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Figure 1. Given multiple images under unknown spatially-varying illuminations, our method can recover the detailed surface normal map
of non-convex, non-Lambertian surfaces (Left). Our method even surpasses the level of detail provided by consumer 3-D scanners (Right).

Abstract

In this paper, we introduce SDM-UniPS, a groundbreak-
ing Scalable, Detailed, Mask-free, and Universal Photomet-
ric Stereo network. Our approach can recover astonishingly
intricate surface normal maps, rivaling the quality of 3D
scanners, even when images are captured under unknown,
spatially-varying lighting conditions in uncontrolled envi-
ronments. We have extended previous universal photometric
stereo networks to extract spatial-light features, utilizing all
available information in high-resolution input images and
accounting for non-local interactions among surface points.
Moreover, we present a new synthetic training dataset that
encompasses a diverse range of shapes, materials, and illu-
mination scenarios found in real-world scenes. Through ex-
tensive evaluation, we demonstrate that our method not only
surpasses calibrated, lighting-specific techniques on pub-
lic benchmarks, but also excels with a significantly smaller
number of input images even without object masks.

1. Introduction

Photometric stereo [52] aims to deduce the surface nor-
mal map of a scene by analyzing images captured from a
fixed perspective under diverse lighting conditions. Until

very recently, all photometric stereo methods assumed their
specific lighting conditions, which led to limitations in their
applicability. For instance, methods that assumed direc-
tional lighting conditions (e.g., [20,24,25]) were unsuitable
under natural illumination, and vice versa (e.g., [15, 38]).

To overcome this limitation, the “universal” photomet-
ric stereo method (UniPS) [22] has been introduced, de-
signed to operate under unknown and arbitrary lighting con-
ditions. In contrast to prior uncalibrated photometric stereo
methods [7,9,27], which assumed specific physically-based
lighting models, this method encodes a non-physical fea-
ture at each pixel for representing spatially-varying illumi-
nation, which is served as a substitute for physical light-
ing parameters within the calibrated photometric stereo net-
work [21]. This method has taken the first step towards
dealing with unknown, spatially-varying illumination that
none of the existing methods could handle. However,
the surface normal map recovered by UniPS, while not en-
tirely inaccurate, appears blurry and lacks fine detail (see
the top-right corner of Fig. 1). Upon investigation, we pin-
pointed three fundamental factors contributing to the subpar
reconstruction performance. Firstly, extracting illumination
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features (i.e., global lighting contexts) from downsampled
images caused a loss of information at higher input resolu-
tions and produced blurry artifacts. Secondly, UniPS em-
ploys a pixel-wise calibrated photometric stereo network to
predict surface normals using illumination features, which
leads to imprecise overall shape recovery. Although pixel-
wise methods [20,21,25] offer advantages in capturing finer
details compared to image-wise methods [8, 29, 49], they
suffer from an inability to incorporate global information.

Lastly, the third issue lies in the limited variety of shape,
material, and illumination conditions present in the training
data, which hampers its capacity to adapt to a diverse range
of real-world situations. This limitation primarily stems
from the fact that current datasets (i.e., PS-Wild [22]) do not
include renderings under light sources with high-frequency
components focused on specific incident angles, such as
point or directional sources. Consequently, the method ex-
hibits considerable performance degradation when exposed
to directional lighting setups like DiLiGenT [46], as will be
demonstrated later in this paper.

In this paper, we present a groundbreaking photometric
stereo network, the Scalable, Detailed, and Mask-Free Uni-
versal Photometric Stereo Network (SDM-UniPS), which
recovers normal maps with remarkable accuracy from im-
ages captured under extremely uncontrolled lighting condi-
tions. As shown in Fig. 1, SDM-UniPS is scalable, enabling
the generation of normal maps from images with substan-
tially higher resolution (e.g., 2048x2048) than the training
data (e.g., 512x512); it is detailed, providing more accu-
rate normal maps on DiLiGenT [46] with a limited number
of input images than most existing orthographic photomet-
ric stereo techniques, including calibrated methods, and in
some cases, surpassing 3D scanners in detail; and it is mask-
free, allowing for application even when masks are absent,
unlike many conventional methods. Our technical novelties
include:

1. The development of a scale-invariant spatial-light fea-
ture encoder that efficiently extracts illumination fea-
tures while utilizing all input data and maintaining
scalability with respect to input image size. Our en-
coder, based on the "split-and-merge" strategy, accom-
modates varying input image sizes during training and
testing without sacrificing performance.

2. The development of a surface normal decoder utilizing
our novel pixel-sampling transformer. By randomly
sampling pixels of fixed size, we simultaneously pre-
dict surface normals through non-local interactions
among sampled pixels using Transformers [51], effec-
tively accounting for global information.

3. The creation of a new synthetic training dataset, com-
prising multiple objects with diverse textures within a

scene, rendered under significantly varied lighting con-
ditions that include both low and high-frequency illu-
minations.

We believe that the most significant contribution is the ex-
traordinary time savings from data acquisition to normal
map recovery compared to existing photometric stereo al-
gorithms requiring meticulous lighting control, even in the
uncalibrated setup. This progress allows photometric stereo
to be executed at home, literally “in the wild” setup.

2. Related Works
In this section, we provide a succinct overview of photo-

metric stereo literature focusing on the single orthographic
camera assumption. Alternative setups (e.g., perspective,
multi-view cameras) are beyond the scope of this work.

Optimization-based Approach: The majority of photo-
metric stereo methods assume calibrated, directional light-
ing following Woodham [52] and optimize parameters by
inversely solving a physics-based image formation model.
This approach can be further categorized into robust meth-
ods, where non-Lambertian components are treated as out-
liers [24, 39, 53, 59]; model-based methods, which explic-
itly account for non-Lambertian reflectance [13,23,45]; and
example-based methods [17,19,47] that leverage the obser-
vations of known objects captured under identical condi-
tions as the target scene. The uncalibrated task is akin to
the calibrated one, but with unknown lighting parameters.
Until recently, most uncalibrated photometric stereo algo-
rithms assumed Lambertian integrable surfaces and aimed
to resolve the General Bas-Relief ambiguity [4, 11, 12, 16,
36,42,44,55]. In contrast to these works, photometric stereo
under natural lights has also been explored, wherein nat-
ural illumination is approximated using spherical harmon-
ics [5,15], dominant sun lighting [3,18], or equivalent direc-
tional lighting [14, 38]. Although most optimization-based
methods do not require external training data, they are fun-
damentally limited in handling global illumination phenom-
ena (e.g., inter-reflections) that cannot be described by the
predefined point-wise image formation model.

Learning-based Approach: Learning-based methods are
effective in addressing complex phenomena that are chal-
lenging to represent within simple image formation mod-
els. However, the first photometric stereo network [43] ne-
cessitated consistent lighting conditions during both train-
ing and testing. To address this limitation, various strate-
gies have been investigated, such as observation maps [20,
35], set-pooling [8, 26], graph-convolution [58], and self-
attention [21, 31]. Furthermore, researchers have explored
uncalibrated deep photometric stereo networks [7,9,27,50],
where lighting parameters and surface normals are recov-
ered sequentially. Self-supervised neural inverse rendering
methods have been developed without the need for exter-
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nal data supervision. Taniai and Maehara [49] used neural
networks instead of parametric physical models, with im-
ages and lighting as input. This work was expanded by Li
and Li [29, 30], who incorporated recent neural coordinate-
based representations [37]. However, despite their tremen-
dous efforts, these methods are designed to work with only
single directional light source and have limited ability to
generalize to more complex lighting environments.

Universal Photometric Stereo Network: The universal
photometric stereo network (UniPS) [22] was the first to
eliminate the prior lighting model assumption by leveraging
a non-physical lighting representation called global light-
ing contexts. These global lighting contexts are recovered
for each lighting condition through pixel-wise communica-
tion of hierarchical feature maps along the light-axis using
Transformers [51]. During surface normal prediction, a sin-
gle location is individually selected, and the network ag-
gregates all the global lighting contexts (bilinearly interpo-
lated from the canonical resolution) and raw observations at
the location under different lighting conditions to pixel-wise
predict the surface normal. This method introduced two
strategies to handle high-resolution images: down-sampling
images to the canonical resolution for recovering global
lighting contexts, and employing pixel-wise surface nor-
mal prediction. Although these two concepts contributed to
the scalability of image size, they resulted in performance
degradation due to the loss of input information and the ab-
sence of a non-local perspective, as previously discussed.

Our work draws inspiration from [22] and shares some
fundamental ideas, particularly the use of Transformers [51]
for communicating and aggregating features along the light-
axis. However, our method diverges from [22] by fully uti-
lizing input information in a non-local manner, which leads
to a significant enhancement in reconstruction quality.

3. Method

We target the challenging universal photometric stereo
task, which was recently introduced in [22]. Unlike prior
calibrated and uncalibrated tasks, the universal task makes
no assumptions about surface geometry, material properties,
or, most importantly, lighting conditions. The objective of
this task is to recover a normal map N ∈ RH×W×3 from
images Ik ∈ RH×W×3; k ∈ 1, . . . ,K captured under K
unknown lighting conditions using an orthographic camera.
Optionally, an object mask M ∈ RH×W may be provided.

Our method (SDM-UniPS) is illustrated in Fig. 2. Given
pre-processed images and an optional object mask, feature
maps for each lighting condition are extracted through in-
teractions along the spatial and light axes (i.e., the scale-
invariant spatial-light feature encoder). We then randomly
sample locations from the coordinate system of the input
image and bilinearly interpolate features at these locations.

Features and raw observations at each location are aggre-
gated pixel-wise, and surface normals are recovered from
the aggregated features after non-local spatial interaction
among them (i.e., the pixel-sampling Transformer). In line
with [22], we focus on describing high-level concepts rather
than providing detailed explanations for the sake of clarity.
Refer to the appendix for a comprehensive description of
the network architectures.

3.1. SDM-UniPS

Pre-processing: As in [22], we resize or crop input images
to a resolution (R) that is divisible by 32, which is accepted
by most hierarchical vision backbones. To ensure that im-
age values are within a similar range, each image is normal-
ized by a random value between its maximum and mean.

Scale-invariant Spatial-light Feature Encoder: After the
pre-processing, we extract feature maps from images and an
optional object mask through the interaction along both spa-
tial and light axes. Following the basic framework in [22],
each image and object mask 1 are concatenated to form a
tensor Ok ∈ RR×R×4, which is then input to the com-
mon vision backbone [32–34] to extract hierarchical fea-
ture maps Bs

k ∈ R
R
Ss

× R
Ss

×Cs , ; s ∈ 1, 2, 3, 4. Here, Ss ∈
4, 8, 16, 32 represents the scale of the s-th feature map, and
Cs is the dimension of features at that scale. For each fea-
ture scale, features from different tensors at the same pixel
interact with each other along the light-axis using naïve
Transformers [51]. Finally, hierarchical feature maps are
fused to Fk ∈ RR

4 ×R
4 ×CF using the feature pyramid net-

work [56], where CF is the output feature dimension. Note
that, unlike [22], we used a varying number of Transformer
blocks at each hierarchy scale (i.e., the number of blocks
changes from [1,1,1,1] to [0,1,2,4]) so that the deeper fea-
tures interact more than the shallow ones.

In UniPS [22], images and a mask are down-sampled to
a canonical resolution before being input to the backbone
network. This resolution must be constant and sufficiently
small (e.g., 256x256) to prevent excessive memory con-
sumption during feature extraction, particularly when deal-
ing with high-resolution input images. Additionally, using
a constant resolution ensures that tensors of the same shape
are fed to the backbone, which helps to avoid significant
performance degradation due to a large discrepancy in input
tensor shapes between training and testing. Consequently,
down-sampling leads to the loss of much information in the
input images, resulting in a blurry normal map recovery.

To address it, we propose a scale-invariant spatial-light
feature encoder designed to maintain a consistent, small
input resolution for the backbone network while preserv-
ing information from input images. Specifically, instead
of downsampling, we suggest splitting the input tensor into

1Without a mask, a matrix with all values set to one is concatenated.
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Figure 2. Our entire framework is illustrated in (a). Given multiple images and an object mask (optional), the scale-invariant spatial-light
encoder (detailed in (b)) extracts a feature map for each image. The surface normal vectors are independently recovered at each of pixel
samples (i.e., 2048) after the non-local interaction among aggregated features from interpolated feature maps and raw observations.

non-overlapping sub-tensors with a constant, small resolu-
tion. In greater detail, we decompose O into P 2 sub-tensors
of size G×G (G = 256 in our implementation, P ≜ R/G)
by taking a single sample from every P×P pixel and stack-
ing them as sub-tensors, as illustrated in Fig. 2. Each sub-
tensor encompasses the entire portion of the original ten-
sor but is slightly shifted. All sub-tensors are processed
independently through the same spatial-light feature en-
coder and subsequently merged back into a tensor of size
(R4 × R

4 × CF ). The combined feature maps from the sub-
tensors retain all input information since no downsampling
occurred. However, the absence of interaction among dif-
ferent sub-tensors leads to significant block artifacts, par-
ticularly when P is large. To mitigate this, another feature
map encoded from the naively downsized image is added2

to the merged feature maps, promoting interaction among
sub-tensors. Optionally, when P is larger than 4, we ap-
ply depth-wise Gaussian filtering (i.e., kernel size is P -
1) to the feature maps to further enhance the interaction.
Finally, we obtain the scale-invariant spatial-light feature
maps Fk ∈ RR

4 ×R
4 ×CF for every lighting condition.

Non-local Interaction with Pixel-sampling Transformer:
Given the scale-invariant spatial-light feature maps Fk and
input images Ik, the surface normal is recovered after pixel-
wise feature aggregation along the light-axis (i.e., the light
channel shrinks from K to 1). Feature aggregation under
different lighting conditions is a fundamental step in pho-

2Concatenation is also possible, but it did not improve the results de-
spite increased memory consumption.

tometric stereo networks, and various strategies have been
studied, such as observation maps [20,35], max-pooling [8,
9], graph-convolution [58], and self-attention [21, 22]. We
utilize the Transformer model with self-attention [51] as in
the encoder following UniPS [22]. UniPS directly predicted
surface normals from pixel-wise aggregated feature vectors,
following other pixel-wise methods [20, 21, 25], without
considering non-local interactions. However, aggregated
features lose lighting-specific information, naturally obtain-
ing lighting-invariant representations more related to sur-
face attributes than those before aggregation. In traditional
physics-based vision tasks, common constraints including
isotropy [4], reciprocity symmetry [48], reflectance mono-
tonicity [6], sparse reflectance basis [13], and surface inte-
grability [41] are mostly shared on the surface, not limited
to a single surface point. Thus, considering non-local inter-
actions of aggregated features at multiple surface points is
crucial in physics-based tasks.

Applying image-wise neural networks like CNNs on the
aggregated feature map demands enormous computational
cost for large output resolutions (e.g., 2048 × 2048), and
risks compromising output normal map details. To address
these issues, we draw inspiration from recent Transformers
on 3-D points [54, 61] and apply a Transformer on a fixed
number (m) of pixel samples (e.g., m = 2048) from ran-
dom locations in the input coordinate system. We term this
the pixel-sampling Transformer. Unlike image-based ap-
proaches, pixel-sampling Transformer’s memory consump-
tion is constant per sample set, scaling to arbitrary image
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Directional Point Environment Dir.+Env. Point+Env.

Figure 3. Examples in PS-Mix under different lighting conditions.

sizes. Moreover, by applying the Transformer to a randomly
sampled set of locations, local interactions that may lead to
over-smoothing of feature maps (e.g., in CNNs) are almost
entirely eliminated.

Concretely, given m random pixels xi=1,...,m from the
masked region of the input coordinate system, we interpo-
late features at those pixels as F1,...,K(S(xi)), where S is
the bilinear interpolation operator. Then, interpolated fea-
tures are concatenated with corresponding raw observations
I1,...,K(xi) and aggregated to A(xi) with pooling by multi-
head attention (PMA) [28], as in [22]. Given aggregated
features at different pixels in the same sample set, we ap-
ply another naïve Transformer [51] to perform non-local
interactions. Since the goal of this process is to consider
surface-level interactions based on physical attributes, pixel
coordinate information is unnecessary. Thus, we don’t ap-
ply position embeddings to samples, unlike most existing
visual Transformer models (e.g. [10,33]), allowing the sam-
ples to propagate their aggregated features without location
information.

After the non-local interaction, we apply a two-layer
MLP to predict surface normals at sampled locations. Fi-
nally, surface normals for each set are merged to obtain the
final surface normal map at the input image resolution. This
pixel-sampling Transformer approach facilitates non-local
interactions while maintaining computational efficiency and
preserving output normal map details, making it suitable for
physics-based tasks with high-resolution images.

3.2. PS-Mix Dataset

To train their universal photometric stereo network, Ike-
hata [22] presented the PS-Wild training dataset, which ren-
dered more than 10,000 scenes with commercial Adobe-
Stock 3-D assets [1]. One of the issues in PS-Wild is that
each scene consists of only a single object of uniform ma-
terial. Furthermore, the environment lighting used for ren-
dering scenes in [22] rarely has high-frequency illumination
(e.g., a single point light source); therefore, the rendered im-
ages are biased towards low-frequency lighting conditions.

In this paper, we create a new training dataset that solves
the issues in the PS-Wild training dataset. Instead of putting
a single object of uniform material in each scene, we put
multiple objects that overlap with each other in the same
scene and give them different materials. To ensure that the
material category is diverse in a scene, we manually cate-
gorized 897 texture maps in the AdobeStock material assets
into 421 diffuse, 219 specular, and 257 metallic textures.

Table 1. Ablation study on PS-Wild-Test [22].

Method Training Dir. HDRI Dir.+HDRI

I22 (UniPS) [22] PS-Wild 17.0 14.5 13.8

Only Local (baseline) PS-Mix 8.4 14.7 11.8
+Non-local (32) PS-Mix 7.8 14.9 10.8
+Non-local (128) PS-Mix 6.2 13.0 8.9
+Non-local (512) PS-Mix 5.8 12.4 8.2

+Non-local (2048) PS-Mix 5.7 12.2 8.0
+Non-local (20480) PS-Mix 5.7 12.3 8.0

+Scale-invariant Enc. PS-Mix 4.8 11.1 7.5

Local (1) Non-local (32) Non-local (2048)
MAE = 21.3°, K=16

MAE=10.8°, K=16

MAE=15.0°, K=16

GTest /GTrain=6 GTest /GTrain=3 GTest /GTrain=1
MAE=12.5°, K=16MAE=20.4°, K=16

(a) Different sample size (𝑚) for the non-local interaction

MAE=10.8°, K=16

(b) Different input resolutions between training and test

Figure 4. (a) Comparison of different sample size (m) for the non-
local interaction in the normal prediction. (b) Comparison of dif-
ferent input resolutions to the encoder between training and test.

For each scene, we randomly select four objects from 410
AdobeStock 3-D models and assign three textures from all
three material categories and randomly choose one for each
object. Furthermore, to make the lighting conditions more
diverse, instead of using only environment lighting to ren-
der images, we use five types of light source configurations
and mix them to render one scene; (a) environment lighting,
(b) single directional lighting, (c) single point lighting, (d)
(a)+(b), and (e) (a)+(c). The direction and position of light
sources are randomly assigned within the valid range of pa-
rameters3. We followed PS-Wild [22] for other rendering
techniques (e.g., auto-exposure, object scale adjustment).
Our dataset consists of 34,921 scenes, and each scene is
rendered to output 10 of 16-bit, 512×512 images. In Fig. 3,
we show sample images under each lighting condition for
the same scene.

4. Results
Training Details: Our network was trained on the PS-Mix
dataset from scratch using the AdamW optimizer and a
step decay learning rate schedule (×0.8 every ten epochs)
with learning-rate warmup during the first epoch. A batch
size of 8, an initial learning rate of 0.0001, and a weight

3Light directions are selected from the upper unit hemisphere, and point
light positions are selected inside the hemisphere.
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Table 2. Evaluation on DiLiGenT [46] (Mean Angular Errors in degrees). All 96 images were used except where K is shown.

Method Approach Task Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Ave.

Woodham [52] Self-Sup. Calibrated 4.1 8.4 14.9 8.4 25.6 18.5 30.6 8.4 14.7 19.8 15.3
IW14 [25] Self-Sup. Calibrated 2.0 4.8 8.4 5.4 13.3 8.7 18.9 6.9 10.2 12.0 9.1
IA14 [23] Self-Sup. Calibrated 3.3 7.1 10.5 6.7 13.1 9.7 26.0 6.6 8.8 14.2 10.6
I18 [20] Supervised Calibrated 2.2 4.1 7.9 4.6 8.0 7.3 14.0 5.4 6.0 12.6 7.2

CW20 [9] Supervised Calibrated 2.7 7.7 7.5 4.8 6.7 7.8 12.4 6.2 7.2 10.9 7.4
LB21 [35] Supervised Calibrated 2.0 3.5 7.6 4.3 4.7 6.7 13.3 4.9 5.0 9.8 6.2
LL22a [29] Sup.+Self-Sup. Calibrated 2.4 3.6 8.0 4.9 4.7 6.7 14.9 6.0 5.0 8.8 6.5

CH19 [7] Supervised Uncalibrated 2.8 6.9 9.0 8.1 8.5 11.9 17.4 8.1 7.5 14.9 9.5
CW20 [9] Supervised Uncalibrated 2.5 5.6 8.6 7.9 7.8 9.6 16.2 7.2 7.1 14.9 8.7
KK21 [27] Sup.+Self-Sup. Uncalibrated 3.8 6.0 13.1 7.9 10.9 11.9 25.5 8.8 10.2 18.2 11.6
LL22b [30] Sup.+Self-Sup. Uncalibrated 1.2 3.8 9.3 4.7 5.5 7.1 14.6 6.7 6.5 10.5 7.0

TR22 [50] (K=2) Self-Sup. Uncalibrated 6.3 9.7 14.5 9.9 11.1 14.2 26.1 10.7 12.1 19.9 13.4

I22 (UniPS) [22] Supervised Universal 4.9 9.1 19.4 13.0 11.6 24.2 25.2 10.8 9.9 18.8 14.7
Ours Supervised Universal 1.5 3.6 7.5 5.4 4.5 8.5 10.2 4.7 4.1 8.2 5.8

Ours (K=64) Supervised Universal 1.5 3.6 7.6 5.5 4.6 8.6 10.2 4.7 4.1 8.3 5.9
Ours (K=32) Supervised Universal 1.5 3.6 7.7 5.5 4.7 8.6 10.4 4.8 4.2 8.4 5.9
Ours (K=16) Supervised Universal 1.5 3.8 7.7 6.0 4.8 8.5 10.8 4.9 4.4 8.7 6.1
Ours (K=8) Supervised Universal 1.6 4.0 8.2 6.3 5.2 8.4 11.5 5.2 4.8 9.4 6.5
Ours (K=4) Supervised Universal 1.7 4.1 10.0 8.6 6.3 9.0 14.1 6.1 5.9 11.4 7.7
Ours (K=2) Supervised Universal 1.9 6.8 14.4 13.6 8.3 12.8 21.2 9.0 9.2 16.9 11.4

decay of 0.05 were used. The number of input training
images was randomly selected from 3 to 6 for each batch 4.
In our work, we chose ConvNeXt-T [34] as our backbone
due to its simplicity and efficiency, which is better than
recent ViT-based architectures [10,32,33] with comparable
performance. The training loss was the MSE loss, which
computes the ℓ2 errors between the prediction and ground
truth of surface normal vectors. Additional information,
such as network architectures and feature dimensions, is
provided in the appendix.

Evaluation and Time: The accuracy is evaluated based on
the mean angular errors (MAE) between the predicted and
true surface normal maps, measured in degrees. Training is
conducted on four NVIDIA A100 cards for roughly three
days. The inference time of our method depends on the
number and resolution of input images. In the case of 16
input images at a resolution of 512 × 512, it takes a few
seconds excluding I/O on a GPU. While the computational
cost will vary almost linearly with the number of images,
this is significantly more efficient than recent neural inverse
rendering-based methods [29, 30, 40, 60].

4.1. Ablation Study

Firstly, we perform ablation studies to evaluate the indi-
vidual contributions of our scale-invariant spatial-light fea-
ture encoder and non-local interaction with pixel-sampling
transformer across varying sample sizes. To quantitatively

4Six is the maximum number that can fit on our GPU.

compare performance under various lighting conditions, we
utilize the PS-Wild-Test dataset [22], which contains 50
synthetic scenes rendered under three distinct lighting se-
tups: directional, environmental, and a mixture of both.
In Table 1 and Fig. 4, we compare our method with dif-
ferent configurations against [22]. Note that without the
scale-invariant encoder and non-local interaction (i.e., the
baseline), our method is nearly equivalent to [22], except for
some minor differences (e.g., backbone architecture, num-
ber of Transformer blocks in the encoder). We observe
that the baseline method trained on our PX-Mix dataset im-
proves performance for scenes under directional lighting,
suggesting that one of the primary reasons why [22] was
ineffective under directional lights was due to bias in the
PS-Wild dataset. Accounting for non-local interaction of
aggregated features enhances reconstruction accuracy, even
with a small number of samples (e.g., m=32), as clearly il-
lustrated in Fig. 4-(top). Although accuracy improved as
the number of samples increased, as expected, performance
gains plateaued beyond a certain number (i.e., m=2048).
The efficacy of the scale-invariant spatial-light feature en-
coder was also confirmed. In Fig. 4-(bottom), we observed
that a significant difference in input resolution to the back-
bone between training and testing led to substantial perfor-
mance degradation, which further validates the advantage
of our method that maintains a constant input tensor shape.
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MAE=10.8°

Ground TruthInput Ours (K=16) I22 (K=96) LL22a (K=96) LB21 (K=96)

Universal Calibrated

MAE=19.4° MAE=14.9° MAE=13.3°

MAE=8.7° MAE=10.8° MAE=8.8° MAE=9.8°

HARVEST

READING

Figure 5. Results for objects under a single directional lighting
condition, including object masks.

4.2. Evaluation under Directional Lighting

DiLiGenT Evaluation: We first evaluate our method on
the DiLiGenT benchmark [46]. Each dataset provides 96
612x512 16-bit HDR images, captured under known single
directional lighting. The object mask and true surface nor-
mal map are available. In addition to UniPS [22], we also
compare our method with calibrated [9,20,23,25,29,35,52]
and uncalibrated [7, 9, 27, 30, 50] photometric stereo algo-
rithms specifically designed for single directional lighting.
Calibrated methods include both pixelwise [20, 23, 25, 35,
52] and image-wise [9, 29] approaches. All uncalibrated
methods are image-wise. We consider [27,29,30] as a com-
bination of supervised and unsupervised learning, as pre-
trained models were used as a starting point for lighting pre-
diction. To evaluate the valid number of input images, we
compare our method with different numbers of input images
(results are averaged over 10 random trials).

The results are illustrated in Table 2. Impressively, our
method, which does not assume a specific lighting model,
outperforms state-of-the-art calibrated methods designed
for directional lights (LB21 [35], LL22a [29]). Further-
more, unlike conventional photometric stereo methods, the
proposed method does not experience significant perfor-
mance degradation even when the number of input images is
reduced; it maintains state-of-the-art results even with only
8 images. The proposed method (K = 2) also surpasses
TR22 [50], which is specialized for two input images.

Recovered normal maps of HARVEST and READING
are shown in Fig. 5. These objects are considered the
most challenging in the benchmark due to their highly non-
convex geometry. As expected, the state-of-the-art pixel-
wise calibrated method (LB21 [35]) can recover finer sur-
face details, while the state-of-the-art image-wise calibrated
method (LL22a [29]) can recover more globally consistent
results. However, both of them struggle to recover the non-
convex parts of the objects accurately. On the other hand,

Ours (K=8) CW20 (K=64) LL22b (K=64)Input

Ground Truth Ours (K=16) CW20 (K=96) LL22b (K=96)Input

Deep relighting dataset (w/o object masks)

DiLiGenT dataset (w/o object masks)

GOBLET

HARVEST

Figure 6. Results for scenes under a single directional lighting
condition, excluding object masks.

our method can recover both surface details and overall
shape without apparent difficulty, even with a much smaller
number of images (i.e., K=16). As expected, the perfor-
mance of I22 [22] is severely lacking.

Evaluation without Object Mask: To demonstrate that
our method does not require an object mask, we applied
it to two real scenes from a deep relighting work [57],
each containing 530 8-bit integer images at a resolution
of 512x512, captured under unknown single directional
lighting using a gantry-based acquisition system. The ob-
ject mask and true surface normal map are unavailable.
We compared our method with state-of-the-art uncalibrated
methods (CW20 [9] and LL22b [30]) and displayed the
results in Fig. 6 (top). Unlike the uncalibrated methods
that struggled to recover accurate lighting directions, our
proposed method successfully captured object boundaries
without masks, even in complex scenes with significant
global illumination effects, and consistently recovered nor-
mals across the entire image. We further evaluated our
method on DiLiGenT scenes without masks, as illustrated
in Fig. 6 (bottom). While existing methods that assume
an object mask produced highly inaccurate surface normal
maps, our proposed method recovered more plausible nor-
mals with fewer images (i.e., K=16 vs K=96).

4.3. Evaluation under Spatially-varying Lighting

Our method is evaluated on challenging scenes with
spatially-varying lighting conditions, comparing it to the
first universal network (UniPS) [22] and a state-of-the-art
uncalibrated photometric stereo method (GM21) [14] on
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Grape (K=18)

Owl (K=13)

SDM-UniPS (Ours) UniPS (I22) GM21

Apple (K=21)

Input

Figure 7. Qualitative comparison on images under spatially-
varying lighting conditions with object masks [22].

a dataset provided by [22]. We test three objects (Apple,
Grape, and Owl). While GM21 [14] fails and I22 [22] loses
details, our method, using a scale-invariant spatial-light fea-
ture encoder and non-local interaction, produces accurate
results.

In Fig. 8, we subjectively compare our method using four
objects with normal maps obtained from a 3D scanner. We
align the scanned normal map to the image using Mesh-
Lab’s mutual information registration filter [2], as in [46].
Our method recovers higher-definition surface normal maps
than the 3D scanner (EinScan-SE) and performs well re-
gardless of surface material. Photometric stereo perfor-
mance improves with increased digital camera resolution,
suggesting that 3D scanners may struggle to keep up.

Lastly, we demonstrate surface normal prediction for
complex non-convex scenes without masks under challeng-
ing lighting conditions in Figure 9. We apply our method to
three extremely challenging datasets: School Desk, Coins
and Keyboard, and Sweets. School Desk is a complex
scene with simple objects, non-uniform lighting, and cast
shadows, making surface normal map recovery difficult.
Coins and Keyboard features multiple planar objects of var-
ious materials. Sweets is a challenging scene with abun-
dant inter-reflections and cast shadows. As demonstrated,
the proposed method successfully recovers uniform surface
normals, largely unaffected by shadows, and effectively re-
constructs the surface micro-shape, demonstrating its scal-
ability and detail preservation.

5. Conclusion
In this paper, we presented a scalable, detailed, and

mask-free universal photometric stereo method. We demon-
strated that the proposed method outperforms most cali-

3D scanner Ours (SDM-UniPS) I22 (UniPS) Input (K=10)

Figure 8. Qualitative comparison with 3-D scans.

School Desk (K=10)

Coins and Keyboard (K=12)

Sweets (K=13)

SDM-UniPS (Ours) UniPS (I22) Input (w/o object mask)

Figure 9. Surface normal recovery from images under spatially-
varying lighting conditions without object masks.

brated and uncalibrated methods in the DiLiGenT bench-
mark. In addition, the comparison with the only existing
method [22] for the universal task showed a significant im-
provement over it.

However, several challenges still remain. Firstly, al-
though we have observed that the proposed method works
robustly for versatile lighting conditions, we found that our
method is not very effective when the lighting variations are
minimal. Secondly, the proposed method can easily be ex-
tended beyond normal map recovery by replacing the loss
and data. In reality, we have attempted to output BRDF
parameters for materials. However, due to fundamental am-
biguities, it is difficult to evaluate the recovered BRDF pa-
rameters. Please see the appendix for further discussions of
these limitations and a variety of additional results to better
understand this study.
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