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Abstract

Most existing works solving Room-to-Room VLN prob-
lem only utilize RGB images and do not consider lo-
cal context around candidate views, which lack sufficient
visual cues about surrounding environment. Moreover,
natural language contains complex semantic information
thus its correlations with visual inputs are hard to model
merely with cross attention. In this paper, we propose
GeoVLN, which learns Geometry-enhanced visual repre-
sentation based on slot attention for robust Visual-and-
Language Navigation. The RGB images are compensated
with the corresponding depth maps and normal maps pre-
dicted by Omnidata as visual inputs. Technically, we intro-
duce a two-stage module that combine local slot attention
and CLIP model to produce geometry-enhanced represen-
tation from such input. We employ V&L BERT to learn a
cross-modal representation that incorporate both language
and vision informations. Additionally, a novel multiway at-
tention module is designed, encouraging different phrases
of input instruction to exploit the most related features from
visual input. Extensive experiments demonstrate the effec-
tiveness of our newly designed modules and show the com-
pelling performance of the proposed method.

1. Introduction
With the rapid development of vision, robotics, and AI

research in the past decade, asking robots to follow hu-
man instructions to complete various tasks is no longer an
unattainable dream. To achieve this, one of the fundamen-
tal problems is that given a natural language instruction,
let robot (agent) make its decision about the next move
automatically based on past and current visual observa-
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Figure 1. Illustration of our learning geometry-enhanced vi-
sual representation (GeoVLN) for visual-and-language navigation.
Critically, our GeoVLN utilizes the slot attention mechanism.

tions. This is referred as Vision-and-Language Navigation
(VLN) [2]. Importantly, such navigation abilities should
also work well in previously unseen environments.

In the popular Room-to-Room navigation task [2], the
agent is typically assumed to be equipped with a single
RGB camera. At each time step, given a set of visual obser-
vations captured from different view directions and several
navigation options, the goal is to choose an option as the
next station. The process will be repeated until the agent
reaches the end point described by the user instruction. In-
volving both natural language and vision information, the
main challenge here is to learn a cross-modal representa-
tion that incorporates the correlations between user instruc-
tion and current surrounding environment to aid decision-
making.

As solutions, early studies [2,8,30] resort to LSTM [13]
to process temporal visual data stream. However, recent
works [4, 11, 15, 18, 19, 22, 25] have taken advantage of the
superior performance of the Transformer [31] and typically
employ this attention-based model to facilitate representa-
tion learning with cross attention and predict actions in ei-
ther recurrent [15] or one-shot [4] fashion. Despite their
advantages, these approaches still have several limitations.

• 1) They only rely on RGB images which provide very
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limited 2D visual cues and lack geometry information.
Thus it is hard for agent to build scene understanding
about novel environments;

• 2) they process each candidate view independently
without considering local spatial context, leading to in-
accurate decisions;

• 3) natural language contains high-level semantic fea-
tures and different phrases within an instruction may
focus on various aspects visual information, e.g. tex-
ture, geometry. Nevertheless, we empirically find that
constructing cross-modal representation with naı̈ve at-
tention mechanism leads to suboptimal performance.

To address these problems, we propose a novel frame-
work, named GeoVLN, which learns Geometry-enhanced
visual representation based on slot attention for robust
Visual-and-Language Navigation. Our framework is illus-
trated in Fig. 1. In particular, beyond RGB images, we
also utilize the corresponding depth maps and normal maps
as observations at each time step (Fig. 1), as they provide
rich geometry information about environment that facili-
tates decision-making. Crucially, these additional mid-level
cues are estimated by the recent scalable data generation
framework Omnidata [7, 17] rather than sensor captured or
user provided.

We design a novel two-stage slot attention [20] based
module to learn geometry-enhanced visual representation
from the above multimodal observations. Note that the slot
attention is originally proposed to learn object-centric rep-
resentation for complex scenes from single/multi-view im-
ages, but we utilize its feature learning capability and ex-
tend it to work together with multimodal observations in the
VLN tasks. Particularly, we treat each candidate RGB im-
age as a query, and choose its nearby views as keys and val-
ues to perform slot attention within a local spatial context.
The key insight is that our model can implicitly learn view-
to-view correspondences via slot attention, and thus encour-
age the candidates to pool useful features from surrounding
neighbors. Additionally, we process all complementary ob-
servations, including depth maps and normal maps, through
a pre-trained CLIP [26] image encoder to obtain respective
latent vectors. These vectors are then concatenated with the
output of slot attention module to form our final geometry-
enhanced visual representation.

On the other hand, we employ BERT as language en-
coder to acquire global latent state and word embeddings
from the input instruction. Given the respective latent em-
beddings for language and vision inputs, we adopt V&L
BERT [11] to merge multimodal features and learn cross-
modal representation for the final decision-making in a re-
current fashion following [15]. Different from previous
works [21,30] that directly output probabilities of each can-
didate option, we present a multi-way attention module to

encourage different phrases of input instruction to focus on
the most informative visual observation, which boosts the
performance of our network, especially in unseen environ-
ments.

To summarize, we propose the following contributions
that solve the Room-to-Room VLN task with compelling
accuracy and robustness:

• We extend slot attention to work on VLN task,
which is combined with CLIP image encoder to learn
geometry-enhanced visual representations for accurate
and robust navigation.

• A novel multiway attention module encouraging dif-
ferent phrases of input instruction to focus on the most
informative visual observation, e.g. texture, depth.

• We compensate RGB images with the corresponding
depth maps and normal maps predicted with off-the-
shelf method, improving the performance yet not in-
volving additional training data.

• We integrate all the above technical innovations into a
unified framework, named GeoVLN, and the extensive
experiments validate our design choices.

2. Related Work
Vision-and-Language Navigation Exploring agents that
can follow instructions to navigate in real-world scenar-
ios is a challenging yet crucial research area for embod-
ied artificial intelligence [6]. Promoted by the recent
proposed large-scale datasets, including Matterport3D [3],
Habitat [34], Gibson [28] and Room-to-Room [2], agent
navigation tasks can be performed in photorealistic envi-
ronments. Researchers have proposed solutions in terms of
intra-modal modeling, cross-modal alignment and decision-
making learning, respectively [14, 21, 32]. Early stud-
ies [2, 8, 30] use LSTM as the backbone. Benefiting from
the superior performance of BERT [5], a series of recent ap-
proaches based on pre-trained vision-and-language (V&L)
BERT [4, 11, 15, 18, 19, 22, 25] are introduced to the VLN
task and outperform the traditional LSTM-based baselines.
To name a few, PREVALENT [11] conducts V&L BERT
pre-training for the image-text-action triplets and firstly de-
rives generic representations of visual and linguistic clues
applicable to VLN. Hong et al. [15] augments V&L BERT
with a recurrent function to model the time-dependent in-
formation in the navigation process. HAMT [4] introduces
a hierarchical vision transformer to capture the spatial and
temporal relationships of historical observations separately,
thus benefits the decision-making process. Different from
prior arts [4, 15] that directly predict next action based on
current multimodal conditions, we present a novel multi-
way attention module inspired by MAttNet [36] to learn
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the correlations between the user instruction and different
modalities of input observation, improving the accuracy of
final decision.
Visual Representation in VLN In VLN task, directly train-
ing the whole framework end-to-end on high-resolution im-
ages is usually infeasible due to the expensive memory
and computation cost. To tackle this problem, prior works
[2, 24] typically utilize perceptual feature precomputed by
the large pretained extractors, e.g. ResNet [12], and demon-
strate its effectiveness. Recently, MURAL-large [16] and
CLIP [26, 29] show their capability of learning expres-
sive representations across multimodal data which facili-
tate several downstream tasks. We use CLIP to extract vi-
sual representation, since its feature space captures informa-
tion shared by both vision and text that may encourage our
model to learn semantic correspondences between them.

Additionally, some recent works [27, 35] employ slot
attention [20] to learn high-level object-centric represen-
tation from single/multi-view images of a complex scene,
and achieve impressive neural rendering results. Zhuang et
al. [38] adopt vanilla slot attention module to aggre-
gate object-centric visual information spatially. Different
from [38], we newly design a novel slot-based visual rep-
resentation learning module that aggregates the information
from both spatial neighbors and multiple visual modalities,
so that construct a better understanding of the surrounding
environment for agent.

3. Method
Overview The pipeline of GeoVLN is overviewed in
Fig. 2. At each time step t, our framework takes a single
user instruction and a set of visual observations as input.
The language input is consumed by BERT encoder [5] to
obtain a global latent state s0 and a sequence of work em-
beddings. The visual input is composed of 36-view RGB
images and the corresponding depth maps and normal maps
estimated with Omnidata [7]. We design a two-stage mod-
ule (Sec. 3.2) to process such multimodal observations and
acquire a geometry-enhanced visual representation. Given
both language and vision representations, the final action
is predicted by a multiway attention based decision making
module introduced in Sec. 3.3. We detail the loss functions
used during training in Sec. 3.4.

3.1. Problem Setups

The Visual Language Navigation task in a discrete en-
vironment is defined on a preset connectivity graph G =
{V, E}, where V and E denote the vertex set and edge set of
the connected graph, respectively. The agent, placed at an
arbitrary starting position, is asked to follow user instruc-
tions to move between vertices along the edges of the con-
nected graph until reaching the target destination. This nav-
igation process can be formulated concretely as follows.

Firstly, the agent is placed at a starting point in a naviga-
ble environment described by the connectivity graph. There
are many different viewpoints (the number depends on spe-
cific scene) the agent can station. Then, given an instruction
I containing a sequence of words, the agent is required to
approach the target following the instruction. At each time
step t, the agent receives observations Ot as the visual in-
put and makes its decision about the action at to shift from
the current state st to the next state st+1. It is worth not-
ing that the observation Ot = {o(i)t }36i=1 are 36 perspec-
tive projection images from different view directions rather
than a complete panoramic image. These view directions
have horizontal angles sampled with 30◦ intervals from
0◦−360◦, and pitch angles chosen from [−30◦, 0◦, 30◦]. At
each viewpoint, the agent is also provided with K candidate
views Ct = {c(i)t }Ki=1 ⊂ Ot, corresponding to the naviga-
ble directions on the connectivity graph. The output action
that the agent decided at each time step is restricted to either
one of the candidate views Ct or a special “STOP” signal,
denote moving to the corresponding viewpoint or decide to
stop.

3.2. Two-Stage Visual Representation Learning

Visual Observations Most of the previous works only ex-
ploit RGB images as the visual observations in VLN task.
However, such limited cues may involve biases about color
information and lead to overfitting problem on the training
environments so that hinder the generalization capability to
novel scenes. To alleviate this problem, we involve other
data modalities of depth maps and surface normal maps as
compensation to provide geometry information that is non-
trivial to be directly obtained from RGB images. Crucially,
the depth maps and normal maps are estimated with the re-
cent proposed Omnidata [7] without any additional training
data.

We employ CLIP image encoder [26] pretrained on the
large-scale dataset of image-text pairs to extract feature
vectors (640-dimension) from all the visual observations,
which are denoted as Orgb

t , Odep
t and Onor

t for RGB image,
depth map and normal map respectively. We use {C∗

t | ∗ ∈
[rgb, dep, nor]} to refer to the corresponding features of
candidate views. Additionally, given the view angles {θ, φ}
of each candidate image, we obtain an angle embedding
F ang

t by repeating (sin (θi) , cos (θi) , sin (φi) , cos (φi))
32 times as typically used in previous work [15]. We con-
catenate the visual features and angle features together to
obtain the final candidate features:

F ∗
t = [C∗

t ;F
ang
t ], ∗ ∈ [rgb, dep, nor] . (1)

And the features of the 36 views RGB observations (i.e.
panoramic views) are:

P rgb
t = [Orgb

t ;F ang
t ], (2)
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Figure 2. The overview of our GeoVLN. Particularly, at each time step, our GeoVLN takes a single user instruction and a set of visual
observations as input. The language input is consumed by BERT encoder to obtain a global latent state and a sequence of work embeddings.
The visual input is composed of 36-view RGB images and the corresponding depth maps and normal maps estimated with Omnidata. We
have a two-stage module to process such multimodal observations and acquire a geometry-enhanced visual representation.

which are fed into the slot attention module introduced be-
low to fuse information from local neighboring views.
Local-Aware Slot Attention Some recent works [11,15,30]
only utilize the candidate views during navigation process.
This brings the obstacle of understanding surround envi-
ronment so that hinder navigation accuracy. For example,
there are very few candidates at some viewpoints that are
insufficient for making decision about next move. To mit-
igate this problem, we employ a slot attention module to
encourage each candidate views Ct to aggregate informa-
tion from the nearby observation views Ot according to the
spatial proximity principle. Specifically, we initialize the
slots with RGB candidate features F rgb

t and treat them as
queries when performing attention calculation. Addition-
ally, the observation features P rgb

t and Orgb
t are used as

keys and values. We apply a dropout layer to the inputs:

slots = Dropout(F rgb
t ),

Q = Dropout(LN(slots)),

K = Dropout(LN(P rgb
t )),

V = Dropout(LN(Orgb
t )),

(3)

where LN denotes layer normalization.
As shown in Fig. 3, the slots are updated in a recurrent

fashion following [20]. At each updating step t = 1, · · · , T
(T = 3 in our experiments), we compute dot-product at-
tention between keys and queries as the widely-used cross-
attention, while apply Softmax operator along slot dimen-
sion to normalize the attention scores, which forces the can-
didate views to competitively access the information of the
observations Ot:

updates = Softmax

(
Q ·K⊤√

dQ
, axis=slot

)
V, (4)

where dQ is the dimension of Q. Then the slots are updated
with a Gated Recurrent Unit (GRU) followed by a residual
MLP:

slots = GRU(state=slots, inputs=updates),
slots = slots +MLP(LN((updates)).

(5)

With slot attention, the representation of each candidate
view is progressively refined based on the observations
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Orgb
t , so that the agent can capture more information from a

single viewpoint to aid decision making. However, directly
using all observations at one viewpoint would involve non-
local information and hinder the convergence of our model.
Therefore, we restrict each candidate view to focus on ob-
servations whose heading and elevation angles differ by no
more than 30◦ from itself. We achieve this by using atten-
tion masks.

As shown in Fig. 2, we use a residual connection to add
the updated slots to the candidate features F rgb

t . Note that
we only update the visual features and keep the angle fea-
tures fixed:

F̂
rgb

t =
[
Crgb

t + slots[..., : dC ];F
ang
t

]
, (6)

where dC is the dimension of Crgb
t .

The output of our local-aware slot attention module is
denoted as F̂

rgb

t . We then concatenate F̂
rgb

t with the visual
features from depth map and normal map, together with
view angle feature, and project it into a 768-dimensional
vector with a fully connected layer followed by a layer nor-
malization.

F t =
[
F̂

rgb

t [..., : dC ];C
dep
t ;Cnor

t ;F ang
t

]
F̂ t = LN(FC(F t))

(7)

The resulting geometry-enhanced visual representation
F̂ t will be used as the visual tokens of the Recurrent VLN
BERT.

3.3. Multiway Attention Based Decision Making

Recurrent VLN BERT We adopt Recurrent VLN-BERT
to process the instruction I and the geometry-enhanced vi-
sual representation F̂ t obtained from slot attention module.
At each time step, the global state vector st and tokens are
updated with a multi-layer Transformer, which can be for-
mulated as:

st = VLN ⟳ BERT
(
st−1, I, F̂ t

)
. (8)

Note that st contains information of both vision, language
as well as all the past decisions of the agent, we utilize
it as the cross-modal representation to support subsequent
decision-making.

Multiway Attention Different from previous works which
output decisions directly from multi layer Transformer, we
design a multiway attention module to compute attention
scores of st with three modalities of visual observations:
RGB, depth and normal individually, and obtain the fi-
nal policy likelihood by weighted summation. We take
the attention calculation with RGB features as an example.
Firstly, the state representation st is directly projected into a

Attention

MLP

GRU

Nearby Views

Q K V

Slot-Enhanced 
RGB Feature

������

��� � = 0…3

������+1

Figure 3. Detailed architecture of our local-aware slot attention
module.

768-dimensional latent vector, while the RGB features F̂
rgb

t

are normalized by a LayerNorm (LN) operation and then
projected to the same dimension through a fully connected
(FC) layer:

s̃rgbt = stW
s,rgb,

F̃
rgb

t = FC(LN(F̂
rgb

t )).
(9)

Then, the attention score can be computed as:

Argb
t =

F̃
rgb

t s̃rgbt
⊤

√
dh

, (10)

where dh denotes the dimension of the hidden space. Sim-
ilarly, the attention scores Adep

t and Anor
t can be obtained

for the depth features and the normal features, respectively.

Matching Score At each time step, how much each
modality contributes to the navigation should differ notice-
ably. For instance, the agent may focus more on the depth
information when executing the instruction “go through the
corridor” whereas the process of “picking up the spoon”
will be more pertinent to the RGB and normal information.
To achieve this, we apply a fully connected layer followed
by a Softmax operation to compute the weights correspond-
ing to the three modalities:[

wrgb
t , wdep

t , wnor
t

]
= Softmax (stW

m + bm) , (11)
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where Wm and bm are learnable parameters.
Thus, the final matching scores of the candidate views

Ct w.r.t. the state vector st can be written as:

Stotal
t = wrgb

t Argb
t + wdep

t Adep
t + wnor

t Anor
t , (12)

where Stotal
t is a (K+1)-dimensional vector and K denotes

the number of candidate views at current viewpoint. We use
Stotal

t,i (1 ≤ i ≤ K) to denote the matching score of the i-th
candidate view, while Stotal

t,K+1 denotes the matching score
of the “STOP” action. We denote the action probabilities as
pt obtained by applying the softmax function to Stotal

t . The
candidate view with the highest probability is then selected
as the final decision.

3.4. Loss Function

We follow the training protocol used in [15], which com-
bines imitation learning and reinforcement learning. Specif-
ically, our objective functions is composed of two parts. The
first part is the cross-entropy loss derived from the teacher-
forcing method [33]. The teacher actions are determined by
the human-labeled ground-truth trajectories. Denoting the
teacher action as a∗, the loss of imitation learning can be
formulated as:

LIL = −
∑
t

a∗t log (pt) . (13)

Secondly, we use the A2C [23] algorithm identical to the
one set in [15]. At each time step, an action is sampled
according to Stotal

t and a reward strategy is applied follow-
ing the set-up. The reinforcement learning loss (Eq. (14))
is composed of three components: an actor loss to optimize
strategy, a critic loss to estimate the state vector, and a regu-
lar loss to reduce action uncertainty. Additional details can
be found in [15, 23].

LRL =
∑
t

L(t)
actor + L(t)

critic + λreg L(t)
reg (14)

The overall objective function guiding our training pro-
cess is

L = LRL + λLIL, (15)

where λ denotes the loss weight to balance both terms.

4. Experiments
4.1. Experimental setup

Dataset We use R2R [2] dataset for training and evalua-
tion. The R2R dataset is built on 90 real-world indoor envi-
ronments where the agents should traverse multiple rooms
in a building to reach the destinations. And the navigation
tasks are specifically described by 7189 trajectories and the
corresponding instructions with the average length of 29

words. The dataset is divided into four sets including train,
val seen, val unseen and test unseen sets, which mainly fo-
cus on the generalization capability of navigation in unseen
environments.

Evaluation Metrics We adopt the standard metrics used
in previous works for evaluation: 1) Trajectory Length
(TL): the average navigational trajectory length in meters;
2) Navigation Error (NE): the distance between the final
position of the agent and the target; 3) Success Rate (SR):
the ratio of agents eventually stopping within 3 meters of
the destination; and 4) Success Weighted by Path Length
(SPL) [1] : SR weighted by the inverse of TL which mea-
sures how closely a trajectory aligns with the shortest path.
A higher SPL score indicates a better balance between
achieving the goal and taking the shortest path.

Implementation Details Our multimodal visual features
(including RGB, depth and surface normal features) are ex-
tracted by the pretrained CLIP-Res50x4 model [26]. In the
mixture of imitation learning and reinforcement learning
training process, λ is set to be 0.2. For fair comparisons,
we follow the training pattern of the Recurrent VLN-BERT
by mixing the original training data and the augmented data
with 1:1 ratio. The experiments are performed on a single
GeForce GTX TITAN X GPU with AdamW optimizer. To
stabilize the gradient and accelerate the convergence, we
use cosine annealing scheduler with warmup and set the
maximum learning rate to 10−5. We train the network for
100,000 iterations with the batch size of 8 and then choose
the model with the highest SPL on the validation unseen
split for testing.

4.2. Main Results

The main goal of R2R VLN task is to make optimal
choice at each viewpoint based on past and current informa-
tion, and find the best path towards target. In this section,
we provide the comparisons with previous works to show
the effectiveness of the proposed GeoVLN.
Competitors. As baselines, we choose all the methods re-
ported in [15] with the additional recent work AirBERT [10]
and HAMT [4]. In addition, we extend HAMT with our
newly designed modules (i.e. GeoVLN†) to test the effec-
tiveness of these modules, as our contributions in GeoVLN
is actually orthogonal to [4]. Specifically, we directly use
the Two Stage Visual Representation Learning Module to
augment the original RGB features in the HAMT, and re-
place the original fully connected layer with our Multiway
Attention Module to make decision. Further details on how
we incorporate these modules into the HAMT model can be
found in the Supplementary Material.

The quantitative results are shown in Tab. 1. We mainly
focus on the scores of SR and SPL in unseen environments,
which provide a comprehensive evaluation of the general-
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Val Seen Val Unseen Test Unseen

Agent TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑
RANDOM [2] 9.58 9.45 16 - 9.77 9.23 16 - 9.93 9.77 13 12
Human - - - - - - - - 11.85 1.61 86 76
Seq-to-Seq [2] 11.33 6.01 39 - 8.39 7.81 22 - 8.13 7.85 20 18
Speaker-Follower [8] - 3.36 66 - - 6.62 35 - 14.82 6.62 35 28
Self-Monitoring [9] - - - - - - - - 18.04 5.67 48 35
Reinforced Cross-Modal [32] 10.65 3.53 67 - 11.46 6.09 43 - 11.97 6.12 43 38
EnvDrop [30] 11.00 3.99 62 59 10.70 5.22 62 48 11.66 5.23 51 47
AuxRN [37] - 3.33 70 67 - 5.28 55 50 - 5.15 55 51
PREVALENT [11] 10.32 3.67 69 65 10.19 4.71 58 53 10.51 5.30 54 51
PRESS [18] 10.35 3.09 71 67 10.06 4.31 59 55 10.52 4.53 57 53
AirBERT [10] 11.09 2.68 75 70 11.78 4.01 62 56 12.41 4.13 62 57
VLN ⟳ BERT [15] 11.13 2.90 72 68 12.01 3.93 63 57 12.35 4.09 63 57
GeoVLN (Ours) 11.98 3.17 70 65 11.93 3.51 67 61 13.02 4.04 63 58
HAMT [4] 11.15 2.51 76 72 11.46 2.29 66 61 12.27 3.93 65 60
GeoVLN† (Ours) 10.68 2.22 79 76 11.29 3.35 68 63 12.16 3.95 65 61

Table 1. Comparison of OUR MODEL with the previous state-of-the-art methods on R2R dataset. † indicates the results with HAMT as
the backbone. The primary metric is SPL.

Input Val Seen Val Unseen

Model RGB DEPTH NORMAL SR↑ SPL↑ SR↑ SPL↑
Baseline ✓ 69.83 64.21 64.50 58.35
Baseline ✓ ✓ 66.99 63.28 63.86 58.58
Baseline ✓ ✓ 68.46 63.66 62.71 57.20
Baseline ✓ ✓ ✓ 66.41 62.51 64.75 59.31

LSA ✓ 67.58 63.06 64.62 59.78
LSA ✓ ✓ ✓ 68.66 63.92 66.54 60.62

LSA + MAtt ✓ 68.46 63.92 66.11 60.31
LSA + MAtt (Full) ✓ ✓ ✓ 69.64 64.86 66.75 61.00

Table 2. Ablation study on multi-modal visual inputs and LSA module with VLN ⟳ BERT as the backbone.

ization capability. Additionally, we also report the metrics
of TL and NE.

Our results, presented in Tab. 1, demonstrate the effec-
tiveness of our proposed models based on VLN ⟳ BERT
and HAMT as the backbone network. Notably, our mod-
els achieve the best performance overall, outperforming all
baseline methods, with particularly impressive results in un-
seen environments. In comparison to VLN ⟳ BERT [15] on
which our framework is built, GeoVLN improves SPL and
SR by 7.0% and 6.3%, respectively, on the val-unseen split.
Similarly, when compared to HAMT, our proposed mod-
ules lead to significant improvements of 3.3% and 3.0% on
SPL and SR, respectively. These results demonstrate the ef-
ficacy of our GeoVLN approach. While our performance is
slightly inferior to VLN ⟳ BERT on the val-seen split, our
experimental results support our claims and contributions.

Further, our geometry-enhanced visual representation is
derived from object-centric learning [20]. Unfortunately,
we notice that most of previous works can only successfully

work the slot attention mechanism on synthetic dataset, e.g.
CLEVR3D. In contrast, we extend it to VLN task to encour-
age feature fusion between spatially neighboring views. It
is capable of working under the complex real-world envi-
ronments of R2R dataset.

Furthermore, to reveal the insights, we provide an ab-
lation study with visualization results about our local slot
attention in the following subsections.

4.3. Ablation Study

In this section, we provide extensive ablation studies
to validate the effectiveness of novel technical designed
in our GeoVLN. For fair comparisons, all the variants in
our experiment follow the same training setup described in
Sec. 4.1.

Our quantitative results with VLN ⟳ BERT as the back-
bone are presented in Tab. 2. The “baseline” denotes VLN
⟳ BERT trained with the RGB features extracted by CLIP
as the visual representation.
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Figure 4. An visualization example of Walk up stairs. It shows the effectiveness of our local-aware slot attention module.

Firstly, we change the composition of different types of
visual inputs, the results show that merely add depth map or
normal map cannot offer better performance. This is pos-
sibly because the estimated depth and normal may contain
errors which do not perfectly match RGB captures, so that
hinder test accuracy. However, when both depth and normal
inputs are given, they can benefit each other and provide ge-
ometry information that facilitates navigation. This is evi-
denced by improved performance in the Baseline, LSA, and
LSA+MAtt models when depth and normal inputs are pro-
vided, highlighting the effectiveness of multi-modal visual
inputs like depth and normal.

Next, we demonstrate the efficacy of our local-aware slot
attention (LSA) and multiway attention (MAtt) by adding
them to the baseline model one by one. The results show
that the inclusion of LSA improves SPL by 2.5% on the
val-unseen split. And by incorporating our MAtt module,
our full model facilitates the identification of the most rele-
vant visual modality for different phrases, resulting in supe-
rior performance compared to the baseline. Notably, MAtt
provides valuable interpretability for decision-making pro-
cesses, as demonstrated in the Supplementary material.

4.4. Visualization

To further show the effectiveness of our local-aware slot
attention module, we show an visualization example in
Fig. 4. The panoramic image above shows the whole room,
and we choose two candidate view (in orange bounding

box) for visualization below. The number on each image
denotes attention score.

As shown on the left, the agent arrives at the location
of stairs, and it needs information about stairs and handrail
as reference to make decision of next move. So the nearby
images containing stairs or handrail have higher attention
score, which means that the agent successfully obtains use-
ful features from local neighbors to aid decision-making.
More visualization results are shown in Supplementary ma-
terial, which illustrate the effectiveness of both our local-
aware slot attention module and multiway attention module.

5. Conclusions

This paper introduces GeoVLN, which learns Geometry-
enhanced visual representation based on slot attention for
robust Visual-and-Language Navigation. We compensate
RGB captures with the estimated depth maps and normal
maps as visual observations, and design a novel two-stage
slot-based module to learn geometry-enhanced visual rep-
resentation. Moreover, a multiway attention module is pre-
sented to facilitate decision-making. Extensive experiments
on R2R dataset demonstrate the effectiveness of our newly
designed modules and show the compelling performance of
the proposed method.
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