,
along the orthogonal direction of the plane:

(,0) = Pighy (how) = (b= 5) x5, (w= ) x5). ()

w Nied
Rth,w = {(JZ‘, Y, Zi)}i:biwa (5)

where Ref),, denotes the set of reference points in the
world coordinate for query ty, ,,. The similar procedure is
repeated for all TPV queries, and note that the number of
reference points N may change across planes because of
different ranges of axes. After deriving the reference points
for tj,.,, we need to project them into the pixel coordinate
in order to sample the image feature maps:

Ref] ,, = Ppiz(Ref}, ) = Ppiz({(2,9,2:)}),  (6)
where Ref’  is the set of reference points in the pixel
coordinate for query ty,w and P, is the perspective pro-
jection function determined by the camera extrinsic and in-
trinsic. Note that we may have multiple cameras in differ-
ent directions which will generate a set of {Ref’;’){v ;Y:cl
where . denotes the number of cameras. Since not all
cameras can capture the reference points of query t_,,, we
can further reduce computation by removing invalid sets
from {Reffl’ﬁu} ;V:C 1 if none of the reference points falls onto
the image captured by the corresponding camera. The fi-
nal step is to generate offsets and attention weights through
two linear layers applied on t;, ,, and produce the updated
TPV queries by summing up the sampled image features
weighted by their attention weights:

ICA(thw,I)= IN% > DA(tnw, Reff?, 1;), (1)

eyl
where IV, ;L’fff), I;, DA(-) denote the index set of valid cam-
eras, the image features from the jth camera and the de-
formable attention function, respectively.

Cross-View Hybrid-Attention: In image cross-
attention, TPV queries sample reference image features sep-
arately and no direct interactions between them are allowed.
Here, we further propose cross-view hybrid-attention to en-
able queries to exchange their information across different
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Figure 4. Framework of the proposed TPVFormer for 3D semantic occupancy prediction. We employ an image backbone network to
extract multi-scale features for multi-camera images. We then perform cross-attention to adaptively lift 2D features to the TPV space and
use cross-view hybrid attention to enable the interactions between TPV planes. To predict the semantic occupancy of a point in the 3D
space, we apply a lightweight prediction head on the sum of projected features on the three TPV planes.

views, which benefits context extraction. We also adopt de-
formable attention to reduce computation, in which three
TPV planes serve as key and value. Taking the TPV query
th . located at (h,w) in the top plane as an example, we
group its reference points into three disjoint subsets, which
contains reference points belonging to the top, side and
front planes respectively:

Ry, = R, URGI URJT™. ®)

To collect reference points on the top plane, we simply sam-
ple a few random points in the neighborhood of the query
th,w. As for the side and front planes, we first sample 3D
points uniformly along the direction perpendicular to the
top plane and project them onto the side and front planes:

Rilw = {(@dim)}, R ={(w.d)}i )

Following the derivation of reference points is the typical
practice of deformable attention:

CVHA(th,0) = DA(th,w, Rhw, T). (10)

3.3. Applications of TPV

The TPV planes T from TPVFormer encode fine-
grained view-specific information of a 3D scene. Still, they
are in the form of orthogonal cross-planes and not readily
interpretable to common task heads. Here we explain how
to convert TPV planes to point and voxel features and intro-
duce a lightweight segmentation head.

Point Feature. Given locations in the real world, we
consider the feature generation process as the points query-
ing their features from the TPV representation. As defined
in (2) and (3), we first project the points onto the TPV planes
to retrieve the corresponding features [t;, ., ta n, tw,q], and
sum them up to obtain the per-point features.

Voxel Feature. For dense voxel features, we actively
broadcast each TPV plane along the corresponding orthog-
onal direction to produce three feature tensors of the same
size H x W x D x C, and aggregate them by summation
to obtain the full-scale voxel features. Note that we do not
know the position of any physical point in advance.

To conduct fine-grained segmentation tasks, we apply a
lightweight MLP on the point or voxel features to predict
their semantic labels, instantiated by only two linear layers
and an intermediate activation layer.

4. Experiments
4.1. Task Descriptions

We conduct three types of experiments, including 3D
semantic occupancy prediction, LIDAR segmentation, and
semantic scene completion (SSC). The first two tasks are
performed on Panoptic nuScenes [16], and the last one is
on Semantic KITTI [2]. For all tasks, our model only uses
RGB images as inputs.

3D semantic occupancy prediction. As dense seman-
tic labels are difficult to obtain, we formulate a practical yet
challenging task for vision-based 3D semantic occupancy
prediction. Under this task, the model is only trained us-
ing sparse semantic labels (LiDAR points) but is required
to produce a semantic occupancy for all the voxels in the
concerned 3D space during testing. As no benchmark is
provided for this, we only perform a qualitative analysis of
our method. Still, our method is the first to demonstrate
effective results on this challenging task.

LiDAR segmentation. The LiDAR segmentation task
corresponds to the point querying formulation discussed in
Section 3.3, where we predict the semantic label of a given
point. The LiDAR segmentation task does not necessarily
use point clouds as input. In our case, we use only RGB
images as input, while the points are merely used to query
their features and for supervision in the training phase.

Semantic Scene Completion. In conventional SSC,
given a single initial LiDAR scan, one needs to predict
whether each voxel is occupied and its semantic label for the
complete scene inside a certain volume. As a vision-centric
adaptation, we use as input only RGB images and predict
the occupancy and semantic label of each voxel. Accord-
ingly, we supervise the training process with voxel labels.
In the case of TPV representation, we adopt the voxel fea-
ture formulation in Section 3.3 to generate full-scale voxel
features. Following common practices, we report the inter-
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Figure 5. Visualization results on 3D semantic occupancy prediction and nuScenes LiDAR segmentation. Our method can generate
more comprehensive prediction results than the LiDAR segmentation ground truth.
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Figure 6. Arbitrary resolution at test time. We can adjust the prediction resolution through interpolation at test time.

section over union (IoU) of occupied voxels, ignoring their
semantic class, for the scene completion (SC) task and the
mloU of all semantic classes for the SSC task.

4.2. Implementation Details

3D semantic occupancy prediction and LiDAR seg-
mentation. We construct two versions of TPVFormer,
namely TPVFormer-Base and TPVFormer-Small, for dif-
ferent trade-offs between performance and efficiency.
TPVFormer-Base uses the ResNet101-DCN [ 14, 18] initial-
ized from FCOS3D [41] checkpoint, while TPVFormer-
Small adopts the ResNet-50 [18] pretrained on Ima-
geNet [15]. Following Cylinder3D [51], we employ both
cross entropy loss and lovasz-softmax [3] loss to optimize
our network. For lovasz-softmax loss, we use features of
real points from LiDAR scans as input to maximize the IoU
score for classes, while voxel features are used in cross en-

tropy loss to improve point classification accuracy and avoid
semantic ambiguity. For 3D semantic occupancy predic-
tion, we generate pseudo-per-voxel labels from sparse point
cloud by assigning a new label of empty to any voxel that
does not contain any point, and we use voxel predictions as
input to both lovasz-softmax and cross-entropy losses.

Semantic Scene Completion. We follow the setting of
MonoScene [5] in the SSC task for a fair comparison. For
model architecture, we adopt the 2D UNet based on a pre-
trained EfficientNetB7 [39] as image backbone to generate
multi-scale image features. For optimization, we employ
the losses in MonoScene except for the relation loss.

4.3. 3D Semantic Occupancy Prediction Results

Main results. In Figure 5, we provide the main visual-
ization results. Our result is much denser and more realistic
than the LiDAR segmentation ground truth, which validates
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Table 1. LIDAR segmentation results on nuScenes test set. Despite critical modal difference, our TPVFormer-Base achieves comparable

performance with LiDAR-based methods.
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Method Put | mloU n n E B B B H m
Modality
MINet [24] LiDAR | 563 |54.6 82 62.1 76.6 23.0 58.7 37.6 349 61.5 46.9 933 56.4 63.8 64.8 79.3 78.3
PolarNet [47] LiDAR | 69.4 [72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5
PolarSteam [9] LiDAR | 73.4 [71.4 27.8 78.1 82.0 61.3 77.8 75.1 72.4 79.6 63.7 96.0 66.5 76.9 73.0 88.5 84.8
JS3C-Net [43] LiDAR | 73.6 [80.1 262 87.8 84.5 55.2 72.6 71.3 66.3 76.8 71.2 96.8 64.5 76.9 74.1 87.5 86.1
AMVNet [29] LiDAR | 77.3 [80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7
SPVNAS [40] LiDAR | 77.4 [80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
Cylinder3D++ [51] LiDAR | 77.9 [82.8 33.9 843 89.4 69.6 79.4 77.3 73.4 84.6 69.4 97.7 70.2 80.3 75.5 90.4 87.6
AF2S3Net [12] LiDAR | 78.3 |78.9 52.2 89.9 842 77.4 74.3 773 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8
DRINet++ [45] LiDAR | 80.4 [85.5 432 90.5 92.1 64.7 86.0 83.0 73.3 83.9 75.8 97.0 71.0 81.0 77.7 91.6 90.2
LidarMultiNet [44] LiDAR | 81.4 [80.4 48.4 94.3 90.0 71.5 87.2 85.2 80.4 86.9 74.8 97.8 67.3 80.7 76.5 92.1 89.6
TPVFormer-Small (ours) | Camera | 59.2 [65.6 15.7 75.1 80.0 45.8 43.1 44.3 26.8 72.8 55.9 92.3 53.7 61.0 59.2 79.7 75.6
TPVFormer-Base (ours) | Camera | 69.4 [74.0 27.5 86.3 85.5 60.7 68.0 62.1 49.1 81.9 68.4 94.1 59.5 66.5 63.5 83.8 79.9

Table 2. Semantic scene completion results on SemanticKITTI test set. For fair comparison, we use the performances of RGB-inferred
versions of the first four methods reported in MonoScene [5]. We significantly outperform other methods in both IoU and mloU, including

MonoScene which is based on 3D convolution.
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Method Modality| IoU mlou| = = & °© - E - = =
LMSCNet [38] Camera |31.38 7.07 [46.70 19.50 13.50 3.10 10.30 14.30 0.30 0.00 0.00 0.00 10.80 0.00 10.40 0.00 0.00 0.00 5.40 0.00 0.00
3DSketch [10] Camera |26.85 6.23 [37.70 19.80 0.00 0.00 12.10 17.10 0.00 0.00 0.00 0.00 12.10 0.00 16.10 0.00 0.00 0.00 3.40 0.00 0.00
AICNet [23] Camera {23.93 7.09 {39.30 18.30 19.80 1.60 9.60 15.30 0.70 0.00 0.00 0.00 9.60 1.90 13.50 0.00 0.00 0.00 5.00 0.10 0.00
JS3C-Net [43] Camera |34.00 8.97 |47.30 21.70 19.90 2.80 12.70 20.10 0.80 0.00 0.00 4.10 14.20 3.10 12.40 0.00 0.20 0.20 8.70 1.90 0.30
MonoScene [5] Camera |34.16 11.08(54.70 27.10 24.80 5.70 14.40 18.80 3.30 0.50 0.70 4.40 14.90 2.40 19.50 1.00 1.40 0.40 11.10 3.30 2.10
TPVFormer (ours)| Camera |34.25 11.26|55.10 27.20 27.40 6.50 14.80 19.20 3.70 1.00 0.50 2.30 13.90 2.60 20.40 1.10 2.40 0.30 11.00 2.90 1.50

the effectiveness of TPV representation in modeling the 3D
scene and semantic occupancy prediction.

Arbitrary resolution at test time. Given the simplic-
ity of our segmentation head, we can adjust the resolution
of TPV planes at test time arbitrarily without retraining the
network. Figure 6 shows the results for resolution adjust-
ment, in which we gradually increase the resolution of TPV
planes from an initial 50x50x4 to 8 times larger. It is evi-
dent that as resolution increases, TPV representation is able
to capture more details about the 3D objects, such as shape.

4.4. LiDAR Segmentation Results

As the first vision-based method for LiDAR segmenta-
tion task, we benchmark TPVFormer against LiDAR-based
methods. As shown in Table 1, TPVFormer achieves com-
parable mloU (~ 70%) with most LiDAR-based methods.
This is nontrivial since our method needs to reconstruct the
complete 3D scene at a high resolution from only 2D image
input, while the 3D structural information is readily avail-
able in the point clouds for LiDAR-based methods. Still, vi-
sual input can capture more semantic information than point
clouds. For example, in Figure 5, Cylinder3D fails to pre-
dict one of the two trucks on the rightmost side of the first

scene, while TPVFormer predicts correctly.

4.5. Semantic Scene Completion Results

In Table 2, we report the results of the semantic scene
completion task on SemanticKITTI test set. We com-
pare our TPVFormer against MonoScene [5], which is a
vision-based method based on 3D convolution in the voxel
space. We also include the 4 baseline methods provided in
MonoScene [5]. TPVFormer outperforms all other meth-
ods in both IoU and mloU, demonstrating its effectiveness
in occupancy and semantics prediction. TPVFormer also
enjoys significant advantages over MonoScene in both pa-
rameter number and computation. Specifically, TPVFormer
has only 6.0M parameters versus 15.7M for MonoScene,
and 128G FLOPS per image versus 500G for MonoScene.

4.6. Analysis

We analyze TPVFormer on the validation sets of
nuScenes and SemanticKITTI for LIDAR segmentation and
semantic scene completion, respectively.

Loss functions for LiDAR segmentation. We employ
both cross entropy (CE.) loss and lovasz-softmax loss [3]
for LiDAR segmentation. As TPVFormer can produce
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Table 3. Different prediction types as input to loss functions
for LiDAR segmentation. Voxel and point in the loss column
represent voxel and point predictions. We report mloUs calculated
with both voxel and point predictions.

Loss mloU
CE. Lovasz | Voxel Point
Voxel  Voxel 63.17 50.66
Voxel Point 63.37 64.80
Point Voxel 64.07 64.46
Point Point 4994 64.02

Table 4. Comparisons between BEYV, voxel, TPV representa-
tions for LiDAR segmentation. Latency at inference is measured
with a batch size of 1 using a RTX 3090 GPU.

#Param. FLOPs Latency|mloU

Repr. |[Feature Resolution

™M G () | (%)
BEV| 256  200x200 | 61.2 1351 0.323 |545
Voxel| 64  100x100x8 | 49.8 915 0314 |242
TPV | 64 200x200x16| 48.8 934 0312 |67.4

Table 5. Ablations on TPV resolutions and feature dimensions.
TPV Resolution Feature ‘ Point mloU (%)

100x100x8 256 64.15
200x200x16 64 67.40

point and voxel predictions in a single forward propaga-
tion, we investigate different prediction types as input to
these loss functions. As shown in Table 3, when both voxel
and point predictions are used as input to the loss func-
tions, the mIoUs from both predictions are high and close to
each other. However, when only voxel or point prediction
is employed in optimization, the corresponding mloU will
be much higher than the other one. This indicates the im-
portance of discrete and continuous supervision signals for
learning a robust representation.

TPV resolution and feature dimension. We ablate res-
olution of TPV and feature dimension for LiDAR segmen-
tation in Table 5. TPVFormer favors resolution over fea-
ture dimension because increasing the resolution directly
enhances its ability to model more fine-grained structures.

Comparisons between BEYV, voxel and TPV. We adopt
voxel, BEV and TPV as the representation for 3D space and
use a similar architecture to the proposed TPVFormer to lift
image features to 3D. We show the comparisons in Table 4.
We increase the feature dimension for BEV considering the
capacity of the single top view, which accounts for the extra
parameters and FLOPs. Since voxel representation takes up
much more GPU memory, we have to reduce its grid reso-
lution to 100x100x8. We observe that TPVFormer achieves
the highest mloU with fewer parameters and FLOPs com-
pared with BEV and voxel counterparts. For fair compar-
isons, we keep the model architectures the same, which may
result in the inferior performance of voxel representation
and has room for improvement. For latency, sequential pro-
cessing of three TPV planes as in our code may account for

Table 6. Different number of HCAB blocks and HAB blocks
for semantic scene completion. We keep the total number of at-
tention modules the same in these experiments.

#HCAB #HAB ‘ SCIoU  SSC mloU

2 4 35.55 10.49
3 2 35.61 11.36
4 0 35.79 10.82

Figure 7. Failure cases of pedestrians for semantic occupancy pre-
diction. TPVFormer has trouble distinguishing pedestrians close
to each other and could predict a strip area for a distant pedestrian.
the comparable latency of TPV and voxel.

Number of HCAB and HAB blocks. We study the
number of HCAB and HAB blocks in Table 6. The IoU im-
proves as HCAB blocks increase, validating the importance
of direct visual clues for geometry understanding. However,
semantic prediction relies on both visual and contextual in-
formation as the highest mIoU is achieved with a moderate
number of HCAB and HAB blocks.

Limitations. As shown in Figure 5, the main strength
of the camera-based method over LiDAR-based methods
is the ability to output dense predictions for 3D space.
On the other hand, current TPVFormer still underperforms
LiDAR-based methods for lidar segmentation. In Figure 7,
we identify some failure cases on semantic occupancy pre-
diction. TPVFormer fails to seperate pedestrians close to-
gether and could predict a distant pedestrian as a strip area.

5. Conclusion

In this paper, we have presented a tri-perspective view
(TPV) representation, which is able to describe the fine-
grained structures of a 3D scene efficiently. To lift im-
age features to the 3D TPV space, we have proposed
a TPVFormer model based on the attention mechanism.
The visualization results have shown that our TPVFormer
produces consistent semantic voxel occupancy prediction
with only sparse point supervision during training. We
have demonstrated for the first time that our vision-based
method achieves comparable performance with LiDAR-
based methods on nuScenes LiDAR segmentation task.
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