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Abstract

Instance segmentation seeks to identify and segment each
object from images, which often relies on a large num-
ber of dense annotations for model training. To allevi-
ate this burden, unsupervised instance segmentation meth-
ods have been developed to train class-agnostic instance
segmentation models without any annotation. In this pa-
per, we propose a novel unsupervised instance segmenta-
tion approach, Exemplar-FreeSOLO, to enhance unsuper-
vised instance segmentation by exploiting a limited num-
ber of unannotated and unsegmented exemplars. The pro-
posed framework offers a new perspective on directly per-
ceiving top-down information without annotations. Specif-
ically, Exemplar-FreeSOLO introduces a novel exemplar-
knowledge abstraction module to acquire beneficial top-
down guidance knowledge for instances using unsupervised
exemplar object extraction. Moreover, a new exemplar em-
bedding contrastive module is designed to enhance the dis-
criminative capability of the segmentation model by exploit-
ing the contrastive exemplar-based guidance knowledge in
the embedding space. To evaluate the proposed Exemplar-
FreeSOLO, we conduct comprehensive experiments and
perform in-depth analyses on three image instance seg-
mentation datasets. The experimental results demonstrate
that the proposed approach is effective and outperforms the
state-of-the-art methods.

1. Introduction

Instance segmentation is among the most fundamental
and challenging tasks in computer vision, aiming to recog-
nize and segment each object in an image. By utilizing a
significant amount of densely annotated data to train seg-
mentation models, existing techniques have achieved desir-
able results [4, 5, 10, 16, 26, 41, 47]. However, acquiring nu-
merous pixel-level labels requires substantial labour and fi-
nancial resources, limiting the developments and practical
applications in the field. To reduce the costly annotation re-

Figure 1. An illustration of the proposed idea. The proposed
Exemplar-FreeSOLO framework addresses the unsupervised in-
stance segmentation problem by excavating information from un-
labeled data through an exemplar mechanism, which produces top-
down knowledge guidance and enhances the discriminability of
the segmentation model.

quirement, some solutions have been put forth to investigate
ways of using less expensive training labels to complete
complex tasks, such as weakly-supervised [18, 22, 29, 42],
partially-supervised [20, 51] and semi-supervised instance
segmentation [3, 52, 55].

Although some significant advances have been achieved,
the labelling conundrum obstacle remains as these methods
still require nontrivial dense labels and precise position in-
formation. By contrast, unsupervised instance segmenta-
tion methods benefit from not requiring any annotated data;
they can directly exploit many existing unannotated images
while being able to continuously upgrade the effectiveness
of the segmentation models with incoming data. Therefore
it is important to investigate unsupervised instance segmen-
tation, which enables learning class-agnostic instance seg-
mentation models without any data annotation. Recently, an
unsupervised instance segmentation framework, FreeSOLO
[48], has been proposed to extract coarse object masks as
pseudo-labels and train an instance segmentation model
using a self-supervised method. Although FreeSOLO at-
tempts to improve the quality of pseudo labels and predic-
tion masks, it can hardly overcome the detrimental effects
of the considerable noise in pseudo labels without any guid-
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ance information in the training process.
The overall fundamental challenges for unsupervised in-

stance segmentation lie in the following two aspects: (1)
Unsupervised segmentation models are heavily influenced
by the noisy pseudo-labels. When the objects of an image
are part of the background relative to the features of interest,
models are prone to generating a large number of false pos-
itive regions. (2) The unsupervised nature makes it difficult
to learn discriminative information. Constructing compar-
ison relations directly between different instances for the
same type of target tends to lead to fragmentation prob-
lems. Meanwhile, as suggested by the generalized context
model [36], humans can capture different categories of in-
formation through exemplars in their memory. Inspired by
this idea, we aim to overcome the unsupervised instance
segmentation challenges by developing new segmentation
models to integrate an exemplar learning mechanism, which
is desirable from both biological and practical perspectives.

In this paper, we propose a novel approach, Exemplar-
FreeSOLO, for performing instance segmentation without
any annotation. The core of the framework is an exem-
plar mechanism that aims to extract and utilize pertinent
information from unlabeled data in order to obtain useful
knowledge that can guide model training, as shown in Fig-
ure 1. Exemplar-FreeSOLO obtains beneficial top-down
guidance for objects through exemplar knowledge extrac-
tion, while consequently enhancing the discriminability of
instance segmentation models by exploiting the exemplar
guidance information in a contrastive manner. Specifically,
given randomly selected exemplar images, we design an
exemplar knowledge abstraction module (EKA) to acquire
top-down guidance knowledge for objects. The exemplar
images are roughly cropped and fed into an unsupervised
model to extract masked-out images for constructing a pool
of exemplar objects, which are then used to produce the ex-
emplar guidance knowledge. Next, an exemplar embedding
contrastive module (EEC) is devised to capture homoge-
neous components of the same type of instances through
a contrastive learning paradigm. This is achieved by con-
sidering similarities between the embeddings of unlabeled
images and the exemplar embeddings and constructing con-
trastive relationships among them. This module is expected
to enhance the discriminability of the instance segmenta-
tion model. Finally, we incorporate the two modules into
the FreeSOLO framework to effectively train instance seg-
mentation models. The main contributions of our paper are
summarized as follows:

• We propose a novel Exemplar-FreeSOLO approach to
tackle the unsupervised instance segmentation prob-
lem by leveraging useful information from the unla-
belled data through an exemplar mechanism.

• We design an exemplar knowledge abstraction module
to acquire beneficial top-down guidance knowledge by

extracting exemplar objects in an unsupervised way.

• We devise an exemplar embedding contrastive mod-
ule to enhance the discriminative capability of instance
segmentation models by exploiting contrasting exem-
plar guidance knowledge in the embedding space.

• Experimental results on three datasets show that the
proposed Exemplar-FreeSOLO can substantially out-
perform the state-of-the-art unsupervised instance seg-
mentation and object detection methods.

2. Related Work
Instance Segmentation Instance segmentation is an im-
portant task in computer vision. Methods for instance seg-
mentation can be divided into two categories: two-stage ap-
proaches and one-stage approaches. Mask-RCNN [16] is
a representative two-stage instance segmentation approach.
This approach first creates candidate ROIs, which are then
segmented in the second stage. Other approaches like FPN
[28] try to improve the performance of the two-stage models
by addressing the incompatibility issue between a mask’s
confidence score and localization accuracy. By contrast,
one-stage approaches map the final masks with position-
sensitive pooling [8, 26]. SOLO [47] is a one-stage ap-
proach that addresses the trade-off between the domain’s
speed and accuracy. Based on the SOLO model, the recent
work of FreeSOLO [48] has been by far the first and only
work that proposes to perform unsupervised instance seg-
mentation without any labels.

Cluster-based and Self-supervised Approaches HAIS
is a clustering-based instance segmentation framework [6]
that uses the spatial relationships between points and point
sets. The hierarchical aggregation presented in this method
generates instance proposals progressively. PointGroup
[21] is a bottom-up segmentation network that focuses on
better point-grouping. The network predicts semantic labels
and offsets, and the clustering component is deployed for
proper utilization of both the original and offset-shifted co-
ordinates. Targeting real-time computation for autonomous
vehicles, the work in [34] proposes a clustering-based loss
function to achieve proposal-free instance segmentation. In
[19], the graph colouring theorem is combined with FCN to
show that deep FCN can cluster image pixels in an end-to-
end manner. Self-supervised learning is another approach
that has gained much attention in computer vision. Meth-
ods like MoCo [15], SimCLR [7], jigsaw puzzles [35],
colorization [54], orientation discrimination [13], and in-
painting [37] are pioneer works of self-supervised learn-
ing. Some self-supervised learning strategies, such as con-
trastive learning, have been used in fully supervised seg-
mentation models, yielding good empirical results [51]. An
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Figure 2. An overview of the proposed Exemplar-FreeSOLO. We first select exemplar images from the unlabeled dataset and build the
exemplar object pool DP through the exemplar knowledge abstraction module. Next, we extract the feature embeddings {Inu }Nn=1 of
the unlabeled images and the feature embedding pool IP = {Ike }Kk=1 of the exemplar objects in DP by using the backbone. Finally, we
separately input {Inu }Nn=1 into a segmentation head to obtain the instance segmentation results and input both {Inu }Nn=1 and IP = {Ike }Kk=1

into an exemplar embedding contrastive module to compute the exemplar embedding contrastive loss.

exemplar-based approach [30] has been proposed to ad-
dress the object detection problem, but it requires super-
vised information to identify positive and negative samples,
whereas our approach is unsupervised.

Weakly and Partially Supervised Instance Segmentation
Obtaining pixel-level annotation in images is challenging
and induces tremendous costs. To reduce this annotation
burden, some recent works have used weak annotations or
incomplete annotations for instance segmentation. For ex-
ample, some weakly supervised methods employ box-level
annotations [18,25,42] or image-level labels [12,39] to per-
form instance segmentation. However, as these methods do
not use pixel-level annotations, the results obtained in such
works are much less satisfactory than the ones from a fully-
supervised setup. By contrast, some other works adopt a
partial-supervised setup [20, 24, 55], where a small num-
ber of categories are pixel annotated, and the rest of the
categories have only box-level annotations. Such partial-
supervised methods rely on the power of semi-supervised
learning to produce good instance segmentation models
without comprehensive image annotations. Different from

the above-mentioned efforts to reduce the annotation cost,
our proposed approach aims to learn a good instance seg-
mentation model from unlabeled images without any anno-
tations.

3. Method
In this section, we present the proposed Exemplar-

FreeSOLO for unsupervised instance segmentation. We
first briefly introduce the unsupervised instance segmen-
tation framework FreeSOLO [48] in Sec. 3.1. Next, we
depict the architecture of the Exemplar-FreeSOLO in Sec.
3.2. The proposed exemplar knowledge abstraction module
(EKA) and exemplar embedding contrastive module (EEC)
are then presented in Sec. 3.3 and Sec. 3.4, respectively. Fi-
nally, we present the overall loss function used to train the
proposed Exemplar-FreeSOLO in Sec. 3.5.

3.1. Revisiting FreeSOLO

Built on top of the SOLO architecture [47], FreeSOLO
[48] has achieved successful instance segmentation with-
out any image annotations. The main idea is to train an
instance segmentation model (i.e. SOLO) by generating
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coarse masks M and semantic embeddings Q in an unsu-
pervised manner. Specifically, the input for FreeSOLO is a
set of N unlabeled images, DU = {(Xn

u )}Nn=1, where each
image is represented as Xn

u ∈ RH∗W∗3, with H and W de-
noting the height and width of the image, respectively. For
each input image Xn

u , its feature embedding Inu ∈ Rh×w×c

can be extracted from a self-supervised backbone [50], e.g.,
ResNet [17]. Inu is then bilinearly downsampled to obtain
queries Qn

u ∈ Rh′×w′×c, while taking itself as keys Kn
u.

Next, both of them go through ℓ2 normalization to gener-
ate new queries Q̄n

u and new keys K̄n
u. Each query in Q̄n

u

can be treated as a 1 × 1 convolutional kernel to perform a
convolution operation on the keys in K̄n

u and generate score
maps Sn

u = Q̄n
u ⊛ K̄n

u, which are then used to produce the
coarse mask Mn

u as follows:

Mn
u = NMS(Maskness(Norm(Sn

u)), (1)

where ⊛ denotes the convolution operation; Norm(·) is a
normalization function that shifts the scores to the range
of [0,1]; Maskness(·) indicates a confidence score func-
tion [47]; and NMS(·) represents the mask non-maximum-
suppression operation. The coarse masks {Mn

u}Nn=1 and
the query feature vectors {Qn

u}Nn=1 from all the unlabeled
images are then used as initial pseudo-labels and semantic
embeddings to train a SOLO-based instance segmentation
model [47] via self-training.

3.2. Overview of Exemplar-FreeSOLO

Fully unsupervised instance segmentation, nevertheless,
is substantially more challenging than its supervised coun-
terpart. Although FreeSOLO [48] has achieved surprising
results, it still struggles to overcome the negative impact
of the considerable pseudo-label noise. Moreover, it also
does not optimize the potential of exploiting the discrim-
inative contrastive information that naturally exists in un-
labeled data. In view of these drawbacks, we propose a
novel unsupervised instance segmentation method dubbed
as Exemplar-FreeSOLO to enhance unsupervised instance
segmentation through exemplar knowledge extraction and
contrastive embedding learning.

The overall architecture of the Exemplar-FreeSOLO
is illustrated in Figure 2, which is built on top of the
FreeSOLO architecture with two extra modules, an exem-
plar knowledge abstraction (EKA) module and an exemplar
embedding contrastive (EEC) module. The base instance
segmentation network consists of an embedding backbone,
a segmentation head and the proposed EEC module, where
the first two parts are the same as the segmentation model
in FreeSOLO. As a result, the embedding features extracted
by the embedding backbone are fed into two branches, the
segmentation head and the EEC module. In particular, given
the set of unlabeled images DU , Exemplar-FreeSOLO aims
to train a good instance segmentation network Ns with-

out any annotation by enhancing the self-training process,
starting with the initial pseudo-labels generated by the Free
Mask of FreeSOLO. First, the EKA module is used to build
an exemplar object pool DP from randomly selected images
from the unlabeled dataset DU , which can provide useful
top-down guidance for embedding learning and the unsu-
pervised segmentation model training process. Next, the
EEC module is used to construct contrastive relationships
between the exemplar embeddings and the unlabeled im-
age embeddings and boost the discriminative capability of
the instance segmentation network with an additional con-
trastive embedding loss during the self-training process. We
elaborate on these modules of Exemplar-FreeSOLO and the
training loss below.

3.3. Exemplar Knowledge Abstraction Module

We randomly select exemplar images from the unlabeled
training set and devise an exemplar knowledge abstraction
module (EKA) to extract exemplar objects from the selected
exemplar images and build an exemplar pool of objects,
which are later leveraged as pivots for self-supervised con-
trastive embedding learning.

For each selected exemplar image Xu, we employ an un-
supervised object segmentation method (e.g., Grabcut [38])
to extract the coarse foreground mask, and then crop out
the object region from the image based on the surrounding
boundaries of the mask. In this way, an exemplar object
with a high probability of appearing in the region can be
identified. Nevertheless, the coarse foreground mask may
have a higher recall but a lower precision. We, therefore,
further deploy a trained FreeSOLO to extract a refined ob-
ject mask from the exemplar object region and apply the
mask to the exemplar image to obtain an exemplar object
Xe. Using this procedure, we can extract a set of K exem-
plar objects and create an exemplar object pool DP :

DP = {Xk
e }Kk=1. (2)

This exemplar object pool can be treated as representatives
or pivots for the corresponding hidden categories of the ex-
tracted objects. This EKA module is specifically designed
for unsupervised instance segmentation, and the exemplar
object pool will be exploited as top-down guidance knowl-
edge during the self-training process of the segmentation
network through the subsequent EEC module.

3.4. Exemplar Embedding Contrastive Module

In an unsupervised scenario, selecting positive and neg-
ative samples to construct discriminative contrastive rela-
tionships is challenging as there is no explicit labelling in-
formation. Leveraging the exemplar object pool produced
by the EKA module, we propose an exemplar embedding
contrastive (EEC) module that exploits the exemplar objects
as guidance knowledge to construct contrastive embedding
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Figure 3. The exemplar embedding contrastive module

losses for the unlabeled images, aiming to improve image
embedding and enhance the discriminative capacity of the
instance segmentation network.

The structure of the proposed EEC module is shown
in Figure 3. This module takes the feature embeddings
{Inu}Nn=1 of the unlabeled images and the feature embed-
ding pool IP = {Ike }Kk=1 of the exemplar objects in DP

as inputs. For each unlabeled image, we further compute a
mask-guided feature embedding Inmu for it as follows. First,
we apply ℓ2 normalization and up-sampling on Inu to gener-
ate queries Q̂n

u. Similarly, we generate keys K̂n
u by apply-

ing ℓ2 normalization, up-sampling, and an extra 1×1 convo-
lution operation on Inu . Next, following FreeSOLO, a pre-
diction mask M̂n

u can be produced by applying the series of
operations in Eq.(1) to the element-wise multiplication of
Q̂n

u and K̂n
u. Finally, we produce the mask-guided feature

embedding Inmu ∈ Rh×w×c by multiplying the prediction
mask M̂n

u with a transformed Inu .
Given the mask-guided feature embeddings, we con-

struct a contrastive loss for each unlabeled input image by
choosing positive and negative samples for it from the ex-
emplar embedding pool IP based on embedding similari-
ties. For Inmu, we randomly select an exemplar embedding
whose similarity with Inmu is larger than a threshold α as a
positive sample, such as

Ine,pos ∈ {Ike ∈ IP : sim(Inmu, I
k
e ) > α}, (3)

while using all the exemplars whose similarity with Inmu is
smaller than a threshold β as negative samples:

In
e,neg = {Ike ∈ IP : sim(Inmu, I

k
e ) < β}. (4)

In particular, we use the cosine similarity in our implemen-
tation. Consequently, the exemplar embedding contrastive
loss is defined as follows:

Leec = −
∑
n

log
pos(n)

pos(n) + neg(n)
, (5)

where

pos(n) = exp(⟨Inmu, I
n
e,pos⟩/τ) (6)

neg(n) =
1

|In
e,neg|

∑
Ie∈In

e,neg

exp(⟨Inmu, Ie⟩/τ). (7)

Here τ > 0 is a hyperparameter, | · | denotes the size of the
given set, and ⟨·, ·⟩ denotes the inner product. If no positive
or negative samples can be found for an unlabeled image,
its contrastive loss will be set to zero.

This exemplar embedding contrastive module (EEC) is
designed to possess the following advantages. First, by
calculating similarities between the mask-guided unlabeled
feature embeddings and the exemplar object embeddings,
we can determine positive and negative samples in an un-
supervised manner. Second, with the proposed exemplar
embedding contrastive loss, by maximizing the similarities
between the positive pairs in contrast to the negative pairs,
we can enforce discriminative information learning in the
embedding space by using diverse exemplar objects as piv-
ots. As such, EEC can enhance the discriminative capability
of unsupervised instance segmentation models.

3.5. Loss Function

The overall loss function for the proposed Exemplar-
FreeSOLO contains three terms: a mask segmentation loss
Lmask, a category loss Lcate, and an exemplar embedding
contrastive loss Leec:

Ltotal = Lmask + Lcate + λeecLeec, (8)

where λeec is a trade-off hyperparameter. The first two
terms of Eq.(8) are derived from FreeSOLO together with
its generated coarse masks and semantic embeddings (Sec.
3.1), and the last term is derived from the proposed mod-
ules (Sec. 3.3 and 3.4). In particular, Lmask is defined to
constrain the predicted mask of the segmentation head:

Lmask =γLavg proj(M
∗,M)+

Lmax proj(M
∗,M) + Lpairwise(M

∗),
(9)

where M∗ and M are the predicted mask from the seg-
mentation head and the coarse mask generated from the
Free Mask of FreeSOLO [48]; γ is a trade-off hyperpa-
rameter; Lavg proj and Lmax proj are average projection
loss [42] and max projection loss [48]; and Lpairwise is a
pairwise affinity loss [42]. Besides, Lcate is defined for
foreground/background binary classification and semantic
embedding learning:

Lcate = Lfocal(M
∗,M) + µLsem(Q∗,Q), (10)

where Lfocal is the focal loss and Lsem is a negative cosine
similarity function; µ is a trade-off hyperparameter; and Q∗

and Q are the predicted embeddings from the segmentation
head and the embeddings generated together with pseudo
labels from the Free Mask of FreeSOLO [48].
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Model AP50 AP75 AP AR1 AR10 AR100

w/anns:
MCG [1] 4.6 0.8 1.6 1.9 7.4 18.2
COB [31] 8.8 1.9 3.3 2.9 10.1 22.7
w/o anns:

FreeSOLO [48] 9.8 2.9 4.0 4.1 10.5 12.7
Exemplar-FreeSOLO 13.2 6.3 8.4 7.3 15.8 15.5

Table 1. Class-agnostic instance segmentation results on MS
COCO val2017. “w/anns” indicates the results obtained in a su-
pervised scenario. “w/o anns” indicates the results obtained in an
unsupervised scenario.

4. Experiments
4.1. Experimental Setting

Implementation details Following FreeSOLO, we set the
input image size to 800 pixels and the object confidence
threshold to 0.5 in the Free Mask approach. Besides, we
employ the same network structure as FreeSOLO for the
instance segmentation network Ns. In particular, we adopt
a ResNet-50-based DenceCL [50] model as our backbone,
which is trained on the ImageNet with 1.28 million unla-
beled images [48]. We use the FastNMS [4] and a mask
confidence threshold of 0.7 to filter out the low-quality
masks. For the loss terms in Eq.(8), Eq.(9) and Eq.(10),
we set the values of the hyperparameters (λeec, γ and µ), to
1.3, 0.1 and 0.4, respectively. We set τ to 0.02, α to 0.8, and
β to 0.3. During training, the batch size is set to 8, and the
learning rate is set to 0.001 with SGD.

Datasets and evaluation metrics The Exemplar-
FreeSOLO is trained on the MS COCO unlabeled2017
and train2017 datasets [27], and is tested on MS COCO
val2017, UVO val set [46], and PASCAL VOC trainval07
[11]. We use average precision (AP) and average recall
(AR) as performance assessment metrics. The AP scores
are averaged over 10 results by varying the IoU threshold
from 0.5 to 0.95. AP50 and AP75 indicate the AP scores
by fixing the IoU threshold as 0.5 and 0.75, respectively.
APs, APm and APl are reported for small, medium and
large objects with areas less than 642, within [642, 1922]
and greater than 1922, respectively, using an IoU thresh-
old of 0.5. Similarly, AR1, AR10 and AR100 are the recall
values computed with different numbers of fixed detections
(i.e., 1, 10, 100) for each image [48]. As a byproduct of
the masks, Exemplar-FreeSOLO also generates bounding
boxes to address the unsupervised object detection tasks on
COCO val2017, COCO 20k, and VOC trainval07.

4.2. Quantitative Evaluation Results

Comparison results on MS COCO val2017 The perfor-
mance of our proposed Exemplar-FreeSOLO is compared
with that of the state-of-the-art unsupervised methods on

Model AP50 AP75 AP AR1 AR10 AR100

UP-DETR [9] 0.0 0.0 0.0 0.0 0.0 0.4
SS [43] 0.5 0.1 0.2 0.2 1.5 10.9

DETReg [2] 3.1 0.6 1.0 0.6 3.6 12.7
FreeSOLO [48] 12.2 4.2 5.5 4.6 11.4 15.3

Exemplar-FreeSOLO 17.9 8.6 12.6 8.2 13.0 17.9

Table 2. Unsupervised class-agnostic object detection results on
MS COCO val2017.

Model AP50 AP75 AP
w/anns:

SOLOv2 [49] w/COCO 38.0 20.9 21.4
Mask R-CNN [16] w/COCO 31.0 14.2 15.9

SOLOv2 [49] w/LVIS 14.8 5.9 7.1
Mask R-CNN [16] w/LVIS 18.1 4.1 6.8

w/o anns:
FreeSOLO [48] 12.7 3.0 4.8

Exemplar-FreeSOLO 14.2 7.3 9.2

Table 3. Unsupervised instance segmentation results on UVO val
in terms of average precision scores. “w/anns” indicates the results
obtained in a fully supervised scenario. “w/o anns” indicates the
results obtained in an unsupervised scenario.

MS COCO val2017 in Table 1 and Table 2. We can see
from Table 1 that the proposed Exemplar-FreeSOLO largely
outperforms the state-of-the-art class-agnostic instance seg-
mentation techniques. MCG [1] and COB [31] are trained
using the BSD500 dataset [32] and the PASCAL Context
dataset [33], respectively. Yet, the instance segmentation
results of the proposed Exemplar-FreeSOLO are still no-
ticeably better than those of MCG and COB. Moreover, the
proposed Exemplar-FreeSOLO outperforms FreeSOLO in
terms of AP value by more than 4%. Additionally, from
the unsupervised class-agnostic object detection results in
Table 2, we can see that our proposed method substantially
outperforms all the comparison methods, achieving an AP
value of 12.6%. These experimental results illustrate the
effectiveness of our proposed Exemplar-FreeSOLO. More-
over, the remarkable performance gain over FreeSOLO sug-
gests the effectiveness of Exemplar-FreeSOLO can be at-
tributed to the novel exemplar mechanism that provides use-
ful top-down guidance and discriminative information.

Comparison results on UVO val We also evaluate our
proposed framework on the UVO val dataset in terms of
AP values, as shown in Table 3. UVO is a video dataset
with more difficult characteristics like camera shake, a dy-
namic background, and motion blur. Even so, the pro-
posed method still achieves impressive results, especially in
narrowing the performance gap between unsupervised and
fully supervised instance segmentation models. We can see
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Model AP50 AP75 AP
Kim et al. [23] 9.5 - 2.5

DDT+ [53] 8.7 - 3.0
rOSD [44] 13.1 - 4.3
LOD [45] 13.9 - 4.5
LOST [40] 19.8 - 6.7

FreeSOLO [48] 24.5 7.2 10.2
Exemplar-FreeSOLO 26.8 8.2 12.6

Table 4. Multi-object discovery results on PASCAL VOC train-
val07 in terms of average precision scores.

that our proposed framework outperforms FreeSOLO by
4.4% in terms of the AP value. SOLOv2 [49] and Mask R-
CNN [16] are trained on the fully supervised COCO dataset,
and LVIS dataset [14] separately. Surprisingly, our unsu-
pervised framework outperforms the SOLOv2 and Mask R-
CNN methods trained on the LVIS dataset in terms of the
AP value. Again, we attribute this to the proposed exemplar
mechanism.

Comparison results on PASCAL VOC The multi-object
discovery results for all the comparison methods on the
PASCAL VOC dataset are reported in Table 4. The goal
of this task is to find the location of multiple salient ob-
jects without any annotations. We can see that the proposed
framework significantly outperforms the existing state-of-
the-art methods and outperforms the second-best model (i.e.
FreeSOLO) in terms of the AP value by 2.4%. Besides,
LOST [40] is a transformer-based method that leverages the
activation features to generate seeds for generating the lo-
cation of objects. By contrast, our proposed framework ef-
fectively deploys a simple exemplar mechanism to exploit
unsupervised discriminative information.

4.3. Ablation Study

We conducted an ablation study on the proposed ap-
proach by comparing the full Exemplar-FreeSOLO with
three variant methods: (1) “vanilla FreeSOLO” denotes
the standard FreeSOLO. (2) “Semi-super-box” denotes a
variant based on FreeSOLO, in which the bounding box
ground-truths of the exemplar images are added directly to
model training as foreground supervision information. The
variant can be viewed as a weakly semi-supervised model
for instance segmentation and object detection. (3) “Semi-
super-mask” denotes another variant based on FreeSOLO,
in which the mask ground-truths of the exemplar images
are added directly to model training as foreground supervi-
sion information. The comparison results of unsupervised
instance segmentation and object detection on MS COCO
val2017 are reported in Table 5. First, we can see that with
additional supervision information, the two variants outper-
form FreeSOLO in most cases. However, our proposed un-

Model AP50 AP75 AP APs APm APl

Segmentation:
vanilla FreeSOLO 9.8 2.9 4.0 3.6 13.5 10.8
Semi-super-box 11.2 3.5 5.8 3.0 7.7 19.2

Semi-super-mask 12.5 3.9 6.2 3.5 8.2 19.7
Exemplar-FreeSOLO 13.2 6.3 8.4 5.5 16.6 22.2

Detection:
vanilla FreeSOLO 12.2 4.2 5.5 5.1 13.8 16.8
Semi-super-box 13.4 3.9 7.1 4.7 12.1 15.9

Semi-super-mask 14.3 4.7 8.2 4.8 12.6 16.7
Exemplar-FreeSOLO 17.9 8.6 12.6 6.8 15.9 19.9

Table 5. Ablation study for the proposed Exemplar-FreeSOLO on
MS COCO val2017 with unsupervised instance segmentation and
unsupervised object detection.
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Figure 4. Impact of the weight of the proposed loss function in
terms of AP50 (a) and AP (b). We report the results for unsu-
pervised class-agnostic instance segmentation and unsupervised
class-agnostic object detection on MS COCO val2017.

supervised Exemplar-FreeSOLO consistently outperforms
the two variants across all evaluations. In terms of the AP
value, Exemplar-FreeSOLO outperforms the best variant by
2.2% for segmentation and 4.4% for detection. These ex-
perimental results demonstrate the effectiveness of the pro-
posed EKA and EEC modules.

4.4. Further Analysis

Impact of the weight of the proposed loss function We
summarize the experimental results about the impact of the
weight of the exemplar embedding contrastive loss, λeec, in
Figure 4. The experiments are performed by fixing the other
hyperparameters and only changing the value of λeec. The
best results in terms of both AP50 and AP values for the ob-
ject detection task are obtained with λeec=1.3. For instance
segmentation, the same λeec value produces the best result
in terms of AP50 and produces a good AP value of 8.4%,
which is only slightly smaller than the best result in terms
of the AP metric, 8.8%, which is achieved with λeec= 0.5 or
0.7. Considering these results on both tasks, we used λeec

= 1.3 in all the other experiments.
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Num AP50 AP75 AP APs APm APl
Se

gm
en

ta
tio

n 1 13.2 6.3 8.4 5.5 16.6 22.2
3 13.5 6.4 8.7 5.5 16.8 22.4
5 13.6 6.6 8.8 5.7 16.8 22.5
7 13.6 6.7 8.8 5.6 16.8 22.8
9 13.8 6.9 8.9 5.8 16.8 23.2

D
et

ec
tio

n 1 17.9 8.6 12.6 6.8 15.9 19.9
3 18.5 8.8 12.7 6.8 16.2 20.2
5 18.8 9.1 12.8 7.2 16.5 20.6
7 18.8 9.2 12.8 7.4 16.5 20.8
9 18.8 9.5 13.0 7.7 16.7 20.9

Table 6. Impact of the number of exemplars on the performance of
Exemplar-FreeSOLO for unsupervised instance segmentation and
unsupervised object detection on MS COCO val2017.

Impact of the number of exemplars In Table 6, we
demonstrate an in-depth performance analysis by using dif-
ferent numbers of exemplar objects for each category. We
can observe that the performance of the proposed model for
both unsupervised segmentation and unsupervised detection
improves slightly as the number of exemplars increases. But
it is worth noting that even with only one exemplar in each
category, very impressive results can still be obtained.

Impact of the exemplar distribution We summarize the
impact of the exemplar distribution across different cate-
gories in Figure 5. In each case, we randomly select a given
number of categories and choose one exemplar from each
category. We can see that the performance of the proposed
framework gradually improves as the number of classes in-
creases. The largest improvement occurs when the number
of classes increases from 50 to 60. The proposed framework
achieves the best results when the exemplars are distributed
among all categories. This is reasonable since as the exem-
plars come from more categories, there are not only more
exemplars but also a high probability of providing more di-
verse representations. These experimental results also val-
idate that randomly chosen images are suitable as unsuper-
vised representative exemplars.

4.5. Qualitative Evaluation Results

For qualitative analyses of the results produced by
Exemplar-FreeSOLO, we present some visualized exam-
ples of the unsupervised instance segmentation and object
detection results in Figure 6 and Figure 7. Background clut-
ter or edge ambiguity can exist in different images, which is
very challenging for unsupervised learning scenarios. From
the figures, we can observe that Exemplar-FreeSOLO can
still segment and detect the corresponding targets in such
scenes more accurately than FreeSOLO.
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Figure 5. Impact of the exemplar distribution in terms of AP for
unsupervised class-agnostic instance segmentation and unsuper-
vised class-agnostic object detection on MS COCO val2017.

Figure 6. Visualized examples of the unsupervised instance seg-
mentation and object detection results by Exemplar-FreeSOLO.
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Figure 7. Examples of segmentation using FreeSOLO and the pro-
posed Exemplar-FreeSOLO.

5. Conclusion

This paper proposes a novel framework, Exemplar-
FreeSOLO, to address unsupervised instance segmen-
tation by developing an effective exemplar mechanism
through two consecutive modular functions. The Exemplar-
FreeSOLO uses an exemplar knowledge abstraction module
(EKA) to acquire beneficial top-down guidance knowledge
by extracting exemplar objects in unsupervised ways, and
uses an exemplar embedding contrastive module (EEC) to
enhance the discriminative capability of the instance seg-
mentation network by exploiting the exemplar guidance
knowledge in a contrastive manner. Experimental results
demonstrate that the proposed framework outperforms the
existing state-of-the-art methods.
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[40] Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin,
Spyros Gidaris, Andrei Bursuc, Patrick Pérez, Renaud
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