
expOSE: Accurate Initialization-Free Projective Factorization using Exponential
Regularization
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Abstract

Bundle adjustment is a key component in practically all
available Structure from Motion systems. While it is crucial
for achieving accurate reconstruction, convergence to the
right solution hinges on good initialization. The recently
introduced factorization-based pOSE methods formulate a
surrogate for the bundle adjustment error without reliance
on good initialization. In this paper, we show that pOSE
has an undesirable penalization of large depths. To address
this we propose expOSE which has an exponential regular-
ization that is negligible for positive depths. To achieve ef-
ficient inference we use a quadratic approximation that al-
lows an iterative solution with VarPro. Furthermore, we
extend the method with radial distortion robustness by de-
composing the Object Space Error into radial and tangen-
tial components. Experimental results confirm that the pro-
posed method is robust to initialization and improves recon-
struction quality compared to state-of-the-art methods even
without bundle adjustment refinement.1

1. Introduction

Factorization is a long-established method in Structure
from Motion (SfM). It originates from [38] by Tomasi
and Kanade showing how, under the orthographic camera
model, structure and motion can be computed simultane-
ously from an image sequence using singular value de-
composition (SVD). The method was later reformulated for
affine cameras, including weak perspective projection [32].
Strum and Triggs [36] further extended factorization to pro-
jective cameras by accounting for projective depths.

One appeal of these factorization algorithms is they can
yield a closed-form solution by using the SVD. It is how-
ever only possible to use the SVD if every considered scene

1This work has been funded by the Swedish Research Council (grant
no. 2018-05375), the Swedish Foundation for Strategic Research project,
Semantic Mapping and Visual Navigation for Smart Robots (grant no.
RIT15-0038), and the Wallenberg AI, Autonomous Systems and Software
Program (WASP).

Figure 1. (Left) Examples of two of the images in the Fountain se-
quence. (Right) Reconstruction obtained with expOSE (top) and
pOSE (bottom) for 3 different values of η. Our method achieves
the same convergence rate as pOSE while having a higher recon-
struction quality and being less dependent on the choice of η.

point is visible throughout the whole image sequence. In
cases of missing data, the SVD can be replaced with itera-
tive methods. Simple splitting methods [4,8,22] are able to
regularize singular values when computing a proximal op-
erator, but can give rather erroneous solutions because of a
low convergence rate close to the optimum. [5, 8] give an
idea of convex formulation using the nuclear norm, but are
usually too weak for SfM in the presence of noise [19, 30].
The papers [1, 9, 10, 31] suggest different ways to assure
that direct bilinear optimization only has a global minimum.
However, SfM problems with local minima do not fulfill
their required conditions [3].

It was recently shown by Hong et al. [14–17] that direct
bilinear estimation of structure and motion can be made ro-
bust to local minima in combination with the Variable Pro-
jection (VarPro) method. In [15] the objective is exchanged
for the Pseudo Object Space Error (pOSE) which is a trade-
off between the object space error and a quadratic regular-
ization term. This was later extended to a radial distortion
invariant version RpOSE, presented in [18]. With their bi-
linear factorization structure and a large basin of conver-
gence when using VarPro, these pOSE models tend to find
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a global minimum independently of the initialization. Addi-
tionally, both pOSE and RpOSE have in [18] been shown to
be local approximations of the reprojection error, enabling
iterative refinement to the maximum likelihood solution.

In this paper, we show that the regularization term in
the pOSE formulation overly penalizes large positive depths
and can thereby limit the range of feasible depths too much
to achieve satisfactory solutions. We instead propose reg-
ularization with an exponential penalty that is negligible
for positive depths. To achieve efficient inference we use a
quadratic approximation of the exponential term suitable for
optimization with VarPro. Moreover, we extend the method
with radial distortion robustness by decomposing the OSE
into radial and tangent components.

In short, the main contributions of this paper are:

• We investigate the pOSE models’ undesirable penal-
ization of large depths and propose expOSE which has
negligible regularization of positive depths;

• We formulate a quadratic approximation of the expo-
nential regularization term in expOSE to make it suit-
able for optimization with VarPro and show that, with
random initialization, the model achieves convergence
rates similar to pOSE with significantly higher recon-
struction quality;

• We extend expOSE with radial distortion robustness by
decomposing the Object Space Error (OSE) into radial
and tangent components and propose an SfM pipeline
that is able to obtain a complete and accurate Euclidean
reconstruction from uncalibrated cameras.

2. Reconstruction Objectives
In this section, we illustrate the problems with direct op-

timization of reprojection error and discuss how this is ad-
dressed using the pOSE model [15]. We then present our
exponential regularization and show how this addresses the
limitations of the pOSE model.

2.1. Reprojection Error and Cheirality

Bundle adjustment [12, 39] is the standard routine when
it comes to solving the Structure-from-Motion problem.
Given measured point projections mij the goal is to attempt
to minimize ∑

ij

∥∥∥∥mij −
xij

zij

∥∥∥∥2 , (1)

where
[
xij

zij

]
= PiUj . Here xij is a 2 vector, zij is a num-

ber, referred to as the projective depth, Pi is a 3× 4 camera
matrix and Ui is a 4 × 1 vector containing homogeneous
coordinates of the projected 3D point. Under the assump-
tion of Gaussian image noise, this gives the maximal like-
lihood estimate of the camera matrices and 3D points [12].

Figure 2. Left: Objective values of the reprojection error (blue),
the pOSE error (η = 0.1, red) and our proposed formulation (η =
0.1, yellow) on the lines (1−t)(0.5, 0,−1)+t(0.5, 0, 1) (top) and
(1− t)(−0.5, 0,−1) + t(0.5, 0, 1) (bottom) when m = (0.5, 0).
Note that the reprojection error is undefined at z = 0 since this
corresponds to the camera center. Right: Corresponding camera
and sampling line.

It is well known that optimizing (1) is difficult and requires
good initialization to achieve convergence to the right so-
lution. One of the difficulties is the division of xij by zij .
This creates a barrier of objective values that goes to in-
finity and needs to be traversed when for example moving
from (xij ,−zij) to (xij , zij). The blue curve of Figure 2
(top) shows a 2D example of this barrier. Here we used
m = (0.5, 0) and sampled the function

(
m− x

z

)2
on the

line segment (x, z) = (1 − t)(0.5, 0,−1) + t(0.5, 0, 1).
The best value over this line is at t = 1 which gives
(x, z) = (0.5, 0, 1). For comparison, we also plot the corre-
sponding values of the pOSE model [15] (red) and the pro-
posed formulation that we will describe below (yellow). In
a calibrated setting the interpretation of zij is the depth [12]
of the observed 3D point. Hence, in practical cases, where
observed points are in front of the camera, there is usually
no reason to allow solutions with negative zij . In the uncal-
ibrated case zij is referred to as a projective depth. It can
be shown that when the data is noise free (with sufficiently
many visible projections) there is always a solution where
the projective depths are all positive [26] if the observed
points are in front of the camera. Moreover, any other solu-
tion is projectively equivalent to this one, meaning that there
is a projective 3D transformation that makes the projective
depths positive [25, 26].

2.2. The pOSE Model

In view of the above, constraining the problem to posi-
tive depths is no practical restriction. Still finding a good
starting solution where all depths are positive is not a trivial
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issue. In [15] the objective (1) is exchanged for the object
space error (OSE)

ℓOSE(xij , zij) = ∥zijmij − xij∥2. (2)

Here, the scale-invariant residual of (1) has been replaced
with a linear error allowing points to switch from negative
to positive projective depths. It can be shown [18] that the
OSE residual zimij−xij is the first order Taylor expansion
of the projective residual mij − xij

zij
around (xij , zij) =

(mij , 1), and it is therefore in some sense the closest linear
approximation that we can find. On the downside, the OSE
is clearly minimized by the trivial solution xij = 0, zij = 0
for all i, j. Therefore [15] adds the quadratic regularization

ℓaff(xij) = ∥xij −mij∥2, (3)

which penalizes the trivial zero solution. Note that (3) and
(2) both vanish when (xij , zij) = (mij , 1). The proposed
pOSE objective∑

ij

((1− η)ℓOSE(xij , zij) + ηℓaff(xij)) , (4)

where 0 < η < 1, therefore allows arbitrary starting so-
lutions but penalizes projective depths that deviate signifi-
cantly from 1. The red curve of Figure 2 (top) shows pOSE
values (with η = 0.1) over the line (1 − t)(0.5, 0,−1) +
t(0.5, 0, 1). In contrast to the reprojection error, the pOSE
formulation does not give any barrier at z = 0. It is exper-
imentally shown in [15] that when optimized using VarPro
[16] this leads to a method that converges to the right solu-
tion in the vast majority of cases starting from random ini-
tialization (including starting points with negative depths).
Note that if we column-stack the camera matrices Pi into a
matrix P with 4 columns, and similarly row-stack the 3D
points into a matrix U with 4 rows, the resulting product
X = PU is a matrix of rank 4. We can therefore formulate
the pOSE objective as a low-rank recovery problem

min
rank(X)=4

∥A(X)− b∥2, (5)

where A is a linear operator. It is well known from com-
pressed sensing that such formulations can often be solved
optimally [6, 9–11, 19, 28, 30, 33]. The optimization prob-
lem becomes particularly easy for large values of η. On
the other hand, the regularization term also introduces an
undesirable penalty for large (positive) depths which may
constrain the range of feasible depths too much to achieve
satisfactory solutions. The bottom images in Figure 2
show the same evaluation as the top ones but over the line
(1− t)(−0.5, 0,−1) + t(0.5, 0, 1). All of the points on this
line give 0 reprojection error (except at the camera center
(0, 0, 0) for which the projection is undefined). The pOSE
formulation (red curve) clearly penalizes solutions of small
or negative projective depth but its undesirable growth for
large positive values is also visible.

2.3. Exponential Regularization

In this paper, we instead propose to regularize the depth
using an exponential function (yellow curves in Figure 2).
Specifically, we replace the affine term (3) with

ℓexp (xij , zij) = e
−
(

mijxij+zij√
∥mij∥2+1

)
. (6)

The term mijxij+zij√
∥mij∥2+1

is the length (with sign) of the projec-

tion of the vector (xij , zij) onto (mij , 1). Note that its sign
is negative when the angle between (xij , zij) and (mij , 1)
is larger than 90◦. The exponential function will penalize
such values heavily. Still, the penalty is finite for all val-
ues making it is possible to use start the optimization from
anywhere. On the other hand for positive growing values
the exponential function tends to 0 and therefore does not
restrict the feasible projective depths as the affine term (3)
does.

The proposed expOSE objective is then

ℓexpOSE =
∑
ij

(1− η)ℓOSE(xij , zij) + ηℓexp(xij , zij). (7)

At first glance it may seem as if replacing (3) with (6) will
yield an ill-posed problem since large depths are hardly pe-
nalized by (6). Adding a small penalty for these values to
ensure a well-posed problem may therefore be warranted.
Note, however, that unless there is an exact solution (with
zero reprojection errors) the OSE term is not scale invariant
but has a weak shrinking bias. In practice, we empirically
observe that this bias is generally enough for our proposed
algorithm to converge well from random starting solutions.

We conclude this section by noting that our proposed
method is much less sensitive to parameter selection than
the original pOSE model [15]. Since the shrinking bias of
the OSE term is relatively weak an increased regularization
cost, due to a change of parameters, can often be compen-
sated for by changing the scale of the reconstruction. In
contrast, the choice of η in the original pOSE model is cru-
cial. Figure 1 shows how η affects the reconstruction (more
details about this figure are provided in Section 3.2).

3. Optimization with VarPro
One of the main benefits of the pOSE formulation [15]

is that it is quadratic in the elements of X . Therefore, given
values for camera matrices P the optimal 3D points U∗(P )
can be computed in closed form using a pseudo inverse. The
VarPro method [16, 27, 35, 41] solves the reduced problem

min
P

∥A (PU∗(P ))− b∥2 , (8)

using the Levenberg-Marquardt method [12, 39]. In con-
trast to standard Gauss-Newton type methods that optimize
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Figure 3. The exponential function and its Taylor approximation.

locally over both U and P , the main benefit of the elimina-
tion of U is that dampening only needs to be applied to P .
This has been shown empirically to greatly improve conver-
gence [14,16]. The intuition is that small changes in P will
sometimes result in large changes in U , but this is prevented
by a dampening term which causes the algorithm to stall.

Since the exponential regularization term is not quadratic
VarPro is not directly applicable to our formulation. We,
therefore, employ an iterative approach that locally approx-
imates (6) with a quadratic function. Consider the 2nd order
Taylor expansion of e−aTy at a point ȳ given by

e−aTy ≈ e−aT ȳ

(
1− aT (y − ȳ) +

1

2
(aT (y − ȳ))2

)
.

(9)
Completing squares gives the expression

e−aTy ≈ e−aT ȳ

2

(
aT (y − ȳ)− 1

)2
+ e−aT ȳ. (10)

Note that when minimizing with respect to y the last term
is constant and can be ignored. Since the exponential
function is positive the result is a weighted linear least

squares term in the unknown y. With y =

[
xij

zij

]
and

a = 1√
∥mij∥2+1

[
mij

1

]
we get our approximation

ℓ̃exp (xij , zij) ≈
ℓexp (x̄ij , z̄ij)

2

(
mT

ij∆xij +∆zij√
∥mij∥2 + 1

− 1

)2

,

(11)
where ∆xij = xij − x̄ij and ∆zij = zij − z̄ij . To the
left in Figure 3 we show e−ay with a = 1 (blue curve), and
the Taylor approximation at ȳ = 0 (orange dashed curve).
In the supplementary material, we compare level sets of the
expOSE objective, its approximation, and pOSE.

3.1. The expOSE Model

Replacing the exponential regularization in (7) with the
quadratic approximation (11) at ȳij results in a quadratic
loss that can be written as ∥A(PU)− b∥2, which can be

Algorithm 1: VarPro for solving expOSE (7)
Normalize image measurements by removing the mean and

dividing by 3 standard deviations;
Select the inputs η, and randomly initialize elements of P from a

normal distribution of unit std ;
Set ȳij = [mT

ij , 1]
T ;

Set upA and b by approximating the exponential regularization
by a quadratic form around each ȳij ;

Compute U by minimizing (7) with P fixed;
Set do update = 0 if scheduling update of regularization is

considered, otherwise do update = 1;
while true do

Compute the Jacobians
JP = A(UT ⊗ I); JU = A(I ⊗ P );
and the residuals r = Avec (PU)− b;
Compute Pnew and Unew from JP , JU , and r as
Pnew = P +∆P and Unew = U +∆U , with
∆P = (JT

P (I − JUJ†
U )JP + λI)−1JT

P r, and
∆U = −J†

U (r + JP∆P );
Evaluate the loss ℓnew;
if ℓnew < ℓbest then

ℓbest = ℓnew ;
P ← Pnew; and U ← Unew;
if do update then

Set ȳij = PiUj ;
Set upA and b by approximating the regularization

by a quadratic form around each ȳij ;
end

end
if stopping criterion then

if do update then
break;

else
do update = 1

end
end

end

optimized using VarPro as described in Algorithm 1. The
linear operator A and the vector b can be computed in each
iteration based on the image measurements mij , the current
estimations ȳij and η. For the initial approximation of the
regularization, we use ȳij = (mij , 1).

Regularization update scheduling: In order to improve
the convergence of the algorithm, we propose to keep the
initial quadratic approximation of the regularization (11) ei-
ther for a fixed number of iterations or until convergence of
the initial approximation. This delays the approximation of
the exponential regularization in each iteration until a stable
initial solution with positive depths is found. In Section 3.2
we show empirically the advantage of doing so.

Data normalization: Since our regularization term is
geometrically motivated and our approach replaces repro-
jection error with OSE it is important to use normalization
of the image data to achieve a well-conditioned formula-
tion [13]. Here we follow standard approaches: We first
subtract the image center from all image points, then divide
them with the resulting standard deviation over the image.
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(a) Dino (Small) (b) Fountain

Figure 4. Comparison of convergence rate and normalized 3D error of different methods on the Dino (a) and Fountain (b) datasets. The
metrics are obtained by running 100 instances starting from random initializations. In dashed we should the metrics for the pOSE baseline.

3.2. Performance evaluation of expOSE

Before presenting our model for radial distortion we
evaluate the effects of using exponential regularization with
the standard OSE. We use the Dino (Small) [3] (36 cameras,
319 points, 77% missing data) and Fountain [34] (11 cam-
eras, 1167 points, 23% missing data) datasets to evaluate
the performance of expOSE with varying parameters - the
weight η and scheduling of regularization update-, and op-
timization strategies - VarPro, Levenberg-Marquardt (LM),
and Alternating Minimization (AltMin) [7].

The metrics used for the comparisons are convergence
rate of the algorithm and relative 3D error to GT. The con-
vergence rate is calculated by counting the number of times
the algorithms converged to the lowest loss over 100 prob-
lem instances starting from random initializations (a thresh-
old of 2% above the smallest loss value is used). The 3D
error is computed as e3D = ∥U ′−UGT∥

∥UGT∥F
where U ′ is the re-

sult of performing projective registration of the factor U to
the ground-truth point cloud UGT. In this way, we are able
to measure the quality of the factors U that are outputted by
each method. For a fair comparison, we compute the 3D
errors for solutions that converged to the desired optimum.

The methods are implemented in MATLAB, and we let
each method perform a maximum of 500 iterations. For
the case of regularization update scheduling, which we
call expOSE(S), we delay the update of the regularization
quadratic approximation by 250 iterations or until the ini-
tial optimization converges - whichever occurs first.

Effect of η and scheduling: The performance of ex-
pOSE is evaluated for multiple values of η ranging from
10−4 to 0.5. The results are plotted in Figure 4. We show
that expOSE is significantly more robust to η than pOSE in
terms of 3D errors (see also Figure 1). We also show that
delaying the update of the quadratic approximation of the
regularization results in a significant boost in convergence
rate, allowing us to achieve rates similar to pOSE.

Comparison with other optimization strategies: We

compare the performance of expOSE (with and without
scheduling) when using VarPro, LM and AltMin. The re-
sults confirm that, just like with pOSE, VarPro is the most
reliable method for expOSE, while LM and AltMin achieve
poor convergence rates.

4. Robustness to Radial Distortion

In the previous sections, we considered modifications to
the original pOSE model which assumes a regular pinhole
camera. In [18] the RpOSE model which instead uses a
radial camera [20, 21, 23, 24, 29, 37, 40] is presented. This
model is invariant to radial distortion which the standard
pOSE model does not handle. We note however that the
radial model requires more data for parameter estimation
since it essentially only measures errors in one direction of
the image. To address this issue we introduce an interme-
diate model by decomposing the reprojection error into a
tangential and a radial component. By down-weighting the
tangential error we obtain a model that is more robust to ra-
dial distortion than the pinhole camera but less sensitive to
missing data than the radial camera. We then introduce an
exponential regularization term for this model.

4.1. Decoupling Tangential and Radial Errors

When working with the radial camera model it is typi-
cally assumed that the principal point and the distortion cen-
ter are the center of the image and have coordinates (0, 0).
We make the same assumption here.

The reprojection error is obtained by taking the length of
the error vector e(x, z) = x

z −m. The coordinates of this
vector are given in w.r.t. the canonical image basis (1, 0)
and (0, 1) of the image and can be interpreted as errors in
the x- and y-directions respectively. For a point m we are
interested in measuring the error in the radial direction m

∥m∥
and the tangential direction m⊥

∥m∥ , where m⊥ is the orthog-
onal vector to m (see Figure 5). We, therefore, write the
error vector as a linear combination of these. It is not diffi-
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m⊥
∥m∥

m
∥m∥

m

Figure 5. Levelsets (red ellipses) of ℓwOSE for α = 0.1 and 0.9.
Here m = (0.6, 0.9) and z = 1.

cult to verify that

x

z
−m =

(
mTx

z∥m∥
− ∥m∥

)
m

∥m∥
+

mT
⊥x

∥m∥z
m⊥

∥m∥
. (12)

In the basis m
∥m∥ , m⊥

∥m∥ the error vector can be written as

e(x, z) =
1

∥m∥

[
mT

mT
⊥

]
x

z
−
(
∥m∥
0

)
. (13)

Independently of the basis chosen, the reprojection error
is nonlinear due to the division by z, making it unsuitable
for optimization. The OSE in the new basis is obtained by
rescaling the reprojection error e(x, z) by the depth z. The
expression for OSE error in the new basis is therefore

∥ze(x, z)∥2 =

(
mT

∥m∥
x− ∥m∥z

)2

+

(
mT

⊥
∥m∥

x

)2

. (14)

4.2. Reweighting the Error Components

Radial distortion is usually modeled by modifying the
projection according to

κr(m)m =
x

z
(15)

where κr is a scalar that depends on the distance to the dis-
tortion center. It is clear that the second term of (14) van-
ishes when inserting (x, z) fulfilling (15) for any κr, but
not the first term. To handle radial distortion we could in-
corporate the additional parameter κr in (14) and explicitly
estimate it. Unfortunately, this results in a more complex
model (with trilinear interactions) making optimization dif-
ficult. Alternatively, to achieve robustness to radial distor-
tion we can remove the first term, as in [18]. The downside
of doing this is that it removes roughly half of the data (one
out of two coordinates for each projection) available for use
in inference. Therefore we here propose to compensate for
the unknown radial distortion by down-weighting the first
term or equivalently allowing a larger standard deviation in
the radial direction.

Let σ2
r and σ2

t denote the uncertainties of the reprojec-
tion error ϵ = sx/z − m along the radial and tangential
direction, respectively, and where s is an unknown positive
scalar that models radial distortion effects and focal length
scaling. Assuming the reprojection error ϵ is sampled from
a 2D normal distribution N (0,Σ), the probability of the
model {x, z} given m is

P (x, z|m) =
1

2πdet(Σ)1/2
e−s2( 1

sm−x/z)TΣ−1( 1
sm−x/z).

(16)
Maximizing the likelihood (16) w.r.t. {x, z} is equivalent
to minimizing

s2

σ2
r

(
mT

∥m∥
x

z
− 1

s
∥m∥

)2

+
s2

σ2
t

(
mT

⊥
∥m∥

x

z

)2

, (17)

where Σ = RT diag(σ2
r , σ

2
t )R, and R is a rotation ma-

trix that aligns the coordinate axis with m/∥m∥ and
m⊥/∥m∥. While the second term quadratic term of (17)
is not affected by s, in the first term ∥m∥ is weighted by
1/s, which is undesirable as previously motivated. We pro-
pose to approximate (17) by

1

σ2
r︸︷︷︸

(1−α)

(
mT

∥m∥
x

z
− ∥m∥

)2

+
1

σ2
t︸︷︷︸
α

(
mT

⊥
∥m∥

x

z

)2

. (18)

This approximation of the first term adds a bias to the ob-
tained solution based on the unknown shift

(
1
s − 1

)
∥m∥.

We regulate the effect of this bias - and thus the robustness
to radial distortion - by controlling the relative weight of
the first quadratic term (biased) versus the second quadratic
term (unbiased) through the value of α ∈ [0, 1]. For the
extreme case of α = 1 the radial component of the error is
completely dropped resulting in the loss presented in [18].
Linear residuals can be obtained by replacing (18) with its
component-weighted OSE counterpart

ℓwOSE = (1− α)

(
mT

∥m∥
x− ∥m∥z

)2

+ α

(
mT

⊥
∥m∥

x

)2

.

(19)
Figure 5 shows an example of level sets (in the image

plane z = 1) for α = 0.1 and 0.9.
Note that the same approach can be used to handle un-

known focal lengths. If we assume that the intrinsic calibra-
tion matrix of the camera is K = diag(f, f, 1), the relation
between the reprojected point and the image measurement
is κr

f m = x
z and therefore the re-weighted formulation can

be applied to this setting as well. An unknown/varying focal
length f is however modeled by the standard pOSE model
in contrast to κr which depends on the distance between
the projection and the principal point and thus cannot be
included in a factorization algorithm without adding extra
variables.
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4.3. Regularization for radial distortion invariance

Weighting differently the radial and tangential of the
OSE does not change, in general, the exponential regular-
ization described in Section 2. However, one must note that
for the extreme case α = 1, for a given X = PU the vari-
ables in every third row of X and P vanish from the OSE.
In other words, decreasing the total loss will always be pos-
sible by increasing z through the third row of P , and conse-

quently decreasing the e
− z√

∥m∥2+1 part of the exponential
regularization. To avoid such undesirable behavior, we pro-
posed an alternative exponential regularization for the par-
ticular case α = 1 acting only on x and y, i.e.,

ℓexp = e−
mT

∥m∥x (20)

This alternative regularization enforces the reprojection x
according to the 1D radial camera model m = λx to have
positive scale λ > 0, canceling out the shrinking bias of the
OSE as in the general case.

The expOSE loss for weighted radial and tangent com-
ponents of the OSE can then be approximated as

ℓexpOSE =
∑
ij

(1−η)ℓwOSE(xij , zij)+ηℓ̃exp(xij , zij) (21)

with ℓ̃exp defined as
ℓexp(x̄ij ,z̄ij)

2

(
mT

ij∆xij+∆zij√
∥mij∥2+1

− 1

)2

, α ∈ [0, 1[

ℓexp(x̄ij)
2

(
mT

ij∆xij

∥mij∥ − 1

)2

, α = 1

. (22)

This radial distortion robust version of expOSE can be op-
timized following Algorithm 1 nonetheless since both the
component-weighted OSE and the quadratic approximation
of the regularization can still be written as ∥A(PU)− b∥2.

5. Outline of Full Reconstruction Pipeline
We propose to use expOSE as a solution to uncalibrated

and radial distortion invariant Structure-from-Motion. A
few Bundle Adjustment steps can be performed for further
refinement. The pipeline takes as input 2D image measure-
ments of points tracked along multiple views, just like any
other factorization-based SfM pipeline. The proposed ra-
dial distortion-invariant pipeline can be decomposed into
the following sequential modules:

1. expOSE factorization: Given a set of image points
tracked along several images, we use Algorithm 1 to
obtain estimations of the uncalibrated camera matrix,
and the 3D points, up to projective ambiguity.

2. Radial distortion estimation (and camera matrix com-
pletion): Using the solution obtained with expOSE, the
distortion parameters and, for α = 1, the third row of
the uncalibrated camera matrix are estimated from the
equations in (15). Note that by assuming a Brown-
Conrady radial distortion model [2] with κ(m) =∑

j kj∥m∥2j , for each camera a system of equations
of the form

Mi

[
p
(3)
i

k

]
= bi (23)

can be obtained, where p
(3)
i is the third row of the ith

camera matrix, and k is a vector of the distortion pa-
rameters. Here we use a distortion model with three
parameters, kj , j = 1, ..., 3. Assuming that the distor-
tion model is constant along all views, the overall sys-
tem of equations can be written as M [p(3)

T
,kT ]T = b,

with p being a 4× #views vector with all third rows of
the camera matrices. For α = 1 both p(3) and k are
unknowns and are estimated in this step. For α ̸= 1,
the system can be simplified to Mk = b−Mp(3) since
p(3) is already estimated by expOSE. If it is assumed
that there is no radial distortion and α ̸= 1, then this
step can be completely skipped.

3. Bundle adjustment: We perform local optimization of∑
ij

∥∥∥∥mij − (1 + κ(mij))
xij

zij

∥∥∥∥2 (24)

starting from the estimations of P , X , and k found
with the previous steps. The optimization is solved us-
ing Levenberg–Marquardt algorithm. If there is no ra-
dial distortion then the parameters k can be set to zero
and kept constant during optimization. For expOSE
initialization, we observe that usually only a few steps
are needed (5-10 steps).

4. Euclidean update: Finally we estimate the projective
transformation H ∈ R4×4 such that the factoriza-
tion {PH,H−1X} is a Euclidean reconstruction. This
is done by estimating the dual absolute conic as de-
scribed in [12].

5.1. Experiments

The performance of the proposed pipeline is evaluated
on 3 sequences from [24] with radial distortion: Gross-
munster (19 cam., 1874 pts, 41% missing data), Kirchenge
(30 cam., 1158 pts, 60% missing data), and Munterhof (20
cam., 2108 pts, 42% missing data). We compare the per-
formance when using either expOSE (η = 0.01), pOSE, or
RpOSE (both with η = 0.001) in step 1 of the pipeline.
We use expOSE with scheduling for regularization update,
as described in Section 3.2. Refinement of the solutions is
done by performing up to 50 iterations of BA.
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Figure 6. Visualization of reconstructions on the Grossmunster se-
quence. (Left) An example of one of the images on the sequence.
At the bottom, we show a view of the 3D reconstruction of ex-
pOSE for α = 1. (Right) Comparison between the top view re-
constructions (black) obtained with pOSE, RpOSE and expOSE.
In red we show the ground-truth 3D point cloud. All reconstruc-
tions shown here were not refined with bundle adjustment.

The metrics used are convergence rate (similarly to the
experiments in Section 2), 2D reprojection error, rotation
error, and 3D error. In order to compute the last two, we
perform Euclidean registration on the output of the pipeline,
i.e. after the Euclidean update, to the ground-truth 3D point
cloud. The inverse of that Euclidean transformation is ap-
plied to the camera matrices. Rotation error is then com-
puted as erot = acos

(
(trace

(
RGT

i RT
i )− 1

)
/2
)

and the
3D error as the median of all ∥Xj − XGT

j ∥. The values
presented in Table 1 correspond to the average over all in-
stances that converged to the desired optimum. The chosen
metrics are evaluated at two points of the pipeline: after
the radial distortion estimation (step 2), and after the bun-
dle adjustment (step 3). At both stages, a metric update is
performed in order to obtain a Euclidean reconstruction.

The results show that expOSE clearly outperforms both
pOSE and RpOSE. The difference in performance is even
more evident when looking at the output of the factoriza-
tions, where expOSE was able to achieve reprojection er-
rors that almost match the refined solution with BA. Note
that in many cases expOSE even got better rotation and 3D
errors than its refined counterpart. A visualization for the
Grossmunter sequence is shown in Figure 6. It is also pos-
sible to notice the impact of using the regularization for ra-
dial distortion invariance as described in Section 4.3. For
α = 0.999 the method has slow convergence, leading to
poor solutions as can be seen by the high rotation and re-
projection errors. Additional results for other values of α
and sequences are presented in the supplementary material.

In practice, as seen in these experiments, we notice that
α = 1 achieves the best results for images with radial

Table 1. Results on the Grossmunster, Kirchenge, and Munsterhof
datasets (over 10 instances). For each method two rows are pre-
sented: the first consists of the results for the output of the factor-
ization method; the second of the output of the Bundle Adjustment
(+BA). In green, we show the best results for each metric.

Conv. Rot. 3D 2D
Grossmunster Rate [deg] [unit] [pix]

pOSE 50% 148.25 0.762 18.48
+ BA 50% 27.61 0.293 1.50

RpOSE 90% 2.24 0.082 2.91
+ BA 90% 0.53 0.011 1.48

ExpOSE

α=0.999 100% 44.74 0.227 41.51
α=0.999+BA 100% 0.43 0.007 1.48

α=1 100% 0.18 0.004 1.86
α=1+BA 100% 0.42 0.006 1.48

Kirchenge

pOSE 100% 160.38 6.844 14.95
+ BA 100% 0.72 0.024 1.22

RpOSE 90% 0.98 0.062 1.94
+ BA 90% 1.06 0.031 1.22

ExpOSE

α=0.999 60% 24.71 0.022 45.28
α=0.999+BA 80% 1.19 0.021 1.22

α=1 80% 0.51 0.026 1.57
α=1+BA 80% 2.92 0.050 1.22

Munsterhof

pOSE 100% 14.01 0.230 12.08
+ BA 100% 0.44 0.027 1.70

RpOSE 60% 1.00 0.071 11.96
+ BA 60% 0.44 0.027 1.70

ExpOSE

α=0.999 100% 20.13 0.021 47.71
α=0.999+BA 100% 0.47 0.029 1.70

α=1 80% 0.12 0.013 3.43
α=1+BA 90% 0.45 0.030 1.70

distortion. In the supplementary material we provide ad-
ditional experiments that show the benefit of using values
1/2 < α < 1 in particular problem instances where data
availability is too low for the stability of a pure radial model
(e.g. few viewpoints and/or points per camera available).

6. Conclusions
In this paper, we propose the use of exponential regu-

larization on projective factorization problems as a way to
enforce Cheirality conditions on the reconstruction. Radial
distortion robustness is achieved by weighting differently
the radial and tangential components of the object space
error. We show that the proposed regularization results in
higher reconstruction quality (that matches bundle adjust-
ment refined solutions) while keeping the same convergence
properties as state-of-the-art factorization methods and be-
ing less sensitive to the choice of the weight η of the regu-
larization.
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Örnhag. Accurate optimization of weighted nuclear norm for
non-rigid structure from motion. In European Conference on
Computer Vision (ECCV), 2020. 1, 3

[20] Jae-Hak Kim, Yuchao Dai, Hongdong li, Xin Du, and
Jonghyuk Kim. Multi-view 3d reconstruction from uncal-
ibrated radially-symmetric cameras. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1896–1903, 12 2013. 5

[21] Z. Kukelova, M. Bujnak, and T. Pajdla. Real-time solution
to the absolute pose problem with unknown radial distortion
and focal length. In 2013 IEEE International Conference on
Computer Vision, pages 2816–2823, 2013. 5

[22] Suryansh Kumar. Non-rigid structure from motion: Prior-
free factorization method revisited. In IEEE Winter Con-
ference on Applications of Computer Vision, WACV 2020,
Snowmass Village, CO, USA, March 1-5, 2020, pages 51–
60. IEEE, 2020. 1

[23] Viktor Larsson, Torsten Sattler, Zuzana Kukelova, and Marc
Pollefeys. Revisiting radial distortion absolute pose. In In-
ternational Conference on Computer Vision (ICCV). IEEE,
September 2019. 5

[24] Viktor Larsson, Nicolcas Zobernig, Kasim Taskin, and Marc
Pellefeys. Calibration-free structure-from-motion with cal-
ibrated radial trifocal tensors. In European Conference of
Computer Vision, 2020. 5, 7

[25] Ludovic Magerand and Alessio Del Bue. Practical projective
structure from motion (p2sfm). In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 39–47, 2017.
2

[26] Behrooz Nasihatkon, Richard I. Hartley, and Jochen Trumpf.
A generalized projective reconstruction theorem and depth
constraints for projective factorization. Int. J. Comput. Vis.,
115(2):87–114, 2015. 2

[27] Takayuki Okatani and Koichiro Deguchi. On the wiberg
algorithm for matrix factorization in the presence of miss-
ing components. International Journal of Computer Vision,
72(3):329–337, 2007. 3

[28] Carl Olsson, Daniele Gerosa, and Marcus Carlsson. Re-
laxations for non-separable cardinality/rank penalties. In
2021 IEEE/CVF International Conference on Computer Vi-
sion Workshops (ICCVW), IEEE International Conference on
Computer Vision Workshops, pages 162–171, 2021. 3

[29] Carl Olsson, Viktor Larsson, and Fredrik Kahl. A quasi-
convex formulation for radial cameras. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14571–14580, 2021. 5

[30] Marcus Valtonen Ornhag, Carl Olsson, and Anders Hey-
den. Bilinear parameterization for differentiable rank-
regularization. 2020 IEEE/CVF Conference on Computer

8967



Vision and Pattern Recognition Workshops (CVPRW), Jun
2020. 1, 3

[31] Dohyung Park, Anastasios Kyrillidis, Constantine Carmanis,
and Sujay Sanghavi. Non-square matrix sensing without spu-
rious local minima via the Burer-Monteiro approach. In Aarti
Singh and Jerry Zhu, editors, Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Research,
pages 65–74, Fort Lauderdale, FL, USA, 20–22 Apr 2017.
PMLR. 1

[32] Conrad J. Poelman and Takeo Kanade. A paraperspective
factorization method for shape and motion recovery. IEEE
Trans. Pattern Anal. Mach. Intell., 19(3):206–218, 1997. 1

[33] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guar-
anteed minimum-rank solutions of linear matrix equations
via nuclear norm minimization. SIAM Rev., 52(3):471–501,
Aug. 2010. 3

[34] C. Strecha, W. von Hansen, L. Van Gool, P. Fua, and U.
Thoennessen. On benchmarking camera calibration and
multi-view stereo for high resolution imagery. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–8, 2008. 5

[35] D. Strelow, Q. Wang, L. Si, and A. Eriksson. Gen-
eral, nested, and constrained wiberg minimization. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
38(9):1803–1815, 2016. 3

[36] Peter F. Sturm and Bill Triggs. A factorization based algo-
rithm for multi-image projective structure and motion. In
Proceedings of the 4th European Conference on Computer
Vision-Volume II - Volume II, ECCV ’96, page 709–720,
Berlin, Heidelberg, 1996. Springer-Verlag. 1

[37] SriRam Thirthala and Marc Pollefeys. Radial multi-focal
tensors. International Journal of Computer Vision - IJCV,
96, 06 2012. 5

[38] Carlo Tomasi and Takeo Kanade. Shape and motion from
image streams under orthography: A factorization method.
International Journal of Computer Vision, 9(2):137–154,
1992. 1

[39] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and
Andrew W. Fitzgibbon. Bundle adjustment - a modern syn-
thesis. In Proceedings of the International Workshop on
Vision Algorithms: Theory and Practice, ICCV ’99, pages
298–372. Springer-Verlag, 2000. 2, 3

[40] R. Tsai. A versatile camera calibration technique for high-
accuracy 3d machine vision metrology using off-the-shelf tv
cameras and lenses. IEEE Journal on Robotics and Automa-
tion, 3(4):323–344, August 1987. 5

[41] T. Wiberg. Computation of principal components when data
are missing. In Proceedings of the Second Symposium of
Computational Statistics, page 229–326, 1976. 3

8968


