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Abstract

The main challenge in vision-and-language navigation
(VLN) is how to understand natural-language instructions
in an unseen environment. The main limitation of conven-
tional VLN algorithms is that if an action is mistaken, the
agent fails to follow the instructions or explores unneces-
sary regions, leading the agent to an irrecoverable path. To
tackle this problem, we propose Meta-Explore, a hierarchi-
cal navigation method deploying an exploitation policy to
correct misled recent actions. We show that an exploitation
policy, which moves the agent toward a well-chosen local
goal among unvisited but observable states, outperforms a
method which moves the agent to a previously visited state.
We also highlight the demand for imagining regretful explo-
rations with semantically meaningful clues. The key to our
approach is understanding the object placements around the
agent in spectral-domain. Specifically, we present a novel
visual representation, called scene object spectrum (SOS),
which performs category-wise 2D Fourier transform of de-
tected objects. Combining exploitation policy and SOS fea-
tures, the agent can correct its path by choosing a promis-
ing local goal. We evaluate our method in three VLN bench-
marks: R2R, SOON, and REVERIE. Meta-Explore outper-
forms other baselines and shows significant generalization
performance. In addition, local goal search using the pro-
posed spectral-domain SOS features significantly improves
thesuccessrateby17.1%andSPLby20.6%against thestate-
of-the-art method of the SOON benchmark. Project page:
https://rllab-snu.github.io/projects/Meta-Explore/doc.html

1. Introduction
Visual navigation in indoor environments has been stud-

ied widely and shown that an agent can navigate in unex-

This work was in part supported by Institute of Information & Communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment (MSIT) (No. 2019-0-01190, [SW Star Lab] Robot Learning: Efficient, Safe,
and Socially-Acceptable Machine Learning, 80%, and No.2022-0-00907, Develop-
ment of AI Bots Collaboration Platform and Self-Organizing AI, 20%). (Corre-
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Instruction: "Walk forward, keeping the long table to 
the left. Exit the room via the white door to the left of 
the stairs. Descend a narrow circular stairwell and 
wait, facing two windows with circular stained glass 
in their centers."

Figure 1. Hierarchical Exploration. At each episode, a natural-
language instruction is given to the agent to navigate to a goal lo-
cation. The agent explores the environment and constructs a topo-
logical map by recording visited nodes and next step reachable
nodes . Each node consists of the position of the agent and visual
features. ot denotes the observation at time t. The agent chooses
an unvisited local goal to solve the regretful exploration problem.

plored environments [1]. By recognizing the visual context

and constructing a map, an agent can explore the environ-

ment and solve tasks such as moving towards a goal or fol-

lowing a desired trajectory. With the increasing development

in human language understanding, vision-and-language nav-

igation (VLN) [2] has enabled robots to communicate with

humans using natural languages. The high degree of free-

dom in natural language instructions allows VLN to expand

to various tasks, including (1) following fine-grained step-

by-step instructions [2–13] and (2) reaching a target location

described by goal-oriented language instructions [14–20].

A challenging issue in VLN is the case when an action

is mistaken with respect to the given language instruction

[21–26]. For instance, if the agent is asked to turn right at the

end of the hallway but turns left, the agent may end up in ir-

recoverable paths. Several existing studies solve this issue

via hierarchical exploration, where the high-level planner

decides when to explore and the low-level planner chooses

what actions to take. If the high-level planner chooses to

explore, the agent searches unexplored regions, and if it

chooses to exploit, the agent executes the best action based

on the previous exploration. Prior work [21–23] returns the

agent to the last successful state and resumes exploration.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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However, such methods take a heuristic approach because

the agent only backtracks to a recently visited location. The

agent does not take advantage of the constructed map and

instead naively uses its recent trajectory for backtracking.

Another recent work [26] suggests graph-based exploitation,

which uses a topological map to expand the action space in

global planning. Still, this method assumes that the agent can

directly jump to a previously visited node. Since this method

can perform a jump action at every timestep, there is no trig-

ger that explicitly decides when to explore and when to ex-

ploit. Therefore, we address the importance of time schedul-

ing for exploration-exploitation and efficient global planning

using a topological map to avoid reexploring visited regions.

We expand the notion of hierarchical exploration by

proposing Meta-Explore, which not only allows the high-

level planner to choose when to correct misled local move-

ments but also finds an unvisited state inferred to be close

to the global goal. We illustrate the overview of hierarchi-

cal exploration in Figure 1. Instead of backtracking, we

present an exploitation method called local goal search. We

show that it is more efficient to plan a path to a local goal,

which is the most promising node from the unvisited but

reachable nodes. We illustrate the difference between con-

ventional backtracking and local goal search in Figure 2.

Based on our method, we show that exploration and ex-

ploitation are not independent and can complement each

other: (1) to overtake regretful explorations, the agent can

perform exploitation and (2) the agent can utilize the con-

structed topological map for local goal search. We also

highlight the demand for imagining regretful explorations

with semantically meaningful clues. Most VLN tasks re-

quire a level of understanding objects nearby the agent, but

previous studies simply encode observed panoramic or ob-

ject images [2, 3, 16–18, 21–35]. In this paper, we present

a novel semantic representation of the scene called scene
object spectrum (SOS), which is a matrix containing the ar-

rangements and frequencies of objects from the visual ob-

servation at each location. Using SOS features, we can suf-

ficiently estimate the context of the environment. We show

that the proposed spectral-domain SOS features manifest

better linguistic interpretability than conventional spatial-

domain visual features. Combining exploitation policy and

SOS features, we design a navigation score that measures

the alignment between a given language instruction and a

corrected trajectory toward a local goal. The agent com-

pares local goal candidates and selects a near-optimal can-

didate with the highest navigation score from corrected tra-

jectories. This involves high-level reasoning related to the

landmarks (e.g., bedroom and kitchen) and objects (e.g., ta-

ble and window) that appear in the instructions.

The main contributions of this paper are as follows:

• We propose a hierarchical navigation method called

Meta-Explore, deploying an exploitation policy to cor-

“Which visited node” “Which unvisited node”

“is the most likely to be a local goal?”

current position

start
local goal
global goal

visited node
unvisited node

searchable
areaarea<

Figure 2. Local Goal Search for Exploitation. The local goal is
likely to be chosen as the closest node to the global goal. Existing
methods only backtrack to a visited node (left). We expand the
searchable area by including unvisited but reachable nodes (right).

rect misled recent actions. The agent searches for an

appropriate local goal instead of reversing the recent

action sequence.

• In the exploitation mode, the agent uses a novel scene

representation called scene object spectrum (SOS),

which contains the spectral information of the object

placements in the scene. SOS features provide seman-

tically meaningful clues to choose a near-optimal local

goal and help the agent to solve the regretful explo-

ration problem.

• We evaluate our method on three VLN benchmarks:

R2R [2], SOON [16], and REVERIE [17]. The exper-

imental results show that the proposed method, Meta-

Explore, improves the success rate and SPL in test

splits of R2R, SOON and val split of REVERIE. The

proposed method shows better generalization results

compared to all baselines.

2. Related Work
2.1. Vision-and-Language Navigation

In VLN, an agent encodes the natural language instruc-

tions and follows the instructions, which can be either (1)

a fine-grained step-by-step instruction the agent can fol-

low [2–4], (2) a description of the target object and loca-

tion [16, 17], or (3) additional guidance given to the agent

[18, 27]. These tasks require the agent to recognize its cur-

rent location using some words in the natural-language in-

structions. Prior work [2, 28–31] show that an agent can

align visual features to language instructions via neural net-

works and use the multimodal output embeddings to gen-

erate a suitable action at each timestep. Most VLN meth-

ods utilize cross-modal attention, either with recurrent neu-

ral networks [2, 28] or with transformer-based architectures

[29–31]. For sequential action prediction, Hong et al. [32]

further use recurrent units inside transformer architectures,

while Pashevich et al. [33] and Chen et al. [34] use addi-

tional transformers to embed past observations and actions.
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2.2. Exploration-Exploitation
In an unseen environment, the agent must maximize the

return without knowing the true value functions. One of

the solutions to this problem is to switch back and forth be-

tween exploration and exploitation [36]. In the exploration

mode, the agent gathers more information about the environ-

ment. On the other hand, the agent uses information col-

lected during exploration and chooses the best action for ex-

ploitation. Ecoffet et al. [37] reduced the exploration step

by archiving the states and exploring again from the success-

ful states. Pislar et al. [38] addressed the various scheduling

policies and demonstrated their method on Atari games. Re-

cent work [39, 40] successfully demonstrates the effective-

ness of hierarchical exploration in image-goal navigation.

Like commonly used greedy navigation policies, VLN

tasks also deal with the problem of maximizing the chance

to reach the goal without knowing the ground truth map.

Several VLN methods employ the concept of exploitation

to tackle this problem. Ke et al. [35] look forward to several

possible future trajectories and decide whether to backtrack

or not and where to backtrack. Others [21–23] estimate the

progress to tell whether the agent becomes lost and make

the agent backtrack to a previously visited location to restart

exploration. However, previous studies do not take into ac-

count what should be done in the exploitation mode. In order

to handle this problem, we propose a hierarchical naviga-

tion method which determines the scheduling between ex-

ploration and exploitation.

2.3. Visual Representations
Popular visual encoding methods via ResNet [41] and

ViT [42] can be trained to learn rotation-invariant visual fea-

tures. Both methods learn to extract visual features with

high information gain for global and local spatial informa-

tion. The high complexity of the features leads to low in-

terpretability of the scene and therefore requires the agent to

use additional neural networks or complex processing to uti-

lize them. On the other hand, traditional visual representa-

tion methods such as Fourier transform use spectral analysis,

which is highly interpretable and computationally efficient.

One drawback of the traditional methods is that they fail to

maximize the information gain. Nonetheless, an appropri-

ate use of essential information can be helpful for high-level

decision making and enables more straightforward interpre-

tation and prediction of the visual features. One traditional

navigation method, Sturz et al. [43] used Fourier transform

to generate rotation-invariant visual features. However, no

research has transformed the spectral information of the de-

tected objects to represent high-level semantics from visual

observations. Focusing on the fact that 2D Fourier trans-

form can extract morphological properties of images [44],

we can find out the shape or structure of detected objects

through 2D Fourier transform. In this paper, we decompose

the object mask into binary masks by object categories and

perform a 2D Fourier transform on each binary mask.

3. Method
3.1. Problem Formulation

We deal with VLN in discrete environments, where the

environment is given as an undirected graph Ge = {V,E}.

V denotes a set of N navigable nodes, {Vi}Ni=1, and E is the

adjacency matrix describing connectivity among the nodes

in V . We denote the observation at node Vi as Oi. The

agent uses a panoramic RGB image observation ot and cur-

rent node vt, which are collected at time t. The agent either

moves to a neighboring node or executes a stop action. at
denotes the action at time t. The objectives of VLN are cat-

egorized as follows: (1) to follow language instructions [2]

and (2) to find a target object described by language instruc-

tions in a fixed time T [16, 17]. We present a general hi-

erarchical exploration method that can be applied to both

tasks. We also enhance the navigation policy by extracting

cross-domain visual representations from the environments,

i.e., spatial-domain and spectral-domain representations. To

balance the information loss and interpretability of the vi-

sual feature, we adopt multi-channel fast Fourier transform

(FFT) to encode semantic masks of the detected objects into

category-wise spectral-domain features.

3.2. Meta-Explore
We design a learnable hierarchical exploration method for

VLN called Meta-Explore, which decides (1) when to ex-
plore or exploit and (2) a new imagined local goal to seek

during exploitation. The overall network architecture of the

proposed Meta-Explore is shown in Figure 3. Given a lan-

guage instruction L, the agent navigates in the environment

until it finds the target described in L. Meta-Explore con-

sists of a mode selector and two navigation modules corre-

sponding to two modes: exploration and exploitation. At

each timestep, the mode selector chooses to explore or ex-

ploit. At t = 0, the mode is initialized to exploration. In

the exploration mode, the agent outputs an action toward a

neighboring node to move the agent toward the goal. When

the mode selector recognizes that the agent is not following

the instruction successfully, the mode is switched to exploita-

tion. In the exploitation mode, the agent seeks a new local
goal with the highest correspondence against the language

instructions from the previously unvisited candidate nodes

using spectral-domain visual features. The agent moves to-

ward the local goal by planning a path. After the agent ar-

rives at the local goal, the mode is reset to exploration. The

explore-exploit switching decision occurs through the mode

selector by estimating the probability to explore. The agent

repeats this explore-exploit behavior until it determines that

the target is found and decides to stop.

3.2.1 Mode Selector
At time t, the agent observes visual features about the cur-

rent node vt and several reachable nodes. We call the nodes

reachable at the current timestep as candidate nodes. ncand
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"Walk forward, keeping the long table to the left. Exit the room via the white door to the left of the stairs. 
Descend a narrow circular stairwell and wait, facing two windows with circular stained glass in their centers."

Figure 3. Network Architecture. Three types of visual features: panoramic (yellow), object image (aquamarine), and object spectrum (red)
are encoded. The color in each parenthesis denotes the color describing the corresponding feature. The cross-modal transformer encodes
language and spatial visual features as hidden state Ht. A mode selector gives explore or exploit command to the agent by predicting the
explore probability Pexplore. The selected navigation module outputs an action at from the possible ncand candidate nodes.

denotes the number of candidate nodes. We use a cross-

modal transformer with nL layers to relate visual observa-

tions to language instructions. The cross-modal transformer

takes the visual features of nodes in the constructed topo-

logical map at time t, Gt, and outputs cross-modal embed-

ding Ht to encode visual observations with L. We concate-

nate location encoding and history encoding [24] to the vi-

sual features as node features to consider the relative pose

from vt and the last visited timestep of each node, respec-

tively. Each word is encoded via a pretrained language en-

coder [45], which is used for general vision-language tasks.

The cross-modal transformer consists of cross-attention

layer L2V Attn(Ŵ , V̂ ) = Softmax(ŴΘ†
q(V̂Θ†

k)
T /

√
d)V̂Θ†

v and

self-attention layer SelfAttn(X) = Softmax ((XΘq(XΘk)
T+

AΘe + be)/
√
d)XΘv, where Ŵ , V̂ , X , and A denote word,

visual, node representations and adjacency matrix of Gt,

respectively. The (query, key, value) weight matrices

of self-attention and cross-attention layers are denoted as

(Θq,Θk,Θv) and (Θ†
q,Θ

†
k,Θ

†
v), respectively. The final cross-

modal embedding at time t after passing through nL trans-

former layers is denoted as Ht. To encourage the mono-

tonic increasing relationship between language and vi-

sual attentions at each timestep, we define a correlation

loss Lcorr =
∑T

t=1 ||L2V Attn − Inx ||1 for training the cross-

modal transformer, where nx denotes the dimension of the

Ht and Inx
denotes an identity matrix of size nx × nx.

As illustrated in Figure 4, the mode selector estimates

the probability to explore Pexplore given the cross-modal

hidden state Ht. We denote the mode selector as Smode

and use a two-layer feed-forward neural network. Given

Ht, Smode outputs the exploration probability as Pexplore =
1 − Smode(Ht). If Pexplore ≥ 0.5, the exploration policy

outputs a probability distribution for reachable nodes at the

next step. At time t+1, the agent moves to the node with the

highest probability. If Pexplore < 0.5, the agent determines

that the current trajectory is regretful, so the agent should

traverse to find a local goal, which is the most likely to be

the closest node to the global goal. The exploitation policy

mainly utilizes object-level features to search for the local

goal with high-level reasoning. After the local goal is cho-

sen, the path planning module outputs an action following

the shortest path to the local goal.

To train the mode selector, we require additional demon-

stration data other than the ground truth trajectory, such that

it switches between exploration and exploitation. We gener-

ate the demonstration data from the ground truth trajectories,

with additional detours. For the detours, we stochastically

select candidate nodes other than the ground truth paths and

add the trajectory that returns to the current viewpoint. The

imitation learning loss for training the mode selector is de-

fined as Lmode =
∑T

t=1 (mt = gtt), where mt is the mode of

the agent, 0 for exploitation and 1 for exploration. gtt is 1 if

the current node is in the shortest ground truth trajectory and

gtt = 0, otherwise.

3.2.2 Exploration Module
In the exploration mode, the agent follows the following

sequential operations: topological map construction, self-

monitoring, and an exploration policy. To improve the ex-

ploration, we adopt self-monitoring [21] to predict the cur-

rent progress of exploration to enhance the exploration pol-

icy itself. Prior work [21, 22] has shown that auxiliary loss

using self-monitoring can regularize the exploration policy.

Topological Map Construction. The agent constructs

graph Gt by classifying nodes into two types: (1) visited

nodes and (2) unvisited but observable nodes. At current

6686



Local Goal Search Module

Path Planning Module

(ࢊ)ܖܑܕ

(࢝)
Exploitation Module

࢚ࡴ

hi
dd

en
 s

ta
te FFNN ࡳ = (ࡱ,ࢂ)

lookahead 
zoneࢇࢉࢍ ࢇ࢈ࢍࢍ
࢚࢜
ࢂ = ࢚࢜ ࢂ

Mode Selectorࢋ࢘ࢋ࢘࢞ࢋࡼ < .
FFNN

࢚ࢌ࢙
࢞ࢇ

࢚ࢇ
Exploration Module

≥ . ࢜

ࢂ ࢂ ૢࢂ ૠࢂ ࢂࢂࢂ  ࢂ࢚ࢇ ࢇ

Figure 4. Navigation Modules. Mode selector estimates Pexplore,
i.e., the probability to explore, and chooses between exploration
and exploitation modules. The selected navigation module outputs
the next action at.

time t, the agent at node vt ∈ {Vi}Ni=1 observes N(vt)
neighbor nodes as next step candidates at time t + 1. The

visited nodes consist of visual features of their own and the

neighboring nodes from panoramic RGB observations. The

unvisited nodes can be observed only if they are connected

to at least one visited node. The topological map records

the positions and visual features of observed nodes at each

timestep. By knowing the positions of nodes inGt, the agent

can plan the shortest path trajectory between two nodes.

Self-Monitoring. We use a progress monitor to estimate the

current navigation progress at each episode. Self-monitoring

via estimating current progress helps the agent choose the

next action that can increase the progress. The estimated

progress p̂t = Fprogress(Ht) is the output of a feed-forward

neural network, given Ht as input. We measure the ground

truth progress pt as the ratio between the current distance to

the goal and the shortest path length of the episode subtracted

from 1, described as 1 − dgeo(vt,vgoal)
dgeo(v0,vgoal)

, where dgeo(a, b) is

the geodesic distance between a and b. v0, vt, and vgoal de-

note initial, current, and goal positions, respectively. We add

progress lossLprogress =
∑T

t=1(p̂t − pt)
2 to train the progress

monitor while training the exploration policy.

Exploration Policy. The exploration policy Fexplore esti-

mates the probability of moving to the candidate nodes at

the next step. The agent chooses the action at at time t
based on the estimated probability distribution among candi-

date nodes, described as at = argmaxVi
(Fexplore([Ht]i)).

Fexplore is implemented via a two-layer feed-forward net-

work with the cross-modal hidden state Ht given as input.

The output of Fexplore becomes a probability distribution

over possible actions. To only consider unvisited nodes, we

mask out the output for visited nodes. For training, we sam-

ple the next action from the probability distribution instead

of choosing a node with the highest probability. We describe

the training details in Section 3.3.
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η
ݕݔ
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ηηηζ
௫݂

௬݂

࢚ࡿࣁࡷࡷ

Figure 5. Scene Object Spectrum (SOS). The agent calculates
scene object spectrum (SOS) features for efficient exploitation.
SOS features incorporate semantic information observed in a sin-
gle panoramic image by performing category-wise 2D FFT.

3.2.3 Exploitation Module
In the exploitation mode, the agent requires high-level rea-

soning with identifiable environmental clues to imagine re-

gretful exploration cases. To find clues in an object-level

manner, we present a novel visual representation by captur-

ing object information in the spectral-domain. The novel

representation is more easily predictable than spatial fea-

tures such as RGB image embeddings. The agent can take

advantage of the predictability by expanding the searchable

area to find a local goal. We choose the local goal as the

closest node to the global goal in the feature space.

Spectral-Domain Visual Representations. Common nav-

igation policies can lead the agent toward the node with the

highest similarity to the target. However, even with a good

learned policy, the agent can act in a novice manner in un-

seen environments. In this paper, we seek extra information

from the environment for generalizable high-level reason-

ing to resolve the issue. As illustrated in Figure 5, scene
object spectrum (SOS) incorporates semantic information

observed in a single panoramic image by generating a se-

mantic mask for each object category and applying Fourier

transform to each semantic mask. The semantic mask for

object class k at time t is calculated as a binary mask [mk
t ]ij

that detects the object at pixel (i, j). Suppose there are a

total of K object categories. When multiple objects are de-

tected for one object category, the binary mask appears as a

union of the bounding boxes of the detected objects. We de-

fine FFT as a channel-wise 2D fast Fourier transform that

receives K binary semantic masks and outputs K spectral-

domain features, where K is the number of object classes.

Then, SOS feature �St = [s1t , ..., s
K
t ]T can be defined as

skt = log |FFT(mk
t )|. For simplicity, we perform mean

pooling on the vertical spectral axis and normalize the out-

put. The final SOS feature has shape (K, η), where η is the

maximum horizontal frequency.

Local Goal Search Using Semantic Clues. We argue that

returning to a previously visited node does not guarantee the

agent escapes from the local optima. Instead of backtracking
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to a previously visited node, the agent searches for a local

goal to move towards. If the agent plans a path and moves

towards the local goal, the agent does not need to repeat

unnecessary actions in visited regions after the exploitation

ends. Additionally, searching for a local goal takes full ad-

vantage of the topological map by utilizing the connections

among the observed nodes. To expand the searchable area

further, we let the agent choose the local goal from previ-

ously unvisited and unchosen candidate nodes.

To choose a local goal, we first score the corrected trajec-

tories to measure the alignment with the language instruc-

tion L. We use SOS features as semantic environmental

clues to estimate the navigation score Snav of the corrected

trajectory, which is the shortest path trajectory from the ini-

tial node to the local goal in the constructed topological

map. To simplify, we convert the language instruction into a

list of objects W o = [wo
1, ..., w

o
B ] consisting of B[≤ K]

object categories (e.g., desk, cabinet, and microwave). We

approximate the corresponding reference SOS features as

[δ̂(wo
1), ..., δ̂(w

o
B)] where the ith row of δ̂(wo

k) is defined as

[δ̂(wo
k)]i = (k = i)λ(δ(wo

k)) sinc( j2 − η
4 ). λ(δ(wo

k))
denotes the average width of detected bounding boxes of
object wo

k in the environment. A detailed approximation
process is explained in the supplementary material. To sim-
ulate a corrected trajectory T ′ = (v′1, ..., v

′
t′), we calculate

the SOS features [�S′
1, ...,

�S′
t′ ] corresponding to the nodes in

T ′. We measure the similarity between two object spectrum
features via the cosine similarity of the flattened vectors. Fi-
nally, the navigation score Snav of T ′ is computed as:

Snav(T ′) =

B∑
i=1

t′∑
j=1

(
δ̂(wo

i )

|δ̂(wo
i )|

·
�S′
j

|�S′
j |
)((δ̂(wo

i )− δ̂(wo)) · (�S′
j − �S′))

√
t′
B

·
B∑

i=1
(δ̂(wo

i )− δ̂(wo))2
t′∑

j=1
(�S′

j − �S′)2
,

(1)

where δ̂(wo) and �S′ denote the average values of SOS fea-

tures δ̂(wo
i ) and �S′

j , respectively. This equation can also be

interpreted as a pseudo correlation-coefficient function be-

tween object list W o and trajectory T ′. The exploitation

policy selects the node with the highest navigation score as

the local goal from the previously unvisited candidates.

Figure 6 illustrates a simple scenario of entering a room.

Suppose W o = [sculpture, door, bed] and the agent has

to compare two trajectories T1 = (v1, v2, A) and T1 =
(v1, v2, B). Each similarity matrix in Figure 6 has the (t, j)
element as the similarity between the SOS feature of Vt and

δ̂(wo
j ), which is calculated as δ̂(wo

j ) · �S′
t. Notably, the simi-

larity matrix shows monotonic alignment and the navigation

score is higher when the next action is chosen correctly.

3.3. Training Details
We use [24] for pretraining the visual encoder with

panoramic RGB observations. We use the DAgger algo-

rithm [46] to pretrain the navigation policy and the mode

selector. To prevent overfitting, we iteratively perform

= , = .

similarity matrix

observable
objects

bed

door
painting

sculpture

0.9 0.0 0.00.3 11.0 0.00.0 0.0 1.0
0.9 0.0 0.00.3 11.0 0.00.5 0.4 0.0= , = .

Figure 6. Toy Example. Monotonic alignment between language
instruction and visual observation is desirable. Yellow dots in the
nodes describe the ground truth trajectory. Based on the node at
t = 3, the similarity matrix can show either monotonic or non-
monotonic alignment between object tokens and SOS features. The
greencircles describe thepossiblecandidatesA,B fornextaction.

teacher forcing and student forcing to choose the action

from the exploration policy. Imitation learning loss is cal-

culated as LIL =
∑T

t=1 − log p(a∗t |at) and object ground-

ing loss is calculated as LOG = − log p(obj∗|objpred),
where obj∗ denotes the ground truth and objpred denotes

the predicted object location. The total loss function is de-

fined as Ltotal = Lmode + Lprogress + Lcorr + LIL +
LOG. We further finetune the agent via A2C [47].

The exploration policy selects the action at with probabil-

ity pat . Reinforcement learning loss is defined as LRL =
−∑

t a
s
t log(p

a
t )At − λ

∑
t a

∗
t log(p

a
t ). To train the mode

selector, progress monitor, and exploration policy in an end-

to-end manner, we use the total loss function as Lfine =
Lmode+Lprogress+LRL. The exploitation policy searches

the path toward the local goal from the constructed navigation

graph. Thus, the exploitation policy is not learned.

4. Navigation Experiments
4.1. Experiment Settings

We evaluate our method on three VLN benchmarks,

Room-to-Room(R2R) [2], SOON [16], and REVERIE [17].

R2R evaluates the visually-grounded natural navigation

performance of the agent. The agent must navigate to the

predefined goal point given image observations and lan-

guage instructions in an unseen environment.

SOON is also a goal-oriented VLN benchmark. Natural

language instructions in SOON have an average length of

47 words. The agent should locate the target location and

detect the location of an object to find the target object.

REVERIE is a goal-oriented VLN benchmark that pro-

vides natural language instruction about target locations and

objects. In REVERIE, the agent is given an instruction

referring to a remote object with an average length of 21

words. With this instruction and a panoramic observation

from the environment, the agent should navigate to the lo-

cation the instruction describes and find the correct object
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bounding box among the predefined object bounding boxes.

4.2. Evaluation Metrics
4.2.1 Navigation performance
We evaluate algorithms using the trajectory length (TL),

success rate (SR), and success weighted by inverse path

length (SPL) [48], and oracle success rate (OSR) for

the navigation performance comparison. An episode is

recorded as a success if the agent takes a stop action

within 3 m of the target location. TL is the average path

length in meters. SR is denoted as the number of successes

divided by the total number of episodes, M . SPL is calcu-

lated as 1
M

∑M
i=1 Si

li
max(pi,li)

, where Si denotes the success

as a binary value. pi and li denote the shortest path and ac-

tual path lengths for the ith episode. OSR uses the oracle

stop policy instead of the stop policy of the agent.

4.2.2 Object grounding performance
We also evaluate the object grounding performance of

the agent by the success rate of finding the target ob-

ject (FSR) and the target finding success weighted by in-

verse path length (FSPL)1 [16, 17]. FSPL is calculated as

FSPL = 1
N

∑N
i=1 S

nav
i Sloc

i · lnavi /max(lnavi , lgti ), where

Snav
i is whether the agent navigates to the target, Sloc

i is

whether the agent finds a target object bounding box, and

lnavi and lgti are the navigation trajectory length and ground

truth trajectory length, respectively.

4.3. Baselines and Implementation Details
We compare our method with several other baselines as

follows. For each task, we compare our method with a num-

ber of baselines that use various types of memory (recur-

rent, sequential, and topological map). For methods imple-

mented with a hierarchical navigation framework, we com-

pare the specific exploitation methods: homing, jump, and

local goal search. Homing makes the agent backtrack, and

jump makes the agent jump to a previously visited node.

The hyperparameters and detailed model architecture of

Meta-Explore are described in the supplementary material.

4.4. Comparison with Navigation Baselines
We compare our method with navigation baselines2. We

focus on the success rate and SPL. Rendered results and

detailed analyses with other evaluation metrics are provided

in the supplementary material.

R2R. Table 1 compares the proposed Meta-Explore with

baselines for the R2R navigation task. We categorize the

baseline methods based on the type of constructed mem-

ory and the type of exploitation. Our method outperforms

other exploration-only baselines over all types of valida-

tion and test splits in success rate and SPL. Compared with

hierarchical baselines SMNA [21], Regretful-Agent [22],

FAST [35], and SSM [26], Meta-Explore improves success

1Identical with its original term, Remote Grounding Success (RGS).
2† indicates reproduced results.

rate and SPL by at least 16.4% and 8.9%, respectively. The

main difference is that Meta-Explore constructs a topologi-

cal map during exploration and uses the map for local goal

search in exploitation. On the contrary, homing exploita-

tion policies in SMNA, Regretful-Agent, and FAST only

rely on the current trajectory, instead of taking advantage of

the constructed memory. Jump exploitation in SSM uses a

topological map to search a successful previous node, but it

makes an unrealistic assumption that the agent can directly

jump to a previously visited distant node and unfairly saves

time. In our approach, we plan a path to the local goal based

on the topological map. The experiment results reveal that

even if we design a hierarchical navigation framework, ex-

ploration and exploitation are not entirely separate but they

can complement each other.

SOON, REVERIE. Table 2 compares Meta-Explore with

baselines in the SOON navigation task. While the proposed

method does not improve performance in val seen split,

Meta-Explore outperforms other baselines in the test unseen

split of SOON for success rate by 17.1% and SPL by 20.6%.

The result implies that for the goal-oriented VLN task, high

performance in train or val seen splits can be the overfit-

ted result. Because the agent can be easily overfitted to

the training data, making a generalizable model or provid-

ing a deterministic error-correction module for inference is

essential. Meta-Explore chooses the latter approach by cor-

recting the trajectory via exploitation in regretful cases. The

evaluation results in the REVERIE navigation task are de-

scribed in the supplementary material. Meta-Explore shows

improvement in the val split of REVERIE for success rate

and SPL, but the improvement in the test split is lower than

the results in R2R and SOON. We found 252 meaningless

object categories (e.g., verbs, adjectives, and prepositions)

and 418 replaceable object categories (e.g., typographical

errors and synonyms) in the REVERIE3 dataset. Because

our exploitation method utilizes object-based parsing of the

given instruction to match with the detected object cate-

gories, the effectiveness of the proposed method is lessened

due to inaccuracies and inconsistencies in the dataset. We

expect to have higher performance if the mistakes in the

dataset are fixed.

4.5. Local Goal Search using SOS Features
To discuss the significance of modeling exploitation pol-

icy, we conduct specific experiments about choosing the lo-

cal goal for R2R and SOON. We evaluate our method us-

ing different types of local goal search, as shown in Ta-

ble 3 and 4. Oracle denotes a method which selects a lo-

cal goal using the ground truth trajectory. The performance

of the oracle provides the achievable performance for each

dataset. The results imply that local goal search using either

310.7% and 41.2% of a total of 46,476 words in the bounding box

dataset correspond to meaningless and replaceable object categories, re-

spectively.
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Methods Memory Exploit Val Seen Val Unseen Test Unseen
SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓

Random - - 16 - 9.58 9.45 16 - 9.77 9.23 13 12 9.89 9.79
Human - - - - - - - - - - 11.85 1.61 86 76

Seq2Seq [2] Rec � 6.0 39 11.33 - 22 - 8.39 7.84 20 18 8.13 7.85
VLN�BERT [32] Rec � 72 68 11.13 2.90 63 57 12.01 3.93 63 57 12.35 4.09

SMNA† [21] Rec homing 69 63 11.69 3.31 47 41 12.61 5.48 61 56 - 4.48
Regretful-Agent [22] Rec homing 69 63 - 3.23 50 41 - 5.32 48 40 - 5.69

FAST (short) [35] Rec homing - - - - 56 43 21.17 4.97 54 41 22.08 5.14
FAST (long) [35] Rec homing 70 04 188.06 3.13 63 02 224.42 4.03 61 03 196.53 4.29
HAMT-e2e [34] Seq � 76 72 11.15 2.51 66 61 11.46 2.29 65 60 12.27 3.93

DUET [24] Top. Map � 79 73 12.32 2.28 72 60 13.94 3.31 69 59 14.73 3.65
SSM [26] Top. Map jump 71 62 14.7 3.10 62 45 20.7 4.32 61 46 20.4 4.57

Meta-Explore (Ours) Top. Map local goal 81 75 11.95 2.11 72 62 13.09 3.22 71 61 14.25 3.57

Table 1. Comparison and evaluation results of the baselines and our model in the R2R Navigation Task.
Gray shaded rows describe hierarchical navigation baselines. Three memory types: Rec(recurrent), Seq(sequential), and Top. Map(topological map)

Methods Memory Exploit Val Seen Instruction Val Seen House Test Unseen House
SR↑ SPL↑ OSR↑ FSPL↑ SR↑ SPL↑ OSR↑ FSPL↑ SR↑ SPL↑ OSR↑ FSPL↑

Human - - - - - - - - - - 90.4 59.2 91.4 51.1
Random Rec � 0.0 1.5 0.1 1.4 0.1 0.0 0.4 0.9 2.1 0.4 2.7 0.0

Speaker-Follower [28] Rec � 97.9 97.7 97.8 24.5 61.2 60.4 69.4 9.1 7.0 6.1 9.8 0.6
RCM [49] Rec � 84.0 82.6 89.1 10.9 62.4 60.9 72.7 7.8 7.4 6.2 12.4 0.7

AuxRN [23] Rec � 98.4 97.4 98.7 13.7 68.8 67.3 78.5 8.3 8.1 6.7 11.0 0.5
GBE w/o GE Top. Map � 89.5 88.3 91.8 24.2 62.5 60.8 73.0 6.7 11.4 8.7 18.8 0.8

GBE [16] Top. Map � 98.4 97.9 98.6 44.2 76.3 62.5 64.1 7.3 11.9 10.2 19.5 1.4

GBE† Top. Map � - - - - 19.5 13.3 28.5 1.2 12.9 9.2 21.5 0.5
DUET [24] Top. Map � 94.0 91.6 90.0 31.1 36.3 22.6 50.9 3.8 33.4 21.4 43.0 4.2

Meta-Explore (Ours) Top. Map local goal 100.0 99.1 96.0 33.9 44.7 34.8 52.7 8.9 39.1 25.8 48.7 4.0

Table 2. Comparison and evaluation results of the baselines and our model in the SOON Navigation Task.

spatial or spectral visual representations is more effective

than random local goal search. The results show that local

goal search using spectral visual representations, i.e., SOS

features, lead the agent to desirable nodes the most. We also

compare local goal search with homing and the difference

between the performance of the two methods is most notice-

able in the test split of the SOON navigation task. As shown

in Table 4, choosing the local goal with only spatial-domain

features, the navigation performance does not improve com-

pared to homing. On the contrary, spectral-domain local

goal search shows significant improvement against homing

by 10.4% in success rate, 34.5% on SPL, and 27.4% on

FSPL. The results imply that using spectral-domain SOS

features helps high-level decision making, thereby enhanc-

ing the navigation performance. To further show the ef-

fectiveness of SOS features, we provide sample local goal

search scenarios in the supplementary material.

Local Val Seen Val Unseen
Goal SR↑ SPL↑ OSR↑ TL↓ NE↓ SR↑ SPL↑ OSR↑ TL↓ NE↓

Oracle 81.88 74.12 87.46 13.06 1.93 75.95 62.53 84.16 14.00 2.71
Random 79.33 72.67 85.31 13.19 2.22 70.97 59.45 80.16 14.92 3.34
Homing 80.22 73.63 85.60 12.51 2.14 71.65 60.60 80.33 13.91 3.26
Spatial 79.63 73.14 85.60 12.99 2.22 71.56 60.01 80.33 14.90 3.27
Spectral 80.61 75.15 85.80 11.95 2.11 71.78 61.68 80.76 13.09 3.22

Table 3. Comparison of Exploitation Policies. (R2R)

Local Val Seen House Test Unseen House
Goal SR↑ SPL↑ OSR↑ FSPL↑ SR↑ SPL↑ OSR↑ FSPL↑

Oracle 54.42 37.96 63.72 11.01 48.38 28.45 62.98 4.74
Random 24.78 11.97 34.96 3.08 24.19 7.41 35.84 1.29
Homing 42.04 27.72 48.23 10.18 35.40 19.18 51.62 3.14
Spatial 32.30 11.60 39.38 1.90 26.11 10.58 39.23 1.43
Spectral 44.69 34.84 52.65 8.89 39.09 25.80 48.67 4.01

Table 4. Comparison of Exploitation Policies. (SOON)

4.6. Ablation Study
We conduct an ablation study to compare the proposed

method against language-triggered hierarchical exploration.

Results in the supplementary material show that among

the three representation domains, spatial, spectral, and lan-

guage, the spectral-domain features enhance navigation per-

formance the most. Additionally, to implicate further ap-

plications of Meta-Explore in continuous environments, we

evaluate our method on the photo-realistic Habitat [50]

simulator to solve image-goal navigation and vision-and-

language navigation tasks. Implementation details and re-

sults are included in the supplementary material. Results

show that our method outperforms baselines in both tasks.

5. Conclusion
We have proposed Meta-Explore, a hierarchical naviga-

tion method for VLN, by correcting mistaken short-term ac-

tions via efficient exploitation. In the exploitation mode, the

agent is directed to a local goal which is inferred to be the

closest to the target. A topological map constructed dur-

ing exploration helps the agent to search and plan the short-

est path toward the local goal. To further search beyond

the frontier of the map, we present a novel visual repre-

sentation called scene object spectrum (SOS), which com-

pactly encodes the arrangements and frequencies of nearby

objects. Meta-Explore achieves the highest generalization

performance for test splits of R2R, SOON, and val split of

REVERIE navigation tasks by showing less overfitting and

high success rates. We plan to apply Meta-Explore for VLN

tasks in continuous environments in our future work.
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