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Abstract

Current Deep Network (DN) visualization and inter-
pretability methods rely heavily on data space visualiza-
tions such as scoring which dimensions of the data are re-
sponsible for their associated prediction or generating new
data features or samples that best match a given DN unit or
representation. In this paper, we go one step further by de-
veloping the first provably exact method for computing the
geometry of a DN’s mapping – including its decision bound-
ary – over a specified region of the data space. By lever-
aging the theory of Continuous Piece-Wise Linear (CPWL)
spline DNs, SplineCam exactly computes a DN’s geome-
try without resorting to approximations such as sampling
or architecture simplification. SplineCam applies to any
DN architecture based on CPWL activation nonlinearities,
including (leaky) ReLU, absolute value, maxout, and max-
pooling and can also be applied to regression DNs such
as implicit neural representations. Beyond decision bound-
ary visualization and characterization, SplineCam enables
one to compare architectures, measure generalizability, and
sample from the decision boundary on or off the data man-
ifold. Project website: bit.ly/splinecam.

1. Introduction
Deep learning and in particular Deep Networks (DNs) have
redefined the landscape of machine learning and pattern
recognition [22]. Although current DNs employ a variety
of techniques that improve their performance, their core op-
eration remains unchanged, primarily consisting of sequen-
tially mapping an input vector x to a sequence of L fea-
ture maps zℓ, ℓ = 1, . . . , L by successively applying simple
nonlinear transformations, as in

zℓ = σ
(
W ℓzℓ−1 + bℓ

)
, ℓ = 1, . . . , L (1)

starting with z0 = x. Here W ℓ and bℓ denotes the weight
matrix and the bias vector for layer ℓ, and σ is an activation
operator that applies an element-wise nonlinear activation

Figure 1. Exact visualization of the decision boundary and par-
tition geometry of a 3D neural signed distance field (SDF). (Top
left) Surface normals obtained from the learned signed distance
field with annotations indicating slices used for visualization. For
each of the slices, we can see the spline partition geometry of the
learned SDF- each contiguous line represents a neuron, on either
side of which it gets activated/deactivated. Neurons from differ-
ent depths of the network create a partitioning of the input space
into ’linear regions’. Here the colored lines represent the decision
boundary learned by the SDF. Note that while the final neuron ob-
tains the decision boundary, many neurons place their boundaries
close to the ground truth surface to obtain the final SDF represen-
tation.

function. One popular choice for σ is the Rectified Lin-
ear Unit (ReLU) [12] that takes the elementwise maximum
between its entry and 0. The parametrization of W ℓ, bℓ

controls the type of layer, e.g., circulant matrix for convo-
lutional layer.

Interpreting the geometry of a DN is a nontrivial task since
many different sets of parameters can lead to the same
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input-output mapping. One example is obtained by per-
muting the rows of W ℓ, bℓ and the columns of W ℓ+1 for
any two consecutive layers in a DN. Another example is to
rescale W ℓ, bℓ by some constant κ and to rescale W ℓ+1

by 1/κ for a ReLU-DN [33]; the list of such parameter
manipulations preserving the underlying DN’s function is
an active area of research [32]. Since one cannot trivially
use the DN’s parameters to describe its mapping, practi-
tioners have relied on different solutions to interpret what
has been learned by a model by looking at the activations
instead of the weights of the network [19, 41]. Activation
based interpretability methods however can be susceptible
to feature adversarial attacks, i.e., adversarial attacks that
don’t cross the decision boundary but changes the activa-
tion [11]. Some alternative empirical methods for model in-
terpretation, therefore rely on sampling the decision bound-
ary or finding the point on a model’s decision boundary
closest to a sample x [36]. Beyond interpretability, such
methods find practical use in active learning [23] and ad-
versarial robustness [15]. In this setting, gradient updates
are performed from an initial guess for x based on an ob-
jective function that reaches its minimum whenever its argu-
ment lies on the model’s decision boundary. While alterna-
tive and more efficient solutions have been developed, most
of the progress in this direction has focused on providing
more optimized losses and sampling strategies [15, 36]. In
short, there doesn’t exist an exact (up to machine precision)
method to compute the decision boundary of a DN.

In this paper, we focus on DNs employing Continuous
Piece-Wise Linear (CPWL) activation functions σ, such as
the (leaky-)ReLU, absolute value, and max-pooling. In this
setting, the entire DN itself becomes a CPWL operator, i.e.,
its mapping is affine within regions of a partition of its do-
main. There has been previous studies dedicated to estimat-
ing the partition of such CPWL DNs and bridging empir-
ical findings with interpretability. For example, Raghu et
al. [34] shows that the partition density provides measures
of DN expressivity, Hanin et al. [13] connects the DN par-
tition density with the complexity of the learned function,
Jordan et al. [20] approximates the DN partition to provide
robustness certificates, Zhang et al. [43] interprets the im-
pact of dropout with respect to DN partitions, Balestriero
et al. [3] proposes to improve batch-normalization to fur-
ther adapt DN partitions to the data geometry, Humayun
et al. [17, 18] proposes methods to control pre-trained gen-
erative network output distributions by approximating the
DN partition, Chen et al. [25] proposes a neural architec-
ture search method based on partition statistics. Despite be-
ing successful, all these methods rely on approximation of
the DN partition.

We propose SplineCam, a sampling-free method to compute
the exact partition of a DN. Our method computes the parti-

tion on two-dimensional domains of the input space, easily
scales with width and depth of DNs, can handle convolu-
tional layers and skip connections, and can be scaled to dis-
cover numerous regions as opposed to previously existing
methods. Our method also allows local characterization of
the input space based on partition statistics, and enables one
to tractably and efficiently sample arbitrarily many samples
that provably lie on a DN’s decision boundary - opening
new avenues for visualization and interpretability. We sum-
marize our contributions as follows:

• Development of a scalable enumeration method that,
given a bounded 2D domain of a DN’s input space,
computes the DN’s input space partition (aka, linear
regions) and decision boundary.

• Development of SplineCam that leverages our new
enumeration method to directly visualize a DN’s input
space partition, compute partition statistics and sample
from the decision boundary.

• Quantitative analysis that demonstrates the ability of
SplineCam to characterize the DN and compare be-
tween architectural choices and training regimes.

The SplineCam library, and codes required to reproduce
our results are provided in our Github1. In Appendix E,
we also demonstrate the usage of SplineCAM with example
code blocks.

2. The Exact Geometry and Decision Bound-
ary of Continuous Piece-Wise Linear Deep
Networks

The goal of this section is to first introduce basic notations
and concepts associated with CPWL DNs (Sec. 2.1), and
then develop our method that consists of building the exact
DN input space partition, and the DN’s decision boundary
that lives on it (Sec. 2.2); empirical studies based on our
method will be provided in Sec. 4.1.

2.1. Deep Networks as Continuous Piece-Wise
Linear Operators

One of the most fundamental functional form for a nonlin-
ear function emerges from polynomials, and in particular,
spline operators. In all generality a spline is a mapping
which has locally degree D polynomials on each region ω
of its input space partition Ω, with the additional constraints
that the first D−1 derivatives of those polynomials are con-
tinuous throughout the domain, i.e., imposing a smoothness
constraint when moving from one region to any of its neigh-
bor. More formally and for the context of DNs we will par-
ticularly focus on affine splines, i.e., spline operators with

1https://bit.ly/splinecam-git
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Figure 2. Visual depiction of Eq. 2 with a toy affine spline map-
ping S : R2 → R3. Left. Input space partition Ω made of multiple
convex regions shown with different colors and with boundaries
shown in black. Right. Affine spline image Im(S) which is a
continuous piecewise affine surface composed of the input space
regions affinely transformed by the per-region affine mappings.
Colors maintain correspondence from the left to the right.

D = 1 and only constrained to enforce continuity through-
out the domain.

Let S be a Deep Network (DN) with L layers and parame-
ters {W ℓ, bℓ}Lℓ=1. Whenever S employs continuous piece-
wise affine (CPA) activation σ at each layer, i.e., layer ℓ
outputs are given by Eq. 1, with z0 being an input x ∈ RS .

Lemma 1. The layer 1 to ℓ composition of a DN S, denoted
as Sℓ with output space Rℓ, can be expressed as

Sℓ(x) =
∑
ω∈Ω

(
Aℓ

ωx+ bℓω
)
1{x∈ω}, (2)

with indicator function 1{.} and per-region affine parame-
ters given by,

Aℓ
ω=

ℓ∏
i=1

diag
(
qi
ω

)
W i, (3)

bℓω=diag
(
qℓ
ω

)
bℓ+

ℓ−1∑
i=1

 ℓ∏
j=i+1

diag
(
qj
ω

)
W j

diag
(
qi
ω

)
bi.

(4)

Here, qℓ
ω is the point-wise derivative of σ at pre-activation

W ℓzℓ−1+bℓ, and diag(.) operator given a vector argument
creates a matrix with the vector values along the diagonal.
As a consequence of Thm. 1 from Balestriero et al. [2], qℓ

ω

is unique for any region ω ∈ Ω.

Such formulations of DNs have previously been employed
to make theoretical studies amenable to actual DNs with-
out any simplification, while leveraging the rich literature

Algorithm 1 Find Partitions

Input: 2-polytope P and hyperplanes H ∈ R2, s.t., H ∩
P ̸= ∅.

Output: G,C. G = (E,N), where E are edges and N are
nodes of the graph G. C are cycles/cells/faces of G.
Step 1: Solve for N = {hi∩ (hj ∪Pe) ∀hi, hj ∈ H : j ̸=
i}, where Pe are edges of P .
Step 2: For each hi, sort {hi ∩ (hj ∪Pe) ∀hj ∈ H : j ̸=
i} and connect in sorted sequence to obtain edges E.
Step 3: Obtain set of cycles C from graph G via Alg. 2.

on spline theory, e.g., in approximation theory [6], optimal
control [7], statistics [8] and related fields.

2.2. Exact Computation of Their Partition and
Decision Boundary

Suppose, wℓ
i ,bℓi are the i-th rows of W ℓ, bℓ. The following

lemma provides us a framework to back-project to RS a
hyperplane hℓ

i ∈ Rℓ−1 from layer ℓ with parameters wℓ
i , b

ℓ
i ,

expressed as,

hℓ
i ≜ {z ∈ Rℓ−1 : ⟨wℓ

i , z⟩+ bℓi = 0 }. (5)

Lemma 2. Given a hyperplane hℓ
i ∈ Rℓ−1, it can be pro-

jected onto the tangent space of region ω ∈ Ω in RS as,

projω(h
ℓ
i) = {x ∈ RS : ⟨wℓ

i ,A
ℓ−1
ω x+ bℓ−1

ω ⟩+ bℓi = 0}.
(6)

The proof of Lem. 2 is direct since zℓ
i = ⟨wℓ

i ,A
ℓ−1
ω x +

bℓ−1
ω ⟩+ bℓi , with zℓ

i the i-th element of layer ℓ activation.

Theorem 1. Let, S is a binary classifier DN therefore with a
single output neuron. In RL−1, the decision boundary is the
hyperplane hL

1 . The decision boundary in RS is therefore
∪ω∈Ω{projω(hL

1 ) ∩ ω}.

Thm. 1 can be proven by repeatedly applying Lem. 2 to
back-project the hyperplane hL

1 for all ω ∈ Ω. While the
above is general, we want to compute Ω on a 2-polytope
P ∈ RS for tractability [1] and ease of visualization.

SplineCam. Let’s denote the partition in the input space
formed by the composition of layers 1 to ℓ as Ωℓ. Using
Alg. 1, SplineCam starts by partitioning P into Ω1 via hy-
perplanes h1

i from layer ℓ = 1, the first layer. Then for each
ω ∈ Ω1, we use Lem. 1 and Lem. 2 to obtain projω(h

2
i ) for

layer two. Therefore, we use Alg. 1 on each region to obtain
a finer partition. For a given polytopal region ω, the target
of Alg. 1 is to first compute the graph G formed via inter-
sections between the edges of ω and a set of hyperplanes
H. Next, via Alg. 2, it finds the unique cycles in G (also
referred to as circuits or faces for a planar graph). By re-
peating Alg. 1 for each region ω ∈ Ω1, we can obtain Ω2.
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Figure 3. Given an input domain P and a set of hyperplanes H, SplineCam first produces a graph G using all the edge and hyperplane
intersections (as in Alg. 1). To find all the cycles in the graph, we select a boundary edge es (blue arrow), do a breadth-first search (BFS)
to find the shortest path through the graph between vertices of es and obtain the corresponding cycle (blue). The edges obtained via BFS
are enqueued and the search is repeated for each. Each non-boundary edge is allowed to be traversed twice, once from either direction (see
Alg. 2). Once new regions are found, we back-project deeper layer hyperplanes, compute partition graphs, and repeat.

Algorithm 2 Find cycles

Input: G = (E,N) an undirected graph, Pe ⊂ E bound-
ary edges and starting edge es ⊂ Pe.

Output: C cycles.
Initialize C = ∅, Eq = ∅
G′ =bidirectional(G) ▷ connect edges both ways
APPEND Eq ← es ▷ append to end of queue
REMOVE es from G′

while Eq ̸= ∅ do
POP e← Eq ▷ get from top of queue
REMOVE e′ from G′

▷ e′ is e with its direction inverted
Ec = bfs(G′, ve, vs)

▷ vs, ve are start and end vertices of e
▷ Ec are edges forming shortest path from ve to vs

APPEND Eq ← e′c,∀ec ∈ Ec if ec /∈ Pe

REMOVE ec from G′, ∀ec ∈ Ec

REMOVE e′c from G′, ∀ec ∈ Ec s.t. ec ⊂ Pe

APPEND Ec ← e′ ▷ append edge to form cycle
APPEND C ← Ec

end while

We repeat this process for all layers up to ℓ = L to obtain
the final partition. We have provided pseudocode for the
search algorithm in python script in Suppl. E List. 3.

Scalability and Complexity. SplineCam is scalable, all
the SplineCam operations can be vectorized except for the
search algorithm, which finds cycles in a given graph G.
For the vectorized operations, we can trade-off time com-
plexity with space complexity by allocating more memory,
preferably on GPU. For Alg. 2, scaling requires distribut-
ing sets of (ω,H) across CPU threads. Given a set of n
intersecting hyperplanes and a 2-polytope P , the operation
of Alg. 1 to find the partition reduces to an arrangement
of lines problem. Therefore, the number of intersections,
edges and cycles ≤ O(n2) [1]. As the number of hyper-

planes n → ∞, the expected number of edges per cycle
≈ O(1). We can also see this in Table. 1, where we see that
regardless of the architecture or training dataset, the average
number of edges per region converges to 4. Therefore, the
average case complexity of Alg. 2 as n → ∞ is also of the
order O(n2). In Suppl. Fig. 10, we present the wall time re-
quired for SplineCam for a randomly initialized single layer
MLP with variable width and input dimensionality. For an
MLP with width 1000, input dimensionality 8002, and 8M
params, it takes SplineCam 134s to find 132K regions. We
present in Suppl. Fig. 18 partition visualization for such a
setting. For deeper networks, e.g., 138M parameter VGG16
pre-trained on tinyImagenet, SplineCam takes ∼ 7 minutes
to find 1K regions. We also provide statistics and visualiza-
tions for deeper networks, in Fig. 8 and Suppl. Materials.

The methods closest to SplineCam in the literature are by
Yuan et al. [39] that uses an exponential complexity linear
programming based algorithm to compute the DN partitions
and Gamba et al. [10] a method that computes the inter-
section of partition boundaries with one-dimensional lines
connecting pairs of training samples. SplineCam computes
the partition of 2D input domains and can compute the per
region affine functions as well. SplineCam is the first exact
method that is fast, scalable and computes the partition on
2D slices for a wide array of architectures.

3. Visualizing and Understanding Implicit
Neural Representations

We start our journey into the geometry of DNs by looking at
implicit neural representations (INRs). INRs are generally
multi-layer perceptrons (MLPs) that are trained to produce
a continuous mapping from 1D/2D/3D signal coordinates
to the intensity of the signal at those coordinates. They
are pervasive in applications like 3D view synthesis [27]
and inverse problems [37]. The low input dimensionality,
and interpretability of ground truth functions make INRs
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Original image Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Reconstruction

Figure 4. SplineCam visualizations of neurons from different layers of an MLP trained with (top) and without (bottom) periodic position
encoding on a 2D image fitting task. All the neurons are visualized in the input space, color coded by the same color, and one neuron
from each layer is highlighted in red. The trained MLP has a width of 10 and depth of 5 and has ReLU activations for every layer. For
the positionally encoded (PE) network, boundaries of some neurons seem to be periodically repeating in the input domain, significantly
increasing the number of unique ω where the ReLU is active. The increased weight sharing, i.e., same weights/neurons being used to
represent/fit non-contiguous parts of the learned function, could be a possible reason for improved convergence of PE MLP [29].

Figure 5. Visualization of the decision boundary and partition ge-
ometry of a 2D neural SDF with width 256 and depth 6. A single
training image is thresholded at 0.01 and 0.5 to create two signed
distance fields (top-middle and top-right), on which an MLP is
trained. We use SplineCam to obtain the analytical zero level set
(decision boundary, in red) and also visualize the partition geom-
etry (bottom). Note that even with identical architecture, the par-
tition density differs significantly based on the task complexity.

a good setting to qualitatively validate SplineCam. There
also exists a lack of theoretical understanding for current
INR practices [42]. For example, while ReLU MLPs were
primarily used in NeRF [26]- one of the most popular INR
applications- the current practice has moved towards using
periodic activations to encode of the input coordinates and
following up with a ReLU MLP. In this section, we look at
the effect of periodic encodings and visualize the geometry
of the regions learned by INRs.

3.1. Decision Boundary of Signed Distance
Functions

A signed distance function (SDF) is an implicit continuous
representation of a surface or boundary; the output of an
SDF is the signed distance of an input from the boundary
represented by the function. The zero level set of an SDF
therefore denotes the surface or boundary of the function.
Training an INR as a signed distance function is essentially
a regression task, where a ground truth distance field is fit
by the model to implicitly learn a continuous boundary. We
train a 2D and 3D SDF and visualize the analytical zero
level set, à la decision boundary, using our method, and
provide the spline partitioning learned by the functions in
Fig. 1 and Fig. 5.

To train an INR as a 2D SDF, we take the image as in
Fig. 5 from the MetFaces [21] dataset and threshold it at
.001 and .05 to create two binary images. Each binary im-
age is used to create separate ground truth SDFs, one with
a simpler boundary separating the background (ESDF) and
another with a more convoluted boundary (HSDF). We train
an identical ReLU-MLP architecture with width 256 and
depth 6 on both ESDF and HSDF. In Fig. 5 we present
the analytical decision boundary of the SDF overlaid on the
ground truth signed distance field for both ESDF and HSDF.
While the network capacity remains the same for both, we
can see that the spline partition of the two figures vary dra-
matically, with a finer partition and higher region density
for the HSDF task compared to ESDF. For the harder HSDF
task, creating significantly more regions allows the network
to learn the curvature of the decision boundary. This in-
dicates that harder tasks may utilize more of the network
parameters compared to easier tasks.
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Figure 6. (Top Left) Decision boundary visualization for an MLP
of width 50 and depth 3 trained on fashion-MNIST. Red lines rep-
resent the learned decision boundary while black lines represent
the spline partition of the network. (Top Right) Samples from the
decision boundary between classes Top and Trouser. The samples
are ambiguous with distinguishable attributes present from both
classes, indicating a good local decision function. (Bottom Left)
SplineCam visualization for a CNN trained on MNIST, with two
convolutional layers and one hidden fully connected layer of width
50. One of the digit 3 samples is misclassified by the network
as digit 2. (Bottom Right) Samples from the decision boundary
between digits 2 and 3 of MNIST. Some of the samples clearly
look like the digit three, indicating that the decision boundary here
could be sub-optimal.

For the 3D SDF task, we train a leaky-ReLU-MLP with
width 256 depth 6 on a Stanford Bunny SDF, and present
in Fig. 1 the normal map of the learned SDF, as well as the
spline partition and decision boundary on three 2D slices,
{x = 0, y = 0, z = 0}. What is noticeable here is that,
apart from the final layer hyperplane (final output neuron
weights), many neurons from the deeper layers of the net-
work also place their boundaries near the zero level set of
the SDF. Meaning, while the decision boundary is denoted
by the output neuron, there are multiple neurons that learn
the surface boundary. This is indicative of a hierarchical
nature of signal fitting by INRs.

3.2. The Effect of Positional Encoding on INRs

Empirical evidence shows that INRs trained with periodi-
cally encoded (PE) coordinates instead of input space coor-
dinates, are able to fit the input signal better with faster con-
vergence rates. While initially inspired by its use in trans-
former networks there has been very less theoretical investi-
gation of how positional encoding affects learning. We train
a 2D INR to regress the grayscale intensity of an image, for

given pixel coordinates (Fig.4). We use a ReLU MLP as the
INR backbone, with width 10 and depth 5, and visualize the
partition induced with/without a periodic position encoding
front-end. Since SplineCam works with affine nonlineari-
ties only, we use a piecewise approximation of sine/cosine
while training, with 5 linear regions for each period of the
sine/cosine. We see that using this encoding has negligi-
ble effect on performance compared to using continuous co-
sine and sine functions for encoding. In Fig. 4 we present a
layerwise visualization where we separately show for each
layer the neurons in the input space. We also highlight in
red, the boundary of a single neuron from each layer.

For the PE network, boundaries of some neurons seem to
be periodically repeating across the input domain. This
is due to the periodic wrapping of space induced by PE,
i.e., the input domain is wrapped around in the embedded
space between [−1, 1] for each dimension, which gets cut
by subsequent ReLU hyperplanes. The effect of periodic-
ity is most evident for the first layer hyperplanes, as can be
seen from the highlighted neuron in Fig. 4. Such repetition
of neurons across different parts of the input space, signifi-
cantly increases the number of regions and weight sharing
across input space, which could be a possible reason for
improved convergence [29]. We also see a layerwise learn-
ing of the boundary of the sphere, indicating that multiple
neurons across different depths coordinate to complete the
final regression task. The absence of some neurons from
the input space domain also shows that not all neurons ac-
tively partake in the regression task. For example, while for
the first layer of the non-PE network, all 10 hyperplanes in-
tersect the input domain, for the last layer only 4 of the 10
neurons intersect the input domain. This shows how differ-
ent neurons create redundancy by remaining active/inactive
for all possible inputs observed during training.

4. How Training Decisions Impact Your Spline
Recall from Sec. 2.1 that any DN with CPWL nonlinear-
ities is a CPWL mapping or affine spline. Affine splines
have been widely studied and many of their properties, e.g.
number of regions in their partition, are known to convey
information on function complexity [13]. In this section,
we explore the effect of different training choices, e.g., ar-
chitecture, data-augmentation, on DN partition.

4.1. Impact of Architecture on Partitions Properties

In this section we explore the impact of the DN’s archi-
tecture on the partition. To start off, we look at the parti-
tions induced by MLPs and CNNs when trained on fashion-
MNIST and MNIST datasets. We quantify the character-
istics of the partitions via the following measures- Aver-
age Region Volume (ARV), Average Number of Vertices
(ANV), Number of Regions (NR), and Average Region Ec-
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Table 1. Statistics of the spline partitions formed by fully connected (MLP) and convolutional (CONV) neural networks. For each dataset,
the same 2D slice and input domain is used to find the partition regions. Convolutional neural networks have a significantly higher number
of regions with lower volume compared to MLPs even with less parameters.

Architecture Dataset Parameters Avg. Reg. Vol
Avg. Number

of Vertices Ecc.
Number of

Regions

MLP MNIST 44,860 3.144e-4 4 102e7 318
Fashion-MNIST 44,860 4.991e-4 4 36e7 1364

CONV MNIST 39,780 1.134e-5 4 17e7 8814
Fashion-MNIST 39,780 3.54e-5 4 14e7 28222

Figure 7. Decision boundary of a 5 layer convnet during training epochs {50,100,150,200,300} (columns) trained on a binary classification
task to classify between Egyptian cat and Tabby Cat classes of tinyimagenet. White points are images from the dataset that are used to
determine the 2D input domains. We can observe that between epochs 50 and 100, not much change occurs to the decision boundary
(red line). However, between epoch 100 and 150, a sudden change occurs for both cases. Especially for top row, the decision boundary
moves out of the input domain. Following that, between epochs 200 and 300 the boundary stays roughly identical until the end of training.
In Suppl. Fig. 12 we present the change of partition statistics at different train, test and off-manifold locations, while training a CNN on
CIFAR 10. In Suppl. Sec. D.1 we present further discussions.

centricity (ARE) which is defined as the ratio of the max
and min pairwise distance between vertices. For a given
dataset, we fix the input domain and switch between convo-
lutional and fully connected architectures to draw emphasis
on the effect of the convolutional layers. We see that in
convolutional architectures, there is a significantly higher
number of partition regions formed. This is intuitive since
convolutional architectures repeat the same set of parame-
ters across sets of dimensions via a circulant weight matrix.
This increases the number of cuts by the same neurons in
the input space, demonstrating higher complexity for the
same number of parameters [28]. In Tab. 1 we present par-
tition statistics comparisons between architectural choices
and datasets. We see that the eccentricity and volume of the
polytopes are significantly smaller for convolutional archi-
tectures compared to fully connected architectures. These
can also be visualized in Fig. 6. In Suppl. Fig.12 we present
the variation of partition statistics with training, for training

points, test points and points off the data manifold. We see
that partition density increases for sample on the data man-
ifold regardless of being on training or testing.

4.2. Data-Augmentation

Data-Augmentation is a ubiquitous technique that has led
to great improvements into DN performance [9]. It is still
unclear what is the impact of DA onto the DN’s mapping. In
fact, while explicit regularizers of DA has been found [5,16]
and while many empirical studies have emerged [40], none
truly pinpoint what is different between DNs trained with
DA and DNs trained without.

In order to provide a first quantitative understanding of what
actually changes within a DN when DA is applied, we pro-
pose to rely on SplineCam. In Fig. 8 we provide the ARV,
NR, and ARE for spline partitions computed from randomly
oriented 2D domains centered on 90 tinyImageNet test sam-
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Avg. Region Volume Number of Regions Avg. Region Eccentricity

Figure 8. Average partition statistics for 90 tinyimagenet test samples with and without DA training for VGG11 and VGG16. The average
volume and number of regions are indicative of partition density whereas eccentricity is indicative of the shape of the regions. For VGG11
a distinct difference in the statistics can be visualized between DA and non-DA training. DA training significantly increases the partition
density at test points, which is indicative of better generalizability. On the other hand, the difference reduces for VGG16 while the overall
region density increases. This is expected behavior since the VGG16 has significantly more parameters. For both case, the DA models
acquired a similar accuracy of 51% on the tinyimagenet-200 classification task. In Suppl. Fig.15,14,16,17 we present partition statistics
at random training and test set samples, while varying architecture and hyperparameters.

Figure 9. Images from the decision boundary of a CNN trained
to perform binary classification between Tabby Cat and Egyptian
Cat classes of tinyimagenet. Larger sets of samples from the deci-
sion boundary along with partition visualizations are provided in
the Suppl. Fig. 19. Samples from the decision boundary are nec-
essarily, linear combinations of the anchor points, the weights of
which are determined by the geometry of the decision boundary.

ples. For each sample, computation of partition statistics
take ∼ 7mins for VGG11. We see that partition statistics
vary significantly between DA and non-DA for VGG11 but
not as significantly for VGG16. We provide partition visu-

alizations for VGG11 in Suppl. Fig. 13. Region volumes
can vary within a given 2D input domain as well as be-
tween input domain orientations. In Suppl. Sec. D.2 we
present SplineCam partition statistics for random orienta-
tions at different training points and discuss the variability
of statistics between orientations.

5. Conclusions
In this paper, we have developed SplineCam, the first prov-
ably exact method to compute the geometry of the input-
space partition of a DN based on CPWL nonlinearities. We
have demonstrated SplineCam’s ability to visualize a large-
scale DN’s decision boundary, obtain samples that are prov-
ably on the boundary, and characterize DNs based on their
partition statistics. SplineCam and its underlying theory
open up several new avenues of exploration for practical
neural networks, including quantifying the quality of ini-
tialization at training data points during transfer learning,
improving INR initialization, and visualizing partition dy-
namics for different training strategies, to name a few.
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