
ScaleFL: Resource-Adaptive Federated Learning with Heterogeneous Clients

Fatih Ilhan
Georgia Institute of Technology

Atlanta, GA
filhan@gatech.edu

Gong Su
IBM Research

Yorktown Heights, NY
gongsu@us.ibm.com

Ling Liu
Georgia Institute of Technology

Atlanta, GA
ling.liu@cc.gatech.edu

Abstract

Federated learning (FL) is an attractive distributed

learning paradigm supporting real-time continuous learn-

ing and client privacy by default. In most FL approaches,

all edge clients are assumed to have sufficient computation

capabilities to participate in the learning of a deep neural

network (DNN) model. However, in real-life applications,

some clients may have severely limited resources and can

only train a much smaller local model. This paper presents

ScaleFL, a novel FL approach with two distinctive mecha-

nisms to handle resource heterogeneity and provide an equi-

table FL framework for all clients. First, ScaleFL adaptively

scales down the DNN model along width and depth dimen-

sions by leveraging early exits to find the best-fit models for

resource-aware local training on distributed clients. In this

way, ScaleFL provides an efficient balance of preserving

basic and complex features in local model splits with vari-

ous sizes for joint training while enabling fast inference for

model deployment. Second, ScaleFL utilizes self-distillation

among exit predictions during training to improve aggre-

gation through knowledge transfer among subnetworks. We

conduct extensive experiments on benchmark CV (CIFAR-

10/100, ImageNet) and NLP datasets (SST-2, AgNews). We

demonstrate that ScaleFL outperforms existing representa-

tive heterogeneous FL approaches in terms of global/local

model performance and provides inference efficiency, with

up to 2x latency and 4x model size reduction with negligible

performance drop below 2%.

1. Introduction
Mobile and Internet-of-Things (IoT) devices are the pri-

mary computing sources for most daily life tasks and they
are becoming increasingly essential for billions of users
worldwide (12; 18). These devices generate an unprece-
dented amount of data, which can be used to optimize ser-
vices and improve user experience. Since the data is huge
and mostly private, communicating, storing and organizing
it in a central server poses serious privacy risks and brings

logistic concerns (12). Federated learning (FL) emerged as
a machine learning paradigm for this scenario, where stor-
ing the data and training the model in a central server is not
feasible. In FL, instead of centralizing the data, the model is
distributed to clients for local training and the central server
aggregates the local updates received from clients (22).

Existing FL algorithms such as FedAVG (22), SCAF-
FOLD (13) and FedOpt (26) rely on the assumption that
every participating client has similar resources and can lo-
cally execute the same model. However, in most real-life
applications, the computation resources tend to differ sig-
nificantly across clients (5; 19). This heterogeneity prevents
clients with insufficient resources to participate in certain
FL tasks that require large models. Although existing gra-
dient compression (8) or model pruning techniques (7) may
be applied to reduce the cost at the expense of small accu-
racy loss, these methods are not flexible enough to meet di-
verse constraint scenarios (computational, storage, network
etc.) based on the heterogeneous resources of edge clients.
We argue that FL should promote equitable AI practice by
supporting a resource-adaptive learning framework that can
scale to heterogeneous clients with limited capacity.

To this end, we present ScaleFL, a scalable and equitable
FL framework. By design, ScaleFL has two novel features.
First, ScaleFL can adaptively scale down the global model
along the width and depth dimensions based on the com-
putational resources of participating clients. The downscal-
ing procedure in ScaleFL is inspired by EfficientNet (28),
which demonstrates the importance of balancing the size
of different dimensions while scaling a neural network.
Since a deeper model is more capable of extracting higher-
order, complex features while a wider model has access to
a larger variety of lower-order, basic features, performing
model size reduction across one dimension causes unbal-
ance in terms of the learning capabilities of the resulting
model. This motivates the design of ScaleFL that uniformly
scales down the global model on both dimensions to pro-
vide the balance of preserving access to both complex and
basic features as efficiently as possible. To perform split-
ting along the depth dimension, ScaleFL injects early exit

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

24532

classifiers (29) to the global model at certain layers based
on the model architecture and computational constraints at
each complexity level. As a result, with ScaleFL, not only
the global model achieves better performance compared to
baseline FL approaches (22) and existing algorithms (5; 19)
but also the local models at different complexity levels per-
form significantly better in case the clients are resource-
constrained at inference time.

The second novelty of ScaleFL is providing effective
aggregation mechanisms for combining local model up-
dates from heterogeneous participating clients, and aug-
menting self-distillation for effective model update aggre-
gation. During the training of local models, we perform
self-distillation among the exit predictions to improve the
knowledge transfer among subnetworks. Knowledge distil-
lation enables transferring knowledge from a large (teacher)
network to a smaller (student) network by training the stu-
dent network on teacher predictions as soft labels (10). Self-
distillation is a form of knowledge distillation, where the
same network is used as both teacher and the student to im-
prove performance during training, especially for multi-exit
models (16; 24; 25; 33). In particular, we optimize these
models with the additional objective of minimizing the KL
divergence among the early exit (student) and final (teacher)
predictions, which provides effective aggregation through
increasing knowledge flow among local models. This pro-
cedure is an integrated component of the local optimization
procedure and does not introduce any additional computa-
tional overhead as in standard knowledge distillation.

In summary, our main contributions are as follows: (1)
We introduce a novel FL approach ScaleFL, which performs
resource-adaptive 2-D model downscaling using early exits
to handle system heterogeneity. Our method preserves the
balance of basic and complex features at different complex-
ity levels and enables efficient local models for resource-
constrained clients. (2) We further enhance ScaleFL for ef-
fective integration of local training model updates by utiliz-
ing self-distillation among the exit predictions during local
training to increase knowledge flow among subnetworks by
minimizing the KL divergence among the early exit (stu-
dent) and final (teacher) predictions. (3) We validate the
advantages of ScaleFL in both model production quality
for FL and model inference speedup for model deployment
at edge clients. With extensive experiments on three vision
benchmarks and two NLP benchmarks, we first demonstrate
the significant improvements of ScaleFL in terms of global
model performance on image/text classification tasks and
various data heterogeneity settings, compared to recent ap-
proaches for FL with system heterogeneity. We then analyze
the inference performance of local models and show that lo-
cal models can provide up to 2x inference latency reduction
and 4x model size reduction, with negligible performance
drop under 2%.

2. Related Work
FedAVG is the baseline FL algorithm, where each round,

clients download the updated global model, perform local
training in parallel using gradient descent and send the up-
dated local weights to the central server for aggregation
by the average of the local weights from all participating
clients in the given round (22). Three broad categories of ef-
forts have been engaged to improve the FedAVG baseline.
First, extensive studies have been dedicated to optimizing
the communication efficiency of FL through gradient com-
pression and quantization (1; 20). However, these studies
only consider the scenario of homogeneous clients in which
all participating clients are assumed to have similar compu-
tation capacity and can operate on the same model archi-
tecture with the same reduced model complexity. Second,
there is significant research on robust federated learning to
prevent client training data leakage due to model inversion
attacks (30) or trojan detection against model poisoning at-
tacks (2). The third category is the most recent efforts on
addressing client heterogeneity in terms of data distribu-
tion (6; 13) and computation resources (5; 19). Our work
is most relevant to the last category, where clients have het-
erogeneous resources. We below identify the most represen-
tative approaches in this category.

FedProx (17) allows each client to perform variable
amounts of training iterations based on their computing
power. However, this solution still assumes that all clients
can operate on the same model. HeteroFL (5) proposes
splitting the global model along width but, it keeps the full
depth of the DNN architecture at each client and only ad-
justs the width split ratio for heterogeneous clients. This
tends to result in very slim and deep subnetworks, which
can lead to significant loss of basic features (28), resulting in
a drastic drop in model quality. In addition, clients with lim-
ited resources will suffer from significant accuracy loss at
model deployment time because they can only host and op-
erate on those very slim and deep subnetworks. FedDF (19)
proposes applying ensemble distillation to fuse models with
different architectures. However, FedDF requires an addi-
tional dataset for the distillation operations and brings sig-
nificant overhead between training rounds, whereas we ap-
ply self-distillation as an integrated component of the lo-
cal training procedure without any additional overhead. An-
other recent study FLANC (23) shares a neural basis among
all clients to efficiently construct models at various com-
plexities. However, FLANC assumes that all clients can
support at least the neural basis, and thus its adaptivity is
bounded by the size of this pre-defined unified neural basis.
In addition, the knowledge transfer among clients at differ-
ent levels is only through the common neural basis.

Inserting multiple exits during DNN training en-
ables early exiting to support adaptive inference (15).
BranchyNet (29) introduced the idea of multi-exit classi-

24533

Figure 1. System architecture of ScaleFL with three levels. Given the constraint configuration, we compute the split ratios (Section 3.1.1)
and based on computed width split ratios, we inject early exit classifiers to the given model. The global model is split along two dimensions
(Section 3.1.2) and local models are trained using a combination of cross-entropy and KL-divergence losses as given in Eq. (5). Updates
are aggregated back in the central server for the next round (Section 3.2).

fiers and early termination of inference for easier test sam-
ples. MSDNet (11) proposed a multi-scale dense-connected
CNN architecture to improve performance in earlier ex-
its. To improve the training efficiency, knowledge distilla-
tion (10) is employed among exits (16; 25). Early exiting
has also shown effectiveness for NLP tasks (21; 35).

The design of ScaleFL is inspired by some of the
above existing work with two original contributions. First,
ScaleFL finds an optimal two-dimensional split plan for
each client with limited resources and scales down a com-
plex DNN model along both width and depth dimensions
to provide the optimal balance of preserving basic and
complex features in different model partitions. Second,
ScaleFL further improves the aggregation and optimizes
the performance of small subnetworks, produced by our
two-dimensional downscaling, by applying self-distillation
among exit predictions.

3. Methodology
Consider a federated learning system of K clients, each

has its private local training dataset of size Nk, denoted
by Dk = {(Xi, yi)}Nk

i=1, where (Xi, yi) denotes the ith
training data sample and its ground truth label, and k 2
{1, . . . ,K}. We are also given the configuration of per-
client resource constraints of each client k, such that the
client can locally operate on a partition of the global model
with the cost under the budget Bk and a level of tolerance
(✏k � 0) for the budget constraint. A smaller value of ✏k
indicates that the client has a tighter bound for the budget

constraint Bk and a larger value implies the client has more
elasticity regarding its resource budget.

In order to train a global model M collaboratively
with K heterogeneous clients, ScaleFL first determines the
model downscaling configuration for each of the K clients
based on its resource budget Bk and budget tolerance ✏k

(Section 3.1). Once the central server has the downscal-
ing configurations for all K clients, it starts the federated
learning process. At each round, only a p-fraction of the
K clients participate in the joint training (e.g., p = 10%,
K = 100) and operate on downscaled models based on
their resources. Upon completion of each round, the central
server follows the ScaleFL aggregation protocol to integrate
the local model updates from heterogeneous clients (Sec-
tion 3.2). We further improve the aggregation procedure
by utilizing self-distillation (Section 3.3). Figure 1 gives a
sketch of the ScaleFL system architecture.

3.1. Two-Dimensional Model Splitting
3.1.1 Generating 2-D Split Configuration

ScaleFL performs the split configuration as a part of the
initialization process for a given federated learning (FL)
task before starting the iterative FL rounds. The split con-
figuration module makes two decisions: (1) Determining
the number of model complexity levels L and mapping of
each client k to the corresponding complexity level lk 2
{1, . . . , L}, based on the resource constraints (Bk, ✏k), (2)
given a DNN model M , determining the most uniform bi-
dimensional split ratio along depth s

(l)
d and width s

(l)
w di-

24534

mensions for each complexity level l.
Task 1: In order to downscale the global model M for

resource-constrained clients, we first determine the total
number of complexity levels, denoted by L, a hyperparam-
eter in ScaleFL and the target cost reduction ratios rl for
each level l. We set L heuristically by performing cluster-
ing analysis over the set {Bk|1 k K} and assign each
client with a model complexity level l 2 {1, . . . L} assum-
ing at least one client can operate on the full model M . We
consider rl = min{Bk|lk=l}

cost(M) for l < L, and rL = 1 be-
ing the 100% complexity representing the full-size model
M . Please note that this configuration can also be manu-
ally set by the user, e.g., it is possible to use the heuristic
rule of halving the cost from the highest complexity level
stepwise downward to the first level of complexity, so the
local model Ml at level l will have the target cost reduc-
tion ratio of rl = 0.5rl+1. Hence, we have r1, r2 and
r3 set to 12.5%, 25% and 50% respectively for L = 4.
The smaller the level lk is, the less complex the down-
scaled model will be for client k. Assigned level lk for each
client k satisfies the following: rl�1cost(M) Bk <

rlcost(M) for lk 2 {1, . . . L � 1}, and cost(M) Bk

for lk = L. Here, cost(M) denotes the computational cost
of the given model M , which can be measured in terms
of #PARAMs(M) (number of weight parameters) and
#FLOPs(M) (number of floating point operations).

Task 2: Now for each early exit complexity level l, we
need to determine the most balanced depth and width split
ratio pair (s(l)d , s(l)w), while satisfying that the cost of the
submodel after the 2-D split will not exceed the resource
constraints of those clients mapped to the exit complexity
level l. Here, the depth split ratio s

(l)
d determines where to

place the lth early exit in the N layers of the global model
M . The width split ratio s

(l)
w indicates the fraction of the

weight parameters to keep in the layers of the local mod-
els generated using the 2-D split ratio pair (s(l)d , s(l)w) for
level l. For any l 2 {1, . . . , L}, the following formulation
will be followed to determine the most balanced split ratios
(s(l)d , s

(l)
w) for those clients mapped to the exit complexity

level l:

(s(l)d , s
(l)
w) = argmin

s0d2(0,1],s0w2(0,1]
|s0d � s

0
w| such that

|cost(split(M ; s0d, s
0
w))

rlcost(M)
� 1| ✏l. (1)

There may be multiple split ratio pairs that produce local
models satisfying the target cost reduction ratio rl. We find
the most uniform bi-directional split ratio pair (s(l)d , s

(l)
w) for

each early exit level l through grid search within the bound
defined by the tolerance level ✏l. We set ✏l = minj2Sl ✏j ,
where Sl denotes the set of clients mapped to the exit level l
based on their Bk, and ✏l is the minimum of tolerance levels

ResNet110 Split Ratios Cost
Level sd sw #PARAMS #FLOPS rl

4 1.00 1.00 1.73 M 253.1 M 1.000
3 0.88 0.75 0.86 M 138.5 M 0.500
2 0.77 0.70 0.46 M 99.7 M 0.250
1 0.66 0.70 0.21 M 83.4 M 0.125

Table 1. Split ratios and resulting local model statistics
(#PARAMS, #FLOPS) for ResNet110 at each level.

of those clients in Sl. A smaller value of ✏l enforces a tighter
bound while satisfying the target cost reduction. A larger
✏l value provides more flexibility during the finding of the
most balanced 2-D split configuration. For each level l < L,
we place an early exit classifier to the bs(l)d Ncth layer. Al-
gorithm 1 lines 2-4 include these steps. Table 1 reports the
computed depth and width split ratios for ResNet110 as the
global model. The first column refers to the four complex-
ity levels, the second and third columns reports the cop-
muted 2-D split ratios (sd, sw). The next two columns show
the cost for the full-size model at l = 4 and the reduced
model at each complexity level l 2 {3, 2, 1}. Our depth and
width-balanced split method results in uniformly shaped lo-
cal models, as opposed to very slim and deep subnetworks
due to splitting only along width in HeteroFL.

3.1.2 Generating Local Models by Split Operation

Once the split configurations are produced, ScaleFL exe-
cutes the 2-D split operation to generate the local model
for each client k based on the split ratio pairs (sw, sd) to
meet the budget constraint (Bk, ✏k) specified by the client.
Concretely, at each communication round t, only p-fraction
of the K clients, denoted by St, are sampled and the global
model M with weights ✓t is scaled down by executing the 2-
D split operation, which generates the local models with
architecture Mlk and weights ✓

(k)
t for each client k 2 St

based on its complexity level lk. In this operation, we first
perform model splitting along the depth dimension by re-
moving the layers after the bsdNc-th layer where the lth
early exit is placed.

Next, we perform splitting along the width dimension by
selecting sw-partition of the per-layer model weights along
the hidden channel. To facilitate the execution of model re-
duction by width split ratio, we define an index function
that takes the weight matrix W and split ratio value sw as
inputs. Here W 2 RDin⇥Dout is a hidden weight matrix
where Din and Dout are the number of input and output hid-
den channels in the corresponding layer. The index func-
tion returns the Boolean index matrix Z of size Din⇥Dout,
which indicates which weights to keep after the opera-
tion. We define the split index as follows: Z[i, j] = 1 if

24535

i < bswDinc and j < bswDoutc, and zero otherwise. This
indexing results in keeping the upper-left submatrix by de-
fault, i.e., W0 , W[Z] = W[: bswDinc, : bswDoutc]. Our
framework also allows using random selection of weight
subsets (e.g. upper-right, lower-left, lower-right and mid-
dle etc.) for each client, so that different clients at the
same complexity level can use different parts of the model
weights and generate slightly different yet complimentary
subnetworks. Algorithm 2 gives the pseudocode of this op-
eration (see Appendix 6.1).

3.2. Aggregation
After the 2-D split operation, the ScaleFL aggregation

module combines the updated local model weights received
from heterogeneous clients at each round t. Concretely, ev-
ery participating client k 2 St may send a different subset
of the global model to the FL server. For the default upper-
left width split option to generate local models, the fol-
lowing aggregation procedure will be carried out to aggre-
gate the overlapping weights received from the contribut-
ing clients at each round t, i.e., for every W 2 ✓, and
l 2 {1, . . . L}:

W[Zl � Zl�1]
1

|Sl
t|

X

k2Sl
t

Wk[Zl � Zl�1]. (2)

Here, Sl
t = {k|k 2 St, lk � l} is the set of participat-

ing clients at round t with the mapped exit level at l or
higher. Zl = index(W, s

(l)
w) for l 2 {l0, . . . L} and 0

for l < l
0, where l

0 is the minimum level that W exists.
For instance, the indexes defined by Z4 � Z3 will aggre-
gate the updates from level 4 clients only. Similarly, the in-
dex defined by Z3 � Z2 will aggregate the updates from
both level 3 and level 4 clients, and so forth. Lastly, Wk

is the zero-padded local weight Wk such that Wk[Zl] =
Wk and Wk[1 � Zl] = 0. Hence, if all clients have the
same complexity level (i.e. L = 1), Eq. (2) simplifies into
W 1

|St|
P

k2St
Wk. Algorithm 3 gives the pseudo-code

for the aggregation algorithm (see Appendix 6.1). This ag-
gregation module is executed at FL server and it determines
the overlapping regions using index matrices, and scales
the sum of the weight updates received from contributing
clients. One caveat for this baseline approach is the fact that
low complexity level clients may not contribute to learning
other parts of the global model weights belonging to higher
complexity levels. This motivates us to further optimize our
naı̈ve baseline aggregation method with self-distillation.

3.3. Optimization with Self-Distillation
During the optimization of local models, we perform

self-distillation, which is a form of knowledge distilla-
tion (10) where the technique is applied within the same
network. Knowledge distillation enables a small (student)

Algorithm 1: ScaleFL

Inputs: Dataset Dk = {(Xi, yi)}Nk
i=1 for each client k, num-

ber of complexity levels L, complexity level of each client
{lk}Kk=1, target cost reduction ratios for each level {rl}Ll=1,
client availability rate p, initial model architecture M0

Parameters: number of communication rounds T , number
of local training epochs E, batch size b, learning rate ⌘

Outputs: Trained global model M and weights ✓
1: Initialize global model M with architecture M0 and

weights ✓0
2: for level l = 1, . . . L� 1 do
3: Compute split ratio pair (s(l)d , s

(l)
w) using Eq. (1)

4: Add early exit classifier to M at bs(l)d Nc-th layer
5: end for
6: for round t = 0, . . . T � 1 do
7: St random subset of max(1, pK) clients
8: for client k 2 St in parallel do
9: Split: Mlk split(M ; s(lk)d , s

(lk)
w)

10: for epoch e = 1, . . . E in client k do
11: for batch B ⇢ Dk do
12: L = 1

b

P
i2B L(Mlk (Xi; ✓

(k)), yi) with Eq. (5)
13: ✓(k) ✓(k) � ⌘ @L

@✓(k)

14: end for
15: end for
16: end for
17: Aggregate:
18: ✓ aggregate({✓(k)}k2St , {(s(l)d , s

(l)
w)}Ll=1)

19: end for
20: return M with ✓

network to learn from another larger (teacher) network by
treating the predictions of the teacher as soft targets. In
ScaleFL, local models with l > 1 have multiple exits and
can output multiple predictions. Therefore, to enhance the
knowledge transfer among the subnetworks of the global
model, we use self-distillation by using the final exit as the
teacher and earlier exits as students.

For the local model Mj at level j, fi is the ith core sub-
network with weights !(f)

i,j . Likewise, gi is the ith exit clas-
sifier subnetwork with weights !

(g)
i,j . ŷi,j is the output at

the ith exit of Mj . We formulate the forward pass of local
models as follows:

Hi,j = fi(Hi�1,j ;!
(f)
i,j), (3)

ŷi,j = gi(Hi,j ;!
(g)
i,j), (4)

for 1 i j L where j is the level of the local model
and H0,j = X is the input. In this study, we present our
work on classification tasks so after obtaining the predic-
tion logits at each exit for Ml at level l, the loss with self-

24536

distillation is calculated as follows:

L =
1

l(l + 1)

lX

i=1

i(�LKL(ŷi,l, ŷl,l) + LCE(ŷi,l, y)) (5)

where LKL(ŷs, ŷt) = sum(�(ŷt/⌧) log
�(ŷt/⌧)
�(ŷs/⌧)

)⌧2 is
KL divergence with temperature ⌧ > 0, LCE(ŷ, y) =
� log �(ŷ)[y] is cross-entropy loss for target class y, � is
softmax function and � 2 [0, 1) controls the self-distillation
effect. ⌧ and � are optimization hyperparameters of the sys-
tem. Here, ⌧ = 1 corresponds to using the standard softmax
function, and as ⌧ grows, the output of the softmax becomes
softer and more information on the score distribution of the
teacher is provided to the student.

4. Experiments
In this section, we report the results of extensive experi-

ments on five benchmarks: three image classification bench-
marks (CIFAR-10/100, ImageNet) and two NLP bench-
marks (SST-2, AgNews). We show that ScaleFL outper-
forms existing representative heterogeneous FL approaches
in terms of global model performance under the same num-
ber of rounds and provides inference speedup with up to 2x
latency reduction and 4x model size reduction while keep-
ing the performance drop below 2%.

4.1. Datasets and Preprocessing
In image classification experiments, we consider com-

mon benchmark datasets on various scales: CIFAR-10,
CIFAR-100 (14) and ImageNET (ILSVRC2012) (3). We
hold out randomly selected 5000 images from CIFAR-
10/100 train set and 25000 images from ImageNET train
set for validation. We follow the data augmentation tech-
niques applied in (9) with zero padding, center cropping
and random horizontal flip with 0.5 probability. For nor-
malization, we use fixed values, 0.5 as mean and 0.25 as
standard deviation and disable statistics tracking for batch
normalization operations due to the federated setting. In text
classification experiments, we consider SST-2 (27) dataset
from GLUE benchmark and AGNews (34) dataset. We hold
out 872 sentences from SST-2 validation set and randomly
selected 5000 sentences from AgNews train set for vali-
dation. For tokenization, we use the pre-trained tokenizer
for BERT-base-uncased model provided by the open-source
HuggingFace library (31). The details of the datasets are in
Table 2.

4.2. Heterogeneous System Topology and Non-IID
Client Data Distribution

In CIFAR-10/100 experiments, we set the number of
clients K = 100 and the ratio of available clients in each
training round p = 0.1. For ImageNET, SST-2 and AG-
News experiments, K = 50 and p = 0.2. To simulate the

Dataset Train Size Test Size # Classes Resolution
CIFAR-10 50K 10K 10 32x32
CIFAR-100 50K 10K 100 32x32
ImageNet 1.2M 150K 1000 224x224
SST-2 67K 1821 2 -
AgNews 120K 7.6K 4 -

Table 2. Statistics of the datasets used in image and text classifica-
tion experiments.

system heterogeneity, we consider four complexity levels
with the target cost reduction ratios r1 = 0.125, r2 = 0.25,
r3 = 0.5, r4 = 1 and set the tolerance level ✏k = 0.1.
We set the number of clients assigned to each level to be
equal. Different number of complexity levels or client dis-
tributions are also applicable and compatible with ScaleFL.
We use Dirichlet distribution with concentration parameter
↵ to create non-IID data splits for the local datasets in the
federated setting as in (19; 32). We report the results in two
levels of non-IID distribution with ↵ = 1 (more skewed)
and ↵ = 100 (less skewed). The resulting class distribu-
tion of data at each client is illustrated in Figure 4 (see Ap-
pendix).

4.3. Model and Implementation Details
On CIFAR-10 and CIFAR-100 datasets, we perform ex-

periments with two different models: ResNet (9) and MS-
DNet (11). ResNet is a common baseline for benchmarking
and MSDNet is a multi-exit CNN architecture with dense
connections. We use the default ResNet settings for 110-
layer architecture from (9). For MSDNet, we use the rec-
ommended configuration with 24 layers, 3 scales and 16
initial hidden dimensions with a growth rate of 6 (11). On
ImageNET, we consider EfficientNet (28) with B4 architec-
ture (medium-size) and 224x224 input resolution (28). We
set the number of FL rounds to 400 and 90, and batch size to
16 and 64 for CIFAR/ImageNET respectively. We optimize
local models using gradient descent with the learning rate
⌘ = 0.1 decayed by 0.1 at the 100th/200th (for CIFAR) and
30th/60th (for ImageNET) rounds. We use 3-layer CNNs
with ReLU activations as early exit classifiers. On SST-2
and AgNews datasets, we use the pre-trained BERT (4) pro-
vided by the open-source HuggingFace library (31). We op-
timize the local models for 100 rounds using gradient de-
scent with the learning rate ⌘ = 3e � 5 and batch size 16.
We use one-layer FC layers as early exit classifiers. In all
experiments, the number of local training epochs e = 5 and
KL divergence temperature ⌧ = 3. For image/text classifi-
cation experiments, loss weighting parameters � = 0.1 and
0.05, respectively.

We consider two baseline approaches: FedAVG (22) and
Decoupled. In FedAVG, we train the Level-1 model with

24537

Model Algorithm
CIFAR-10 CIFAR-100

↵ = 100 ↵ = 1 ↵ = 100 ↵ = 1

local global local global local global local global

ResNet110

FedAVG 81.46 81.46 77.72 77.72 44.26 44.26 42.75 42.75
Decoupled 77.16 - 74.83 - 36.60 - 35.78 -
HeteroFL 82.93 84.35 77.60 79.91 44.66 47.12 42.97 42.95
FedDF 83.35 84.44 77.08 78.57 43.50 46.99 42.29 44.50
ScaleFL (Ours) 84.49 85.53 79.61 80.83 46.63 49.94 43.52 44.95

MSDNet24
FedAVG 82.69 82.69 75.28 75.28 46.44 46.44 42.75 42.75
HeteroFL 81.54 83.02 75.77 76.74 44.65 47.77 42.32 43.00
ScaleFL (Ours) 84.61 84.77 77.81 78.69 49.19 50.25 45.25 46.12

Table 3. Local and global model accuracy values on CIFAR-10/100 datasets with ResNet110 and MSDNet24.

ImageNet
EfficientNetB4 ↵ = 100 ↵ = 1

local global local global

FedAVG 45.00 45.00 42.33 42.33
HeteroFL 43.68 46.61 41.74 43.59
ScaleFL (Ours) 46.63 48.95 44.86 46.78

Table 4. Local and global accuracy values on ImageNET.

splitting along width to use all available data. In Decou-
pled, we train separate models for each level using the
corresponding data of the clients at that level. We also
compare our results with recent studies: HeteroFL (5) and
FedDF (19), where we use splitting along width dimension
to form the local models at each level. For FedDF, we use
CIFAR-10/100 and SST-2/AgNews train sets as distillation
datasets for each other. Our implementation is on Python
3.7 with PyTorch 1.12 library. Our code is available at:
https://github.com/git-disl/scale-fl. Each latency measure-
ment is carried out 1000 times on a machine with an 8-core
2.4GHz CPU and 64GB RAM.

4.4. Global Model Performance

In this setting, we evaluate the global model on the
test dataset of each client and report the average of ob-
tained accuracy values. In Table 3, we report the results
for image classification on CIFAR-10 and CIFAR-100 with
ResNet110 and MSDNet24 models to observe the effect of
different architectures on the performance of ScaleFL. We
provide comparisons with FedAVG and HeteroFL for all
three image datasets. We make two observations from Ta-
ble 3. First, ScaleFL achieves 0.45-2.95% and 1.7-3.12%
higher global performance compared to the closest ap-
proach on ResNet110 and MSDNet24 respectively. Second,
in all settings, FedAVG baseline performs poorly since the
small level-1 model is used to utilize the data of every client.
Decoupled baseline performs the worst since the models for

BERT
SST-2 AG News

↵ = 100 ↵ = 1 ↵ = 100 ↵ = 1

local global local global local global local global

FedAVG 79.94 79.94 70.01 70.01 85.14 85.14 81.10 81.10
HeteroFL 76.02 88.83 76.21 82.86 89.92 91.51 88.85 90.85
FedDF 77.67 88.95 77.41 82.95 89.79 90.93 88.93 90.05
ScaleFL (Ours) 83.72 88.58 79.65 83.79 90.53 92.13 89.72 91.20

Table 5. Local and global accuracy values on SST-2 and AgNews.

each level are trained independently.
In Table 4, we provide the results of ImageNet experi-

ments with EfficientNet-B4 with 224x224 input resolution.
Since FedDF uses 32x32 resolution on ImageNet experi-
ments, we could not report the results for FedDF on Im-
ageNet. ScaleFL consistently achieves around 2.34-3.19%
higher global model accuracy under different data hetero-
geneity settings, compared to the closest competitor in each
experiment. In addition, Table 5 reports the effectiveness of
ScaleFL using NLP benchmarks with BERT as the back-
bone and ScaleFL again displays significant improvement
especially in local model performance as investigated fur-
ther in the next subsection.

4.5. Local Model Performance Analysis

This section reports the local model performances at dif-
ferent levels. In Tables 3, 4 and 5, ‘local’ columns con-
tain the average of accuracy values obtained after evaluat-
ing the respective local model at each client based on its
level. In addition, we illustrate the local models (their scales
in width and depth dimensions) and accuracies for MSD-
Net24 on CIFAR100 in Figure 2. At each level, even though
both submodels satisfy the target cost reduction, ScaleFL
results in consistently better performance in terms of local
model accuracy. This demonstrates the effectiveness of 2-D
downscaling since it balances between preserving low-order
basic features and extracting high-order complex features.
We also analyze the performance with respect to the num-

24538

Figure 2. Local model accuracies of Level 1-4 models with ScaleFL and HeteroFL for MSDNet24 on their corresponding test sample sets
from CIFAR100. Percentages on the bottom left and top right corners indicate the scaling ratios along width/depth dimensions. Percentages
above the models report the test accuracy obtained by that model.

Figure 3. Local model performances with respect to #PARAMs
and #FLOPs. Marker sizes represent complexity levels.

ber of parameters and inference time per sample on CPU
(ms), as illustrated in Figure 3. In most settings, our ap-
proach achieves better test results at local models and the
performance gap is more significant at lower levels, which
demonstrates the efficiency of our two-dimensional splitting
approach for model downscaling. For instance, the level-2
local model on AgNews with ScaleFL has 6x faster infer-
ence and 4x smaller size while having a lower 2.5% accu-
racy decrease (vs 3-4% with other methods) from the global
model.

5. Conclusion

We have introduced ScaleFL, a novel resource-adaptive
framework to address the system heterogeneity problem in
federated learning. First, ScaleFL adaptively scales down
the global model based on the computational constraints
of participating clients. Our two-dimensional split method-
ology preserves the important balance of basic and com-
plex features in local models. Second, we perform self-
distillation among early exit and final predictions during
local model training to improve the knowledge transfer
among subnetworks and provide effective aggregation. We
demonstrate the performance gains of ScaleFL compared
to FedAVG as well as HeteroFL and FedDF, the two most
representative federated learning approaches for system het-
erogeneity on benchmark image and text datasets.

Acknowledgements

This research is partially sponsored by the NSF CISE
grants 2038029, 2026945, 1564097, and an IBM faculty
award. The first author thanks for the summer 2022 intern-
ship at IBM Research with the group led by Dr. Donna Dil-
lenberger.

24539

References
[1] Mohammad Mohammadi Amiri, Deniz Gündüz, Sanjeev R.

Kulkarni, and H. Vincent Poor. Federated learning with
quantized global model updates. ArXiv, abs/2006.10672,
2020. 2

[2] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah
Estrin, and Vitaly Shmatikov. How to backdoor federated
learning. In Silvia Chiappa and Roberto Calandra, editors,
Proceedings of the Twenty Third International Conference

on Artificial Intelligence and Statistics, volume 108 of Pro-

ceedings of Machine Learning Research, pages 2938–2948.
PMLR, 26–28 Aug 2020. 2

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255, 2009. 6
[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the

2019 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Associa-
tion for Computational Linguistics. 6

[5] Enmao Diao, Jie Ding, and Vahid Tarokh. Hetero{fl}:
Computation and communication efficient federated learn-
ing for heterogeneous clients. In International Conference

on Learning Representations, 2021. 1, 2, 7
[6] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Per-

sonalized federated learning with theoretical guarantees: A
model-agnostic meta-learning approach. In Proceedings of

the 34th International Conference on Neural Information

Processing Systems, NIPS’20, Red Hook, NY, USA, 2020.
Curran Associates Inc. 2

[7] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. In In-

ternational Conference on Learning Representations, 2019.
1

[8] Song Han, Huizi Mao, and William J. Dally. Deep com-
pression: Compressing deep neural network with pruning,
trained quantization and huffman coding. In Yoshua Ben-
gio and Yann LeCun, editors, 4th International Conference

on Learning Representations, ICLR 2016, San Juan, Puerto

Rico, May 2-4, 2016, Conference Track Proceedings, 2016.
1

[9] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. 6

[10] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network, 2015. 2, 3, 5

[11] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Weinberger. Multi-scale dense
networks for resource efficient image classification. In Inter-

national Conference on Learning Representations, 2018. 3,
6, 12

[12] Peter Kairouz, H. Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista

Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El
Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco
Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan
Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi,
Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra
Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Le-
point, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard
Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage,
Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang
Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang,
Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu,
and Sen Zhao. Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021. 1

[13] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank Reddi, Sebastian Stich, and Ananda Theertha
Suresh. SCAFFOLD: Stochastic controlled averaging for
federated learning. In Hal Daumé III and Aarti Singh, ed-
itors, Proceedings of the 37th International Conference on

Machine Learning, volume 119 of Proceedings of Machine

Learning Research, pages 5132–5143. PMLR, 13–18 Jul
2020. 1, 2

[14] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.
6

[15] Stefanos Laskaridis, Alexandros Kouris, and Nicholas D.
Lane. Adaptive inference through early-exit networks: De-
sign, challenges and directions. In Proceedings of the 5th In-

ternational Workshop on Embedded and Mobile Deep Learn-

ing, EMDL’21, page 1–6, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery. 2

[16] Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao
Huang. Improved techniques for training adaptive deep net-
works. 2019 IEEE/CVF International Conference on Com-

puter Vision (ICCV), pages 1891–1900, 2019. 2, 3
[17] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi,

Ameet Talwalkar, and Virginia Smith. Federated optimiza-
tion in heterogeneous networks. In I. Dhillon, D. Papail-
iopoulos, and V. Sze, editors, Proceedings of Machine Learn-

ing and Systems, volume 2, pages 429–450, 2020. 2
[18] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai

Hoang, Yutao Jiao, Ying-Chang Liang, Qiang Yang, Dusit
Niyato, and Chunyan Miao. Federated learning in mobile
edge networks: A comprehensive survey. IEEE Communica-

tions Surveys & Tutorials, 22(3):2031–2063, 2020. 1
[19] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin

Jaggi. Ensemble distillation for robust model fusion in
federated learning. In Proceedings of the 34th Interna-

tional Conference on Neural Information Processing Sys-

tems, NIPS’20, Red Hook, NY, USA, 2020. Curran Asso-
ciates Inc. 1, 2, 6, 7

[20] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally.
Deep gradient compression: Reducing the communication
bandwidth for distributed training. In International Confer-

ence on Learning Representations, 2018. 2
[21] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang

24540

Deng, and Qi Ju. Fastbert: a self-distilling bert with adaptive
inference time. In ACL, 2020. 3

[22] H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hamp-
son, and Blaise Agüera y Arcas. Communication-efficient
learning of deep networks from decentralized data. In AIS-

TATS, 2017. 1, 2, 6
[23] Yiqun Mei, Pengfei Guo, Mo Zhou, and Vishal Patel.

Resource-adaptive federated learning with all-in-one neural
composition. In Alice H. Oh, Alekh Agarwal, Danielle Bel-
grave, and Kyunghyun Cho, editors, Advances in Neural In-

formation Processing Systems, 2022. 2
[24] Hossein Mobahi, Mehrdad Farajtabar, and Peter L. Bartlett.

Self-distillation amplifies regularization in hilbert space. In
Proceedings of the 34th International Conference on Neural

Information Processing Systems, NIPS’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. 2

[25] Mary Phuong and Christoph Lampert. Distillation-based
training for multi-exit architectures. In 2019 IEEE/CVF In-

ternational Conference on Computer Vision (ICCV), pages
1355–1364, 2019. 2, 3

[26] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary
Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and
Hugh Brendan McMahan. Adaptive federated optimization.
In International Conference on Learning Representations,
2021. 1

[27] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher Potts.
Recursive deep models for semantic compositionality over
a sentiment treebank. In Proceedings of the 2013 Confer-

ence on Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA, Oct. 2013. As-
sociation for Computational Linguistics. 6

[28] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings

of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
pages 6105–6114. PMLR, 09–15 Jun 2019. 1, 2, 6

[29] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung.
Branchynet: Fast inference via early exiting from deep neural
networks. 2016 23rd International Conference on Pattern

Recognition (ICPR), pages 2464–2469, 2016. 2
[30] W. Wei, L. Liu, Y. Wut, G. Su, and A. Iyengar. Gradient-

leakage resilient federated learning. In 2021 IEEE 41st In-

ternational Conference on Distributed Computing Systems

(ICDCS), pages 797–807, Los Alamitos, CA, USA, jul 2021.
IEEE Computer Society. 2

[31] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transform-
ers: State-of-the-art natural language processing. In Proceed-

ings of the 2020 Conference on Empirical Methods in Nat-

ural Language Processing: System Demonstrations, pages
38–45, Online, Oct. 2020. Association for Computational
Linguistics. 6

[32] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh,

Kristjan Greenewald, Nghia Hoang, and Yasaman Khaza-
eni. Bayesian nonparametric federated learning of neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Confer-

ence on Machine Learning, volume 97 of Proceedings of

Machine Learning Research, pages 7252–7261. PMLR, 09–
15 Jun 2019. 6

[33] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chen-
glong Bao, and Kaisheng Ma. Be your own teacher: Im-
prove the performance of convolutional neural networks via
self distillation. 2019 IEEE/CVF International Conference

on Computer Vision (ICCV), pages 3712–3721, 2019. 2
[34] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level

convolutional networks for text classification. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. 6

[35] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley,
Ke Xu, and Furu Wei. Bert loses patience: Fast and robust
inference with early exit. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in

Neural Information Processing Systems, volume 33, pages
18330–18341. Curran Associates, Inc., 2020. 3

24541

