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Figure 1. Our local editing NeRF (LENeRF) enables users to edit specific areas of 3D assets based on textual prompts by estimating a 3D
mask for tri-plane features. For instance, given an original 3D radiance field (a), users can define their desired area to edit (underlined text
prompt, e.g., ”eyes”). LENeRF then generates a 3D mask, which is employed for feature fusion, allowing for targeted modifications that
adhere to the editing prompt (e.g., ”blue eyes”) (b). Additionally, as illustrated in (c), the 3D mask itself can be rendered and visualized for
further analysis.

Abstract

3D content manipulation is an important computer vi-
sion task with many real-world applications (e.g., prod-
uct design, cartoon generation, and 3D Avatar edit-
ing). Recently proposed 3D GANs can generate diverse
photorealistic 3D-aware contents using Neural Radiance
fields (NeRF). However, manipulation of NeRF still remains
a challenging problem since the visual quality tends to
degrade after manipulation and suboptimal control han-
dles such as 2D semantic maps are used for manipula-
tions. While text-guided manipulations have shown po-
tential in 3D editing, such approaches often lack local-
ity. To overcome these problems, we propose Local Edit-
ing NeRF (LENeRF), which only requires text inputs for
fine-grained and localized manipulation. Specifically, we
present three add-on modules of LENeRF, the Latent Resid-

†This work was done during an internship at Kakao Enterprise Corp.

ual Mapper, the Attention Field Network, and the Deforma-
tion Network, which are jointly used for local manipulations
of 3D features by estimating a 3D attention field. The 3D
attention field is learned in an unsupervised way, by distill-
ing the zero-shot mask generation capability of CLIP to the
3D space with multi-view guidance. We conduct diverse ex-
periments and thorough evaluations both quantitatively and
qualitatively.1

1. Introduction
3D content editing has many real-world applications in-

cluding but not limited to product design, cartoon gener-
ation, and 3D Avatar editing. However, it often necessi-
tates the use of sophisticated tools with complex interfaces,
which can be difficult for novice users and labor-intensive
even for seasoned professionals. While explicit 3D repre-

1We will make our code publicly available.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Concept figure of LENeRF. Our method enables local
editing of 3D assets by generating the target feature and estimating
a 3D mask which guides the model on where to make changes
at the feature level. Note that the mask is estimated for tri-plane
features, not for raw RGB outputs.

sentations such as voxels and meshes are commonly used
for 3D generation and editing [17,31,54], they are memory-
intensive and lack photorealism. In contrast, recent ad-
vances in Neural Radiance Fields (NeRF) [33] have shown
promising progress in representing 3D environments using
implicit representations [14, 21, 33, 37] combined with vol-
ume rendering techniques that enable high-quality novel
view synthesis. NeRF-based 3D GANs [4, 5, 11, 16, 36, 43,
50,52] have made further progress towards generating a cat-
egory of 3D aware contents with a single model, extending
the per-scene optimization scheme of NeRF.

Several studies [29,44,45,48] have attempted to address
the challenges of NeRF editing, yet certain limitations per-
sist. Works such as Edit-NeRF [29] and CLIP-NeRF [48]
have pioneered NeRF manipulations, but they are con-
strained to low-resolution synthetic datasets and lack the
capability to perform localized editing. Opposed to trans-
lation [9, 53] or style transfer [13] tasks, editing typically

demands a certain degree of localization. However, achiev-
ing this with text-only control proves to be a challenging
objective. Alternative methods [44, 45] that rely on seman-
tic masks for editing face their own limitations: 2D guid-
ance is not ideal for 3D editing and lacks the descriptive-
ness required for fine-grained editing. Furthermore, these
approaches require inversion steps and are difficult to gener-
alize across different domains, as they depend on the avail-
ability of labeled semantic masks.

To overcome the existing limitations, we propose Lo-
cal Editing NeRF (LENeRF), which focuses on the impor-
tant aspects of 3D editing: photorealism, multi-view con-
sistency, usability, diversity, and locality. With LENeRF,
high-resolution photo-realistic radiance fields can be edited
while maintaining their quality and multi-view consistency.
One notable advantage of LENeRF is its text-only editing,
making it more usable than other methods. This allows
our approach to be applied to any domain by leveraging
the multi-modal embedding space of Contrastive Language
Image Pre-training (CLIP) [39]. Additionally, our method
achieves real-time editing as it does not require any test-
time optimization process.

Our proposed approach exhibits particularly robust per-
formance in local 3D editing. This is achieved through a
unique method of editing features in the 3D space indepen-
dently by granting position-wise freedom to the features.
The naive approach of directly manipulating the latent code
often results in global changes to the 3D content, because
features in the 3D space are spatially entangled with each
other as the entire radiance field is conditioned with a single
latent code. To address this issue, we propose to generate
a 3D mask on the region of interest with a masking prompt
(e.g., ”hair”) and manipulate the features inside the region
while leaving the rest unchanged. Inspired by the previ-
ous approach which introduces the explanation method for
capturing the regions of the interest [25], we estimate 3D
masks in an unsupervised fashion by using 3D distillation
of the 2D CLIP model. Although the CLIP model is not 3D-
aware and the 3D GAN lacks text-conditioned mask genera-
tion capability, our method enables the collaboration of two
pre-trained models to generate a text-conditioned 3D mask,
as demonstrated in Figure 1 (c).

LENeRF comprises three add-on modules, namely La-
tent Residual Mapper (LRM), Attention Field Network
(AFN), and Deformation Network (DN) as depicted in Fig-
ure 3. LRM generates a latent code that produces a target
feature field. AFN generates a soft 3D mask indicating our
region of interest. The source feature field is distorted using
DN and subsequently interpolated with the target field to
synthesize the final feature field. LENeRF is trained with
CLIP guidance [38, 39], and AFN is additionally trained
with CLIP-generated zero-shot pseudo labels.

The main contributions of our paper are as follows:
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• We introduce Local Editing NeRF (LENeRF), a 3D
content editing framework capable of localized, photo-
realistic editing using a convenient real-time text-based
interface.

• Our method consists of add-on modules and does
not require any domain-specific labels, allowing the
method to be generalized to other models and domains.

• Our proposed technique involves a novel 3D distilla-
tion of CLIP knowledge, specifically an unsupervised
approach that utilizes the 3D GAN and CLIP models
jointly to generate 3D masks.

• We present diverse quantitative and qualitative results,
along with various applications such as sequential edit-
ing, real image editing, and out-of-distribution editing.

2. Related Work

3D-Aware GANs While Generative Adversarial Net-
works (GANs) [15] have demonstrated their ability to gen-
erate high-quality 2D images, generating 3D-aware content
with GANs remains a challenging task. Several approaches
have attempted to integrate GANs and 3D scene representa-
tions [34,35]. Recent progress in 3D GANs [4,5,11,16,27,
36, 43, 50, 52] that employ NeRF [33] have achieved suc-
cess in generating high-quality, multi-view consistent im-
ages. Building upon the progress made by previous research
in this field, our work seeks to enhance its applicability by
introducing a novel method for text-guided local editing.

NeRF Manipulations To enable local editing in 3D assets,
EditNeRF [29] proposes a conditional NeRF that enables
users to modify the color and shape of a specific region us-
ing scribbles. However, the editing ability of EditNeRF is
limited to adding or removing local parts of 3D objects. Se-
mantic mask guided 3D editing approaches [22, 29, 44, 46]
have made some progress in 3D editing. Among these
works, FENeRF [45] is trained to render 3D images and
their corresponding semantic masks, allowing editing to
be performed by inverting the model with edited semantic
masks to modify 3D models. However, using a 2D mask
for 3D editing is suboptimal since fine-grained attributes
such as expression or texture cannot be manipulated using
masks. Also, these methods require segmentation maps for
both training and editing, which is not applicable to cer-
tain domains where segmentation maps are not available.
Meanwhile, there is a line of research utilizing CLIP [39]
for 3D generation and editing [3, 19, 20, 26, 32, 42, 48] that
leverages the ease of manipulation using a text. However,
the generated and edited content are not photorealistic and
cannot provide fine-grained control. On the other hand, our
work focuses on high-quality, localized manipulations that
are well-suited for real-world applications.

3. Preliminaries
NeRF NeRF [33] is an implicit representation of 3D space
using a MLP Ψ, as (c, σ) = Ψ(x,d), where x = (x, y, z)
is a point in 3D space, d is a viewing direction, and result-
ing (c, σ) are color and volume density, respectively. The
color and density values along the same ray are integrated
to estimate a single pixel given camera extrinsic and pose
as:

Ĉ(r) =
∫ kf

kn

T (k)σ(r(k))c(r(k),d) dk, (1)

where kn and kf are near and far bounds, r(k) = o + kd
denotes a ray projected from the camera centered at position
o, and T (m) = exp(−

∫m

kn
σ(r(m))dm) is an accumulated

transmittance along the ray. The parameters of Ψ are opti-
mized to produce Ĉ(r), which are expected to be close to
the ground truth pixel value.
StyleGAN Latent Code The expressiveness of the Style-
GAN latent code w can be increased by inputting k differ-
ent latent codes, denoted by w (w ∈ Wk ⊊ Rk×512)2,
into each of the k StyleGAN layers. This can further be
extended to Wk

∗ as introduced in [47]. Unlike Wk, whose
distribution is bounded by the mapping network, Wk

∗ can
reside outside the range of the mapping network. We choose
to utilize Wk

∗ in our pipeline to enable a wider range of at-
tribute manipulation.
EG3D EG3D [4] is a 3D-aware GAN based on NeRF. Fea-
ture vectors of a radiance field are sampled from tri-plane
generated by StyleGAN2 [24] and summed to a tri-plane
feature vector F = gθ(x,w) given a 3D position x ∈ R3

and a latent code w that modulates the StyleGAN2 layers,
and gθ denotes the function of the whole process. F is fur-
ther processed by a small decoder to a Mf -dimensional fea-
ture vector. Then a set of sampled features {Fij}Ns

j=1 along
the set of camera rays {ri}HV ×WV

i=1 is aggregated with vol-
umetric rendering using Eq. 1, where Ns is the number of
sampled points per ray, and HV and WV are the height and
the width of the rendered feature image, respectively. Fi-
nally, the feature image is decoded into the high-resolution
image by a super-resolution module πSR:

πSR : RHV ×WV ×Mf → RH×W×3 (2)

4. LeNeRF Framework for 3D Local Editing
In this section, we present Local Editing NeRF

(LENeRF) which enables localized editing of 3D scenes us-
ing a text prompt for manipulation, tedit (e.g., blue eyes),
and a prompt specifying the region of interest, tmask (e.g.,
eyes). Unlike previous methods that perform global editing

2For simplicity, we use the notations (Wk , Wk
∗ ) from [47].
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Figure 3. The overall architecture and the training objective of LeNeRF. (a) The target latent code and the deformation field are generated
by the latent residual mapper (LRM) and the deformation network (DN), respectively. (b) The tri-plane features for the source and target
are encoded by the pretrained generator and the soft mask for combining both features is estimated by our attention field network (AFN).
(c) By using the neural renderer (NR) which incorporates the volume rendering and a super-resolution (not applied to rendered masks), we
obtain the rendered results for the source and target features, mask, and the locally-edited features, which is the final output of LeNeRF. (d)
In the training process, only LRM, DN, and AFN are trained for local editing, while other parameters for the generator and neural renderer
are fixed.

by updating the latent codes of 3D GAN [48], we propose
generating a 3D mask using CLIP [39] supervision and per-
forming localized editing with the generated mask through
a position-wise transformation of feature fields.

As shown in Fig. 3, LENeRF consists of frozen pre-
trained NeRF generator [4] along with trainable add-on
modules: Latent Residual Mapper (Section 4.1), Atten-
tion Field Network (Section 4.2), and Deformation Network
(Section 4.3). The Latent Residual Mapper (LRM) maps
the source latent code ws ∈ Wk to the target latent code
wt ∈ Wk

∗ , which in turn conditions the source and target
feature vectors Fs and Ft respectively (Fig. 3 (a)).

Then the 3D soft mask corresponding to the regions
specified by tmask is estimated by the Attention Field Net-
work (AFN) (Fig. 3 (b)). The Deformation Network handles
geometric manipulations by deforming the source feature
field {Fs}, and the source and target features are fused to
produce the final feature fields. The modules are trained us-
ing the proposed CLIP loss LCLIP+ , and the AFN is trained
additionally with the mask loss Lmask via pseudo-labels
generated with relevance map aggregation conditioned on
the mask prompt tmask (Fig. 3 (d), Section 4.4). Once
trained, LeNeRF performs 3D editing in real-time.

4.1. Latent Residual Mapper (LRM)

Inspired by CLIP-guided 2D image editing tech-
niques [1, 12, 38, 49, 51], we train the Latent Residual Map-
per (Figure 3 (a)), a mapper function that generates the tar-
get latent code wt given the source latent code ws. The
mapper is trained using CLIP guidance, and once trained,
manipulation can be performed in real-time without the
need for any inversion steps [38].

Instead of using wt directly for generating the final ra-
diance field, we utilize the mapper to produce tri-plane fea-
tures {Ft}, which are composited with the source tri-plane
feature field {Fs} to generate the final feature field. This
composition involves interpolating two features based on an
estimated 3D mask (Section 4.2).

The features in the 3D space are spatially entangled be-
cause the entire feature field is conditioned with a single
latent code. By utilizing more than one latent code (in our
case, two), we can grant position-wise freedom to the fea-
tures, which enables the localized editing of the source fea-
tures based on the 3D mask and the target features. Specif-
ically, given the source latent code ws ∈ Wk, the mapper
outputs the target latent code wt ∈ Wk

∗ which is used to
produce the final feature field, described as:

M(ws) = (M1(w1
s), ...,M

N (wN
s ))

= (∆w1, ...,∆wN ),
(3)

wi = (w1
s +∆w1, ...,wN

s +∆wN ), (4)

where M i, i ∈ 1, 2, ..., N are fully-connected networks and
wn denotes the subset of the latent code w that modulates
the n-th group of StyleGAN2-like backbone layers.

We design our mapper to estimate the residual values of
latent codes, which enables easier regularization and train-
ing. LRM is trained to minimize the LCLIP+ objective
given a target prompt tedit. See Section 4.4 for more de-
tails.

4.2. Attention Field Network (AFN)

The Attention Field Network (AFN) parameterizes the
3D attention field that serves as a soft 3D mask for interpo-
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Figure 4. Curated Examples of LENeRF.

lation between the source and the target features. It is con-
ditioned on both the source and target features, 3D position,
and the corresponding latent codes, allowing the model to
take into account both point semantics and global context:

A : R2Mf+6 × R2d → [0, 1],

m = A(Fs ⊕ x, Ft ⊕ x,ws,wt),
(5)

F̂ = (1−m) ∗ Fs +m ∗ Ft, (6)

where Fs, Ft ∈ RMf are the source and target tri-plane fea-
ture vectors, each conditioned by ws,wt ∈ Rd respectively,
and m ∈ R is the value of soft mask at x.

For a position x inside the region of interest described
by tmask, AFN is trained to produce a high mask value m
so that the estimated feature F̂ is dominated by the target
feature Ft. For a position x outside of our region of inter-
est, low mask values are estimated to ensure that the source
feature remains unchanged. Utilizing an estimated 3D soft
mask enables 3D editing focused on desired regions, while
avoiding unintended changes in other areas. Note that we
do not use any domain-specific mask prediction model or
semantic labels for AFN training. Instead, we show that it
is possible to distill CLIP’s capability to generate zero-shot
2D masks into 3D using our proposed loss function, as ex-
plained in Section 4.4.

4.3. Handling Large Deformations

Deformations are necessary for manipulations that in-
volve large geometric changes (e.g., opening mouth), as in-
terpolating between features representing different seman-
tics (e.g., teeth and lips) often leads to artifacts (please re-
fer to the supplement for figures). The deformation field
for the source radiance field is estimated by the Defor-
mation Network T conditioned with latent codes (x

′
=

T (x,ws,wt) + x), and Eq. 5 can be re-written as:

m = A(Fs ⊕ x
′
, Ft ⊕ x,ws,wt). (7)

4.4. Training

Generator The estimated features (Eq. 7) are decoded
into a radiance field and rendered into a 2D image Ît via
volume rendering (Eq. 1) followed by the super-resolution
module πSR (Eq. 2) given a randomly sampled camera
pose v ∼ Zv , where Zv is the camera pose distribution.
Similarly, the source image Is and the raw target image It
are rendered using the same process with Fs and Ft.

CLIP Loss We use pretrained CLIP [39] text encoder ET

and image encoder EI to optimize our modules so that the
estimated image Ît matches tedit. However, a direct ap-
proach to maximize the cosine similarity of EI(Ît) and
ET (tedit)) frequently leads to degenerate solutions. This
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Figure 5. Results of partial editing.

is because the CLIP embedding space includes false pos-
itives, where degenerate images result in a high similarity
score with the target text embedding. Therefore, we instead
propose a robust LCLIP loss that utilizes contrastive loss
together with image augmentations:

LCLIP = − log

∑
s+∈S+ eq·s

+∑
s∈S+∪S eq·s

, (8)

where S+ is a set of positive samples3 and S− is a set of
negative samples4. Here, q = EI(aug(Ît))−EI(aug(Is)),
tsrc is a neutral text describing the source image (e.g.,
”Photo of a person”), and aug refers to a random image
augmentation. LCLIP maximizes the mutual information
between q and the positive samples while minimizing that
of the negative samples. Comparing the directions of the
CLIP embeddings and using multiple cross-domain positive
samples lead to stable and robust optimizations, along with
the negative samples inhibiting lazy manipulations.

Also, like [38], we incorporate an identity preserving
loss [40] Lid, using a pretrained ArcFace [10] model, and
a L2 norm of the manipulation step M(ws) to preserve the
attributes of the source radiance fields. The total loss for
training the Latent Residual Mapper and the Deformation
Network is LCLIP+ = LCLIP + λL2∥M(ws)∥2+λidLid.

3D Distillation of CLIP’s Knowledge As we lack ground-
truth 3D semantic masks to supervise the 3D attention field,
we render them into 2D and supervise them using generated
2D pseudo-masks. This is necessary since training AFN
directly with LCLIP+ often leads to the generation of ir-
relevant and poorly localized attention fields, resulting in
severe artifacts (Please see supplement). This is not surpris-
ing, given that the target text prompt tedit does not always

3S+ := {ET (tedit)− EI(aug(Is)), ET (tedit)− ET (tsrc)}
4S− := {ET (tedit)− EI(aug(Is))}

Figure 6. Results of out-of-distribution cases.

align with the region of interest, and the CLIP signal tends
to have a global effect on the radiance fields. Furthermore,
we presume that additional complexity to the model without
adequate regularization easily leads to degenerate solutions.

Therefore we first introduce a separate masking prompt
tmask solely describing our region of interest. Next, we
utilize tmask together with the CLIP model to generate a
2D relevance mask of the source or target image that serves
as a pseudo-label for AFN training. Inspired by transformer
visualization methods [2, 6], we aggregate relevance maps
across the transformer heads and layers to build a relevance
mask M ∈ RHV ×WV with respect to the model output y,
given tmask (More details in the supplementary).

Unlike [6], where the transformer output yt is the logit
value of class t, our output y is the cosine similarity between
the embedding vector Et(tmask) and EI(I). Generally, it
is sufficient to use the source image Is for the mask gen-
eration, but for large deformations, we estimate two masks
from both the source and intermediate images Is and It and
perform a max operation.

The estimated relevance mask M is used as a pseudo-
label to guide the training of AFN by minimizing the
MSE loss Lmask between the volume-rendered attention
field M̂t and M. While the generated pseudo-label M
is low-dimensional and often inaccurate, the semantic
information contained in the input features to AFN allows
for training even with noisy guidance (Figure 3 (d)).

Mask Regularization We utilize total variation regulariza-
tion [41] (Eq. 9) to regularize the 3D attention field for spa-
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Figure 7. Results of LENeRF and various baselines.

tial smoothness, where ∆2
xm denotes the squared difference

between mi+1,j,k and mi,j,k, and analogously for ∆2
ym and

∆2
zm:

Ltv =
1

N

∑
m∈A

√
∆2

xm+∆2
ym+∆2

zm. (9)

Also, the sparsity regularization (Eq. 10) is used in order to
focus on the region of interest:

Lsparsity = −
∑

xi∈Ktop

logmi −
∑

xi∈Kbottom

log(1−mi),

(10)
where Ktop refers to the set of coordinates with the top-k
m values, and Kbottom refers to the bottom-k. In summary,
the objective function for AFN A is

LAFN = λmaskLmask + λtvLtv

+λsparsityLsparsity + λCLIP+LCLIP+ .
(11)

Please refer to the supplement for additional descriptions,
hyperparameters, and implementation details.

5. Experiments
Datasets LeNeRF utilizes pretrained EG3D [4] generator
trained on FFHQ [23], AFHQv2 CATS [9], and ShapeNet
Cars [8, 28]. However, please note that the datasets are not
used when training LENeRF.
Baselines We compare LENeRF against three state-of-
the-art NeRF editing methods: CLIP-NeRF [48]5, FEN-
eRF [45], and IDE-3D [44]. While CLIP-NeRF is a text-
guided editing model, FENeRF and IDE-3D are not directly
comparable to our method since semantic masks are used
as a control handle. Therefore we create two new baselines

5Note that the full code of CLIP-NeRF has not been released at the time
of writing. Therefore, the results are our reproduced CLIP-NeRF.

Figure 8. Result of sequential editing.

based on the two models (FENeRF+StyleCLIP and IDE-
3D+StyleCLIP) which can edit radiance fields with text
guidance. Specifically, we invert the images generated by
the two methods to StyleGAN latent codes using e4e [47]
encoder. StyleCLIP [38] is used to edit the inverted images
given a target text prompt. Face semantic maps are then ex-
tracted from the edited images using a pretrained face pars-
ing network of SofGAN [7], which is used for the input
guidance. Note that only FFHQ results can be reported for
FENeRF and IDE-3D since there are no available semantic
labels and pretrained parsing networks for other datasets.
Qualitative evaluations Fig. 4 provides curated results of
our model, showing the quality, diversity, and view con-
sistency of LENeRF. Fig. 7 presents qualitative compar-
isons against other three methods. FENeRF+StyleCLIP
and CLIP-NeRF fail to generate high-quality renderings,
and the quality of images degrades even further after edit-
ing. IDE-3D+StyleCLIP synthesizes high-fidelity images
before editing, but it is difficult to edit texture or expres-
sion using semantic mask guidance. Also, semantic mask-
based methods require either inversion steps which cannot
be done in real-time or an encoding step which degrades
identity preservation. LENeRF, however, can perform lo-
calized editing in real-time and preserve the quality and the
identity of original content.

Fig. 5 shows partial editing results where we use the
same attribute prompt tedit while varying the mask prompt
tmask. This enables highly localized editing without un-
wanted changes or color-bleeding artifacts. Fig. 8 demon-
strates sequential editing results where we perform differ-
ent manipulations sequentially. Multiple changes to the
source latent code destroy the initial content gradually when
trained without AFN (bottom) whereas, the identity is pre-
served in LENeRF (top) by manipulating only the local
parts of the radiance field. Fig. 6 shows that LENeRF
is robust to out-of-distribution editing (e.g., fire on hair).
LENeRF has the representation capability to generate sam-
ples that are outside of the latent space by fusing the two
radiance fields, thereby reflecting the target prompts while
preserving the identity.
Quantitative evaluations Table 1 provides quantitative
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Table 1. PSNR, R-precision, and FID performance of various
baselines and LENeRF on FFHQ and Cats.

FFHQ Cats

PSNR ↑ R-pre ↑ FID ↓ ∆FID ↓ FID ↓ ∆FID ↓

CLIP-NeRF 7.08 0.21 41.5 +19.8 18.6 +12.7
FeNeRF + SC 5.33 0.19 37.4 +31.2 - -
IDE3D + SC 12.44 0.61 4.56 +3.29 - -

LeNeRF w/o AFN 10.81 0.66 4.37 +4.90 2.71 +4.17
LeNeRF (Ours) 20.86 0.78 4.37 +2.21 2.71 +1.94

Figure 9. Results of the effect of λsparsity on the mask.

measures of LENeRF and various baselines. We quantify
the unintended changes by computing the PSNR between
the source and the manipulated images outside of the region
of interest specified by tmask. The ground-truth mask of the
region is detected by a pretrained face parsing network [7].
We assess the quality of the source images and manipulated
images using Fréchet Inception Distance (FID) [18], and
compare the differences to evaluate post-editing degrada-
tion. Also for FFHQ, we report R-precision using a pre-
trained attribute classifier [30] to measure how well the text
prompt is reflected in the manipulated results. We generate
30k samples with randomly sampled text prompts to calcu-
late FID, and sample 1K images per text prompt to calculate
PSNR and R-precision.

Among the models, LENeRF shows the best FID score,
demonstrating that it produces high-quality results after the
manipulation. Also, LENeRF have the smallest FID differ-
ence between the images before and after the edit, indicat-
ing the robustness of the model. Moreover, LENeRF shows
the highest PSNR and R-precision; it has the best perfor-
mance in achieving the desired manipulations while mini-
mizing unintended changes. Please refer to the supplement
for more details.
User study We ask users to evaluate LENeRF along with
various baselines in the range from 1 to 10 regarding 1) fi-
delity, 2) locality, 3) identity preservation, and 4) how well
the text prompt is reflected in the results. LENeRF outper-
forms all baselines by a large margin on each criterion, and
the scores are in the supplement.
Ablation study Fig. 9 shows the effect of controlling
λsparsity. A larger weight on Lsparsity produces a sharper
3D mask whereas a smaller weight leads to a smoother
mask. Fig. 10 visualizes the pixel-wise difference map to
show the effect of AFN and the radiance fusion technique

Figure 10. Results on comparison of pixel-wise difference maps.

Figure 11. Importance of our objective functions LCLIP+ ,
Lmask, and Deformation Network (DN).

on the locality. Generating a 3D mask helps on minimize
the unintended changes outside of the region of interest and
reduces color-bleeding artifacts that are incorporated with
the target prompt tedit. Fig. 11 shows the importance of the
DN and our objective functions LCLIP+ and Lmask. Min-
imizing the naive CLIP loss results in degenerate solutions.
Training AFN without Lmask fails to estimate a 3D mask,
resulting in severe artifacts. Finally, LENeRF without DN
leads to the interpolation of unrelated features and cannot
handle geometric manipulations.

6. Conclusion

Conclusion While texts provide rich and descriptive infor-
mation for editing, they often lack locality. LENeRF fo-
cuses on this aspect and proposes a point-wise feature ma-
nipulation technique via 3D mask generation and radiance
fusion. We show that 3D-aware knowledge of NeRF and
rich multi-modal information from CLIP can be combined
to create a robust 3D mask without any additional datasets.
LENeRF generates high-fidelity and find-grained 3D edit-
ing results.
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