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Figure 1. Stylization results of diverse objects. Text2Scene creates more realistic and part-aware textures for various categories of 3D
objects without any dedicated datasets for training, which can constitute high-quality virtual scenes.

Abstract

We propose Text2Scene, a method to automatically cre-
ate realistic textures for virtual scenes composed of multiple
objects. Guided by a reference image and text descriptions,
our pipeline adds detailed texture on labeled 3D geome-
tries in the room such that the generated colors respect the
hierarchical structure or semantic parts that are often com-
posed of similar materials. Instead of applying flat styliza-
tion on the entire scene at a single step, we obtain weak
semantic cues from geometric segmentation, which are fur-
ther clarified by assigning initial colors to segmented parts.
Then we add texture details for individual objects such that
their projections on image space exhibit feature embedding
aligned with the embedding of the input. The decomposition
makes the entire pipeline tractable to a moderate amount of
computation resources and memory. As our framework uti-
lizes the existing resources of image and text embedding, it
does not require dedicated datasets with high-quality tex-
tures designed by skillful artists. To the best of our knowl-
edge, it is the first practical and scalable approach that can

create detailed and realistic textures of the desired style that
maintain structural context for scenes with multiple objects.

1. Introduction
Virtual spaces provide an immersive experience for

metaverse, films, or games. With increasing demands for
virtual environments, various applications seek practical
methods to create realistic 3D scenes with high-quality tex-
tures. Currently, skillful artists need to manually create 3D
assets and accompanying textures with careful parameteri-
zation, which is not scalable enough to account for the di-
verse content the industry is heading for. Scenes can also
be populated with existing 3D database models or created
with recent shape-generation approaches using data-driven
methods [33, 54]. However, most of them lack texture in-
formation or are limited to simple coloring.

To build realistic content, we need fine details containing
the artistic nuances of styles that obey the implicit correla-
tions with geometric shapes and semantic structure. Recent
works provide methods to color a single object with the help
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Figure 2. Our scene stylization results. Given a target image It and the style text ts, Text2Scene can produce the stylized results for the
entire scene.

of differentiable rendering [5], but often they are limited to
single texture or blurred boundaries [6,21,27,29,52]. More
importantly, the 3D objects are often textured in isolation,
and only limited attempts exist to add visual appearances for
large-scale scenes with multiple objects [14, 15, 19]. The
biggest challenge is adding consistent style for an entire
scene, but still accounting for the boundaries of different
materials due to the functional and semantic relationship
between parts, as observed within real-world scenes.

Our proposed Text2Scene adds plausible texture details
on 3D scenes without explicit part labels or large-scale data
with complex texturing. We take inspiration from abundant
3D shape and image datasets and decompose the problem
into sub-parts such that the entire scene can be processed
with a commodity memory and computation. Given scenes
of multiple objects of 3D mesh geometry, we separately
handle walls and individual objects. Specifically, the styl-
ization of walls is formulated as texture retrieval, and the
objects are initialized with base colors. From the base color
assignment, we can deduce the part-level relationship for
stylization and further refine them in later stages, such that
their rendered images are close to the input text within the
joint embedding space of foundational models.

Our coarse-to-fine strategy keeps the problem tractable
yet generates high-quality texture with clean part bound-
aries. We first create segments of input mesh such that the
segment boundaries align with low-level geometric cues.
Then we start with the simplified problem of assigning a
color per segment. Interestingly, the prior obtained from
large-scale image datasets assign similar colors for the parts
with similar textures, reflecting the semantic context or

symmetry as shown in Figure 1. We add the detailed texture
on individual objects as an additional perturbation on the
assigned base colors by enforcing constraints on the image
features of their projections. The additional perturbations
are high-frequency neural fields added to the base color.

In summary, Text2Scene is a new method that

• can easily generate realistic texture colors of the scene
with the desired style provided by text or an image;

• can add detailed texture that respects the semantic part
boundaries of individual objects; and

• can process the entire scene without a large amount of
textured 3D scenes or an extensive memory footprint.

We expect the proposed approach to enable everyday users
to quickly populate virtual scenes of their choices, and en-
joy the possibility of next-generation technology with high-
quality visual renderings.

2. Related works
3D Shape Understanding and Segmentation Our pro-
posed method creates a realistic texture that abides by im-
plicit rules of the material composition of different object
parts. Different materials or textures are often assigned to
different objects’ functional parts, whose boundaries align
with geometric feature lines. A handful of previous works
find segments that constitute a 3D model with geometric in-
formation [7, 12, 20, 34], while others train 3D features to
distinguish part labels provided in datasets [9, 30, 38]. Re-
cently, PartGlot [24] suggested discovering part segments
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Figure 3. Overall pipeline of Text2Scene. Given a 3D scene S with optional text description, we generate textures guided by a target image
It and the appearance style provided as a text ts. We first stylize the structure by texture retrieval, and each object is pre-processed for part
discovery for stylization. Then, we assign base colors to object parts and add local details for each object with the designated LNSF.

from language references, which should contain functional
information. However, the geometric or functional distinc-
tion does not always clarify the texture boundaries, with
possible additional diversity originating from the design-
ers’ choice. The intricate rules are multi-modal distribu-
tions composed of a mixture of discrete part assignments
and continuous texture details, whose results are contained
within visual datasets of scenes.

Neural Fields and Texture Traditional texture atlas of
3D geometry is represented as a mapping from a planar
image to a manifold embedded in 3D space and involves
complex parameterization. With the increasing popularity
of neural representation, TextureFields [31] represented tex-
ture as a mapping from 3D surface points to RGB color
values without separate parameterization. It is deeply con-
nected with graphics pipelines that adapt coordinate-based
functions to depict SDF shapes [26, 32, 45] or novel-view
synthesis using implicit volumes [28]. Various works show
neural implicit representation is highly flexible and free
from domain structure or resolution [2, 22, 25, 37, 49]. Re-
cently, Text2Mesh [27] generated the deformation and col-
oring of input mesh with neural fields guided by the joint
embedding of rendered image and input text. Interest-
ingly, the generated mesh deformation and coloring also
contain semantic part information. Our Text2Scene frame-
work further extends the ability and observes distinct part
boundaries, which could not be captured in previous works.
We also increase the reality of resulting scenes with high-
frequency details. We encode the input to the neural net-
work with a high-order basis of intrinsic features [23] and
apply the coarse-to-fine strategy as shown with geometric
details of Yifan et al. [51].

Text-Driven 3D Stylization Recently neural networks
trained with large-scale images and texts demonstrated
powerful performance in many tasks with their extensive
representation power. Here we primarily focus on 3D styl-
ization attempts using image features. CLIP [39] learns
latent space with a large amount of image text pairs, and
the additional text input allows semantic manipulation for
various generative tasks, including images [8, 35, 40–42],
videos [3, 17], motions [46, 47], and 3D assets [18, 21, 36,
43]. However, for text-driven 3D stylization, it is still diffi-
cult to define clean texture boundaries and correlation with
instance-level subtleties [6,27,29] or focus only on the spe-
cific type, such as human [16,53]. As another way to stylize
a 3D scene [4, 50], Yeh et al. [50] matches the input im-
age features with CAD input using differentiable material
graphs [44]. However, the representation is inherently lim-
ited to a combination of material libraries and cannot han-
dle non-homogeneous details such as painting. On the other
hand, our approach can generate texture beyond the repeti-
tive low-level patterns of input materials and introduce part-
aware texture with fine details that maintain geometric and
semantic consistency.

3. Method

We stylize a 3D indoor scene without sophisticated tech-
niques or software tools for 3D modeling or texturing. The
input 3D scene S = {W,O} is a set of structure compo-
nents W and a set of objects O. The structural compo-
nents W are walls, ceilings, and floors, whereas the objects
O = {Mi} are the 3D mesh models Mi. We assume that all
the components have their corresponding class labels and
optionally have text descriptions.
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The desired color distribution is provided as a target im-
age It, which could be retrieved from the web. Also, a spe-
cific appearance style description ts is provided as input to
enforce style consistency among a set of objects O. The
color distribution compares the color histogram of the input
target image It against the rendering of the current stylized
scene I . Specifically, the histogram loss Lhist is defined as
below

Lhist (I, It) = ∥H1/2 (I)−H1/2(It)∥2, (1)

where H (·) indicates differentiable color histogram opera-
tor [1]. Also, we augment the losses derived from the joint
embedding of text and images [39] by generating text de-
scriptions T of the context using semantic labels and com-
paring them against the rendered image I . If we denote the
pre-trained encoder for image and text as E1 and E2, re-
spectively, the CLIP similarity loss is defined as

Lclip (I, T ) = 1− sim(E1 (I) , E2 (T )), (2)

where sim (x,y) =
x⊤y

∥x∥2 ∥y∥2
is the cosine similarity.

The overall pipeline is described in Fig. 3. We obtain
the texture for the structure W by texture retrieval, which
is described in Sec. 3.1. The objects are stylized with ad-
ditional decomposition to respect local part boundaries and,
simultaneously, to practically handle multiple entities with
details (Sec. 3.2).

3.1. Structure Stylization

We assign one coherent texture per structural element of
W . Compared to objects, the structural elements, such as
walls or ceilings, are of simple planar geometry, and their
textures are not heavily dependent on the relationships be-
tween different functional parts. For structural elements,
it suffices to pick texture from the texture set of an ex-
isting material library of MATch [44], which contains ho-
mogeneous material. If we instead utilize visual features
or CLIP embeddings for them, the resulting stylization ex-
hibits undesired artifacts of various sizes instead of constant
patterns, as shown in the supplementary.

We randomly initialize the texture from the texture set
and render the structure image Is, a bare room only con-
taining the structural elements W without objects. Then the
materials are compared to the target image It for the his-
togram losses of Equation (1). The additional text prompt
Ts is given as ‘a structure of a room’ to provide the context
with Lclip (Is, Ts). In summary, the texture of the structural
element is retrieved to have the lowest score on the follow-
ing criteria:

Lhist (Is, It) + λ1 · Lclip (Is, Ts) . (3)

‘a bed’

Part Discovery

Merge

Merge

Figure 4. Overall pipeline of part discovery. We discover parts
for object stylization from the super-segments of 3D object mesh.
Given a 3D object mesh Mi with segments {slik} at lth iteration,
we assign a color c(slik) per segment and generate a graph Gl

i .
The pair of neighboring nodes is merged if the distance between
assigned colors c(slik) is within a threshold, then, move to (l+1)th

iteration.

3.2. Object Stylization

Object stylization involves understanding the semantic
structure hidden behind the mesh representation. As a pre-
processing, we first subdivide individual objects Mi in O
into part segments {sik} as described in Sec. 3.2.1. Then
the scene is stylized in two steps. First, we assign base col-
ors into individual parts to minimize the style loss for the
entire scene S = {W,O} (Sec. 3.2.2). Here we are opti-
mizing for the discrete set of colors assigned to subdivided
parts obtained from the pre-processing. Then the textures
for individual objects are further optimized to generate fine
details (Sec. 3.2.3).

3.2.1 Part Discovery for Object Stylization

We first decompose individual objects into parts such that
each part is composed of the same material or texture. The
distinctive part boundaries are critical in providing seman-
tic consistency and, therefore, perceptual realism toward the
scene. Similar to 3D part segmentation methods, we first
find super-segments based on geometric features which pro-
vide the granularity to define textural parts. For a given 3D
object mesh Mi, the initial segments {s0ik} are the decom-
position applying the method by Katz et al. [20]. The de-
composition is designed to be an over-segmentation of our
aim. We generate a graph G0

i where each node is the seg-
ment and edges connect neighboring segments. Then we in-
crementally merge segments that belong to the same texture
until convergence. Note that, our part discovery method op-
erates robustly regardless of the initial composition, but we
use [20] which preserves the original geometry and details.

The challenge here is that, unlike semantic segmenta-
tion approaches, no large-scale public dataset exists that
provides the ground truth for ‘texture similarity’ as the
segmentation labels. We find a supervision signal from
the large-scale pre-trained model, and create a simple text
prompt Ti,c using the class name, such as a bed or a
chair. At lth iteration, we assign a color c(slik) to each seg-
ment {slik}, which is optimized to minimize the distance
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between the rendered images IMi of multiple viewpoints
and the text Ti,c in the joint embedding space of CLIP, or
Lclip(IMi

, Ti,c) as defined in Equation (2). If the resulting
colors assigned to two adjacent segments are similar, the
two parts are likely to be the parts with the same texture
source. Therefore we merge the two segments for the next
iteration {sl+1

ik }. In particular, we merge segments if the as-
signed color has a distance of less than a threshold λth in
the CIE color space which is known to be related to human
perception. Note that, while the initial color is gray for the
assignment, merging segments happen with the optimized
color. We repeat the process until the number of segments
does not decrease anymore and empirically found that it
usually converges within 2-3 steps. The overall pipeline for
part discovery is also described in Fig. 4.

3.2.2 Part-level Base Color Assignment

After the objects Mi ∈ O are decomposed into parts {sik},
we assign a solid color per part, namely c (sik). The base
color assignment handles a low-dimensional optimization
space with a coarse set of discrete parts but still observes the
holistic distribution of the entire scene. Then the base color
is combined with the output of designed neural style fields
in Sec. 3.2.3, which generate high-frequency local texture.

We optimize the base color using the combined loss as
before, Lcolor,scene+Lclip,scene. The color loss again considers
the similarity with the target image Lhist (I, It). The scene
being optimized I is rendered with the stylized structure W
and the current estimates of the base colors. The clip loss
considers both individual objects and the global scene and
is calculated as the sum of object clip loss and global clip
loss.

Lclip,scene = λ2 ·
∑
i

Lclip (IMi
, Ti) + λ3 · Lclip (I, T ) . (4)

Unlike Sec. 3.2.1, text description Ti for object Mi could be
a simple text prompt using the class name, or a detailed text
prompt based on user choice. We render individual objects
from various angles IMi and compare them with the text de-
scription Ti. The embedding for the scene is also compared
against the text embedding T represents the type of scene,
for example, ‘a bedroom’. By jointly applying the loss, the
base color c (sik) is selected as a representative color that
harmonizes nicely with the global context.

3.2.3 Detailed Stylization

The base color is combined with additional details regressed
from a neural network to express the detailed local texture.
We define local neural style field (LNSF) for each object,
which generates the local textures added to the base color.
The color for point p is defined by the following equation,

c (sp) + α · Fi (γ (p) , ϕ (p) , sp) . (5)

We train a LNSF Fi per object, which outputs the color to
be added to the base color c(sp), where sp indicates the part
segment id. The color range α maintains the final color to
be similar to the base color. γ (·) is the positional encod-
ing of the xyz coordinate to capture high-frequency details,
and ϕ(·) represents the coefficients of the eigenfunctions for
the intrinsic geometry using the Laplace-Beltrami operator.
Therefore the object-specific neural fields respect the part
boundaries and local geometric details.

LNSF for each object are trained with additional style
context Lclip(IMi , T

+
i ). The text prompt T+

i augments the
object description of Ti with appearance style description
ts, such as ‘minimal style’ or ‘Mid-Century style’. By
enforcing the same appearance style description, we can
weakly bind the styles of individual objects in the same
scene while optimizing separately. We could also use T+

i

instead of Ti for optimizing the base color, and it shows
slightly better results.

Part-aware Geometric Deformation Even though our
main focus is to add colors to objects with local part-aware
details, we could also concurrently produce part-aware ge-
ometric deformation with the same architecture. We can
slightly change the LNSF F to have two branches of output
that estimate color and displacement. For each point on the
surface, we assign color by Eq. 5 and adjust displacement
along the vertex normal direction. To learn the effective
deformation, we add geometric loss Lclip(I

geo
Mi

, T+
i ), where

IgeoMi
is an image rendering textureless geometry as [27].

Rendering and Implementation Details To render each
object, the individual objects Mi are scaled to fit a unit
box. The predicted color of each vertex allows the entire
mesh to be differentiable rendering through interpolation
using [5]. We render individual objects with random aug-
mented backgrounds (white, black, random Gaussian, chess
board), which helps the pipeline focus on the foreground
object [16, 18]. Inspired by [36], since CLIP has a bias for
the canonical pose, we augment the text prompt with the az-
imuth angle of view, namely ‘front view of’, ‘side view of’
or ‘back view of’. Finally, in Sec 3.2.3, random perspec-
tive transformation and random crop boost learning local
details. To render a scene, we randomly sampled from pre-
define 20 camera poses to evenly cover the entire scene S .

4. Experiments
Our stylization is first evaluated for individual objects in

Sec. 4.1. We evaluate the quality of textured object meshes
and also assess that our pipeline can discover part segments
to assign realistic stylization. Then we demonstrate the styl-
ization results of room-scale scenes with multiple objects in
Sec. 4.2.
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Text2Mesh [27] w/o two step stylization Ours

Figure 5. Visual comparison with baselines. Our method utilizes the found part information and generates detailed textures through the
designed network in combination with a coarse-to-fine stylization scheme. As a result, it generates a globally harmonious 3D style that
clearly classifies part segments. We can handle diverse text such as simple categories or styles, detailed descriptions, or text that includes
different two object categories.

4.1. Object Stylization

We show that our method can stylize various objects and
produce realistic 3D assets to populate virtual scenes. We
use object meshes of various types and sizes, collected from
Turbo Squid [48], 3D-FUTURE [13], and Amazon Berke-
ley Objects [10]. For detailed stylization, we subdivide the
object into an average of 119769 faces and 60437 vertices.
For large general objects such as beds, sofas, tables, etc., we
use class labels and the text input for the specific style as ‘a
[class label], [specific] style’. However, we need a detailed
explanation for small objects that cannot be explained only
by class labels, such as books. For these objects, we config-
ure detailed text individually, for example, ‘a book of Harry
Potter and the Sorcerer’s Stone’.

Figure 5 shows the renderings of stylized results. We
render objects in Blender [11] with a fixed lighting setup.

The input mesh and the text are also provided in the left
column. Since our method utilizes the obtained part infor-
mation and coarse-to-fine stylization scheme with a two-
step approach, it creates a more realistic texture with clear
boundaries for each part of the 3D assets. Text2Mesh [27]
is another text-driven 3D stylization approach, which adds
the RGB color and deformation fields on the vertices of
mesh. While it augments the detailed variations on the in-
put mesh, the deformation map can occasionally introduce
undesired artifacts and the part boundaries are only roughly
estimated. We also provide the results of an ablated ver-
sion that directly uses LNSF without a two-step stylization
scheme. Our part discovery module and coarse-to-fine styl-
ization scheme play a critical role in producing realistic as-
sets with high-quality stylization. Figure 1 contains more
results on diverse objects.
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Figure 6. Results of user study for object stylization

Because stylization is a subjective task, and no ground
truth or metrics exist, we conduct a user study for quantita-
tive evaluation. We ask 98 users to rate the quality of gener-
ated outputs on a scale of 1 (worst) to 5 (best) in response to
the following questions: (Q1) ‘How natural are the output
results?’, (Q2) ‘How well does the output contain text infor-
mation?’, and (Q3) ‘How well does the output reflect part
information?’ Figure 6 contains the mean and the standard
deviation of the scores. Our method outperforms compet-
ing methods in all aspects. Therefore we conclude that our
method generates a realistic texture that abides by input text
description and semantic part information.

Original Mesh

Ours (w. displacement)

Text2Mesh

Figure 7. With a slightly modified LNSF F , we can simultane-
ously generate the texture with both color and displacement fields,
and all of the generated style information respects the part infor-
mation discovered.

We also provide a parallel comparison against
Text2Mesh by incorporating deformation fields with
our approach. Our original method preserves the original
shape of the mesh, while Text2Mesh deforms vertices
along the normal direction in addition to generating texture.
We can make a similar version of our LNSF and produce
additional deformation as described in Sec. 3.2.3. Figure 7
shows the deformed results from the source mesh compared
to Text2Mesh. Since our approach explicitly considers the
part information with the two-stage approach, our results
with deformation fields also respect different semantic
parts of the object.

Part Discovery As a side product of object stylization, we
can discover different parts with distinguished boundaries

Super-Seg. Part DiscoveryColor Assign. 
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Figure 8. The robustness against initial super-segmentation. The
super-segments of the top and the bottom rows are generated
by [20] and [7], respectively (left). Starting from the initial color
assignment (middle), our approach stably finds part decomposi-
tion to assign different base colors and therefore different texture
information (right). The text a chair is used.

that can guide a realistic color assignment (Sec. 3.2.1). Our
part discovery combines geometric super-segments and im-
plicit clues from image-text embeddings. The initial super-
segments guide the algorithm to follow geometric feature
lines, and the final results stably find part information de-
spite different initializations. Figure 8 shows examples ini-
tialized with Katz et al. [20] (top) and BSP-Net [7] (bot-
tom). Even for input mesh with bad topology or different
initialization, our iterative part discovery quickly finds visu-
ally coherent parts without any training with segmentation
labels.

4.2. Scene Stylization

Now we demonstrate that our text2scene framework can
quickly generate a realistic texture for a room with multiple
objects. Recall that the 3D scene S = {W,O} is com-
posed of the structure components W and a set of objects
O. We use the same objects as described in Sec. 4.1 and
arrange them to constitute scenes. As there is no existing
dataset composite of complete object meshes with labels,
we built a total of four scenes: two bedrooms and two liv-
ing rooms. Each scene contains an average of 20 objects
of various sizes and classes. Additionally, we provide a tar-
get image It for the color distribution, and a text prompt
describing the desired style ts. While it can be daunting
to define the desired style for the entire scene, images and
texts can provide a simple way to deliver the information.

Figure 2 shows stylized results of the same geometry,
but observing various target images and style prompts. The
generated textures respect the semantic labels of various
furniture and different parts and contain localized diverse
details. This is in contrast to many prior stylization meth-
ods where the fine perturbations are spread throughout the
scenes. We also show scenes with different types of rooms
containing different objects, but stylized based on the same
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target image in Fig. 9. Additional results of various input
configurations are available in the supplementary material.
Note that our target image It does not need to restrict as
an indoor image, and can be replaced such as natural pho-
tographs. And by changing random seeds, diverse results
can be obtained from the same input conditions. Also, since
we stylize the entire object, we can easily edit the 3D scene
through object relocation. These results can also be found
in the supplementary.

BedroomLivingroom

Figure 9. Result for the different arrangement of objects. We used
target image number 3 in Fig. 2 in both spaces.

-retrieval -hist,glo -detail Ours
(Q1): Realistic 2.23(±0.48) 3.68(±0.49) 4.02(±0.49) 4.22(±0.42)
(Q2): Color 2.09(±0.48) 2.63(±0.59) 3.95(±0.47) 3.86(±0.49)

Table 1. Results of user study for scene stylization

- retrieval - hist, glo - detail Ours

Figure 10. Ablation results for the scene. We used target image
number 1 in Fig. 2 in all spaces.

We also provide users’ evaluation of the quality of our
stylization in Table 1. Users evaluate the results by an-
swering the following questions: (Q1) ‘How realistic is the
output result?’ (Q2) ‘How similar is the color distribution
of the scene to the given images?’ Users assess the over-
all quality of the outputs, and how well they match the
target image. Since there are no previous works that use
the same setting, we compare the results of ablated ver-
sions: -retrieval replaces the separate texture retrieval mod-
ule (Sec. 3.1) with a stylization network of objects for struc-
ture components; -hist,glo removes the color loss and the
global clip loss for the base color assignment (Sec. 3.2.2);
and -detail removes the detailed stylization step for objects
(Sec. 3.2.3). The responses of (Q1) indicate that Text2Scene
generates high-quality scenes and each of the components
plays a crucial role to achieve reality. The effect of texture
retrieval is the most prominent. The color distribution re-
sults (Q2) indicate that the base color assignment is critical.
The added local details are more important for the realism

of the results. Figure 10 shows exemplar images of the ab-
lated versions used for the user study.

GPU Cost and Scalability Text2Scene first assigns base
colors to discovered parts for all objects in the scene, and
generates details of objects individually. The cardinality
for the base color assignment is only a few hundred and it
does not require much memory and allows us to consider the
whole scene while expanding the scale. The most memory-
intense process is the detail generation using a neural net-
work, which only processes a single object at a time. There-
fore the entire process can be trained only on a single 11 GB
GPU, making it an accessible tool for casual users. In a sin-
gle GPU, the base color allocation of the entire space takes
5 hours, and learning the details for each object takes 10
minutes.

Limitations While our approach results in scene styliza-
tion, the pipeline separately handles individual objects after
the base color assignment. This is a practical choice for
scalability but may lack an understanding of the context of
the entire space. Instead, we rely on the text description to
weakly bind the objects into a similar style. We can design
the pipeline to receive an additional input with a texture map
or a lightweight network and extend our model to better ob-
serve the holistic scene context within a limited GPU mem-
ory. Also, our pipeline requires a class label or optional text
description per object, which can be further automated.

5. Conclusions
We introduce Text2Scene, a novel framework to gener-

ate a texture for 3D scenes. Our hierarchical framework
can handle a variety of objects, including highly detailed
textures for objects such as book or paintings. By leverag-
ing the representation power of pre-trained CLIP, the frame-
work does not require any 3D datasets with texture or part
annotation. Given the 3D mesh models and the class labels
or text descriptions of objects, our framework easily pro-
duces stylized results by picking a target image and a simple
text description. We hope that Text2Scene to facilitate the
automatic interior recommendation or realistic virtual space
generation.
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