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RelightableHands: Efficient Neural Relighting of Articulated Hand Models
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Figure 1. Neural Relighting of Animatable Hands. Our model-based neural rendering approach enables high-fidelity rendering of hands
with various poses, views, and illuminations. Our student model is highly efficient enough to render in real-time.

Abstract

We present the first neural relighting approach for ren-
dering high-fidelity personalized hands that can be ani-
mated in real-time under novel illumination. Our approach
adopts a teacher-student framework, where the teacher
learns appearance under a single point light from images
captured in a light-stage, allowing us to synthesize hands
in arbitrary illuminations but with heavy compute. Using
images rendered by the teacher model as training data, an
efficient student model directly predicts appearance under
natural illuminations in real-time. To achieve generaliza-
tion, we condition the student model with physics-inspired
illumination features such as visibility, diffuse shading, and
specular reflections computed on a coarse proxy geometry,
maintaining a small computational overhead. Our key in-
sight is that these features have strong correlation with sub-
sequent global light transport effects, which proves suffi-
cient as conditioning data for the neural relighting network.
Moreover, in contrast to bottleneck illumination condition-
ing, these features are spatially aligned based on underlying
geometry, leading to better generalization to unseen illumi-
nations and poses. In our experiments, we demonstrate the
efficacy of our illumination feature representations, outper-
forming baseline approaches. We also show that our ap-
proach can photorealistically relight two interacting hands

*This work was done during an internship at Meta

at real-time speeds. https://sh8.io/#/relightable_hands

1. Introduction

Neural rendering approaches have significantly ad-
vanced photorealistic face rendering [42, 55, 66] in recent
years. These methods use deep neural networks to model
the light transport on human skin [11, 14,31, 63], directly
reproducing physical effects such as subsurface scattering
by reconstructing real images. However, despite the suc-
cess of neural relighting, extending this approach to animat-
able hand models poses a unique challenge: generalization
across articulations.

Unlike faces, hands have many joints, and the state of
a single joint affects all child joints. This leads to ex-
tremely diverse shape variations even within a single sub-
ject. Changes in pose drastically affect the appearance
of hands, creating wrinkles, casting shadows, and inter-
reflecting across topologically distant regions. Rendering
these effects is challenging because sufficiently accurate ge-
ometry and material properties required for photorealism
are difficult to obtain, and even then, path tracing to suf-
ficient accuracy is computationally expensive. The use of
simplified geometric and appearance models (such as linear
blend skinning and reduced material models) allow faster
computation but come at a noticeable degradation in render-
ing fidelity. So far, photorealistic rendering of animatable
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hands with global illumination effects in real-time remains
an open problem.

In this work, we aim to enable photorealistic rendering
of a personalized hand model that can be animated with
novel poses, in novel lighting environments, and supports
rendering two-hand interactions. To this end, we present
the first neural relighting framework of a parameteric 3D
hand model for real-time rendering. Specifically, we build a
relightable hand model to reproduce light-stage captures of
dynamic hand motions.

Inspired by [4], we capture performances under
spatiotemporal-multiplexed illumination patterns, where
fully-on illumination is interleaved to enable tracking of the
current state of hand geometry and poses. We use a two-
stage teacher-student approach to learn a model that gener-
alizes to natural illuminations outside of the capture system.
We first train a teacher model that infers radiance given a
point-light position, a viewing direction, and light visibil-
ity. As this model directly learns the mapping between an
input light position and output radiance, it can accurately
model complex reflectance and scattering on the hand with-
out the need for path tracing. To render hands in arbitrary
illuminations, we treat natural illuminations as a combina-
tion of distant point-light sources by using the linearity of
light transport [9]. We then take renderings from the teacher
model as pseudo ground-truth to train an efficient student
model that is conditioned on the target environment maps.

However, we found that the student model architecture
used in [4] for faces leads to severe overfitting when applied
to relightable hands. This is caused by the architecture de-
sign of holistically conditioning a bottleneck representation
with the target lighting environment. This representation
makes it difficult to reproduce geometric interactions be-
tween lights and hand pose, such as those required to cast
shadows from the fingers onto the palm across all possible
finger configurations.

Therefore, motivated by recent neural portrait relight-
ing works [42,61], we instead propose to compute spatially
aligned lighting information using physics-inspired illumi-
nation features, including visibility, diffuse shading, and
specular reflections. Because these features are based on
geometry and approximate the first bounce of light trans-
port, they show strong correlation with the full appearance
and provide sufficient conditioning information to infer ac-
curate radiance under natural illuminations. In particular,
visibility plays a key role in disentangling lights and pose,
reducing the learning of spurious correlations that can be
present in limited training data. However, computing vis-
ibility at full geometric resolution for every single light is
too computationally expensive for real-time rendering. To
address this, we propose using a coarse proxy mesh that
shares the same UV parameterization as our hand model for
computing the lighting features. We compute the features at

vertices of the coarse geometry, and use barycentric inter-
polation to create texel-aligned lighting features. Our fully
convolutional architecture learns to compensate for the ap-
proximate nature of the input features and infers both local
and global light transport effects. This way, our model can
render appearance under natural illuminations at real-time
framerates as shown in Figure 1.

Our study shows that both integrating visibility informa-
tion and spatially aligned illumination features are impor-
tant for generalization to novel illuminations and poses. We
also demonstrate that our approach supports rendering of
two hands in real-time, with realistic shadows cast across
hands.

Our contributions can be summarized as follows:

e The first method to learn a relightable personalized
hand model from multi-view light-stage data that sup-
ports high-fidelity relighting under novel lighting en-
vironments.

* An illumination representation for parametric model
relighting that is spatially aligned, leading to signifi-
cant improvements in generalization and accuracy of
shadows under articulation.

* An efficient algorithm to compute spatially-aligned
lighting features with visibility and shading informa-
tion incorporated using a coarse proxy mesh, enabling
real-time synthesis.

2. Related Work

In the following, we review image-space and model-
based relighting approaches as well as hand modeling tech-
niques.

Hand Modeling Modeling human hands has been exten-
sively studied in both computer vision and graphics. Early
work primarily focuses on tracking geometry and modeling
articulation. Various hand shape representations have been

proposed including simple shape primitives [41, 46, 57],
sum of 3D Gaussians [53, 54], sphere mesh [58], and tri-
angle meshes [3, 8,48, 59]. MANO [48] presents a para-

metric mesh model that learns identity variations as well
as pose dependent deformations. Facilitated by such para-
metric models and accurate joint detection methods [51],
estimating 3D hand poses is now possible from RGB-D
inputs [33, 38] or images [34, 36, 69]. They are also ex-
tended to two hands [25, 37] and object interactions [16].
While these approaches show impressive robustness, geo-
metric fidelity remains limited. To further improve fidelity
of geometry modeling, anatomical priors from medical im-
ages [27, 60, 68] and physics-based volumetric prior [52]
allows modeling more accurate surface deformation, es-
pecially around articulation and contacts. Self-supervised
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learning enables the learning of more personalized articu-
lated models in an end-to-end manner with a mesh repre-
sentation [35] and neural fields [1, 10,21,49].

The appearance of hands is also essential for realistic
animation. HTML [45] builds a database of hand tex-
tures to create a parameteric texture space that can be fit
to novel hands. Neural rendering approaches based on
volumetric representation have been extended to articula-
tion modeling, compensating for inaccurate geometry by
using view-dependent appearance [40, 44]. In particular,
LISA [7] demonstrates the modeling of animatable hands
from multi-view images. However, these approaches pre-
integrate illuminations into the appearance model, and re-
lighting is not supported. NIMBLE [27] captures diffuse,
normal, and specular maps from a light-stage and build a
PCA appearance space. While reflactance maps allow re-
lighting, physically-based rendering requires expensive ray-
tracing and is sensitive to geometry quality, while linear
appearance models have limited capacity for compensating
geometry errors.

In contrast, our work proposes an end-to-end model for
geometry and relightable appearance by leveraging neu-
ral rendering techniques. By directly reproducing complex
light transport effects using neural rendering, our method
can achieve significantly more efficient photorealistic re-
lighting.

Image-space Human Relighting Image-space relighting
has been pioneered by Devebec ef al. [9], where faces under
novel illuminations are generated by making use of the lin-
earity of light transport from a one-light-at-a-time (OLAT)
capture. A follow-up work by Wenger et al. [62] enables
dynamic relighting by warping adjacent frames with time-
multiplexed illumination patterns. The learning-based ap-
proach of Xu et al. [64] proposes to interpolate light po-
sitions from sparse observations, and a similar approach is
extended to light-stage captures by upsampling light direc-
tions [56]. Meka et al. [32] also infer OLAT images from a
pair of spherical gradient illuminations, enabling dynamic
captures. In contrast to these approaches based on sin-
gle point lights, Sun et al. [55] directly regress faces un-
der natural illuminations using deep neural networks. A
parallel line of work aims to decompose images into ge-
ometry and reflectances, enabling physically based relight-
ing [17,18,20,23,39,50]. Recent works leverage the best
of learning-based relighting and material decomposition by
feeding physics-inspired relighting results from the estima-
tion into another network to produce a final relighting im-
age [19,42,61,66]. Despite plausible relighting results,
image-space approaches typically suffer from temporal and
view inconsistency artifacts during animation or novel-view
rendering, as they lack a 3D parameterization of the scene.

Model-based Human Relighting In contrast to image-
space neural relighting approaches, we can leverage a 3D

template-model for animation and novel-view rendering.
Yamaguchi et al. [65] infer skin reflectance from a sin-
gle image in a shared UV space, allowing them to relight
faces from different views. Zhang et al. [67] also lever-
age a shared UV space to relight novel-views of human
performance captures with global light transport. Unfor-
tunately, this approach only supports a playback of existing
performances and cannot create new animations. To enable
animatable relighting for facial performance, Bi et al. [4]
presents DRAM, a deep relightable appearance model that
is conditioned on viewing direction and expression latent
codes. While their approach enables efficient relighting for
real-time animation using a teacher-student framework, we
observe that the bottleneck lighting encoding without vis-
ibility information in their student model leads to severe
overfitting when applied to hand relighting. EyeNeRF [24]
enables the joint learning of geometry and relightable ap-
pearance of a moving eyeball model. Compared to eyes,
hands exhibit significantly more diverse pose variations,
making explicit visibility incorporation essential. Relight-
ing4D [6] learns relightable materials of an articulated hu-
man under a single unknown illumination, but the fidelity of
relighting is limited bu the expressiveness of their paramet-
ric BRDF model. In contrast to these methods, our approach
enables relighting of articulate hand models that can be ani-
mated with a wide range of poses. In addition, the proposed
lighting encoding makes our relightable model generaliz-
able to novel poses and illuminations while retaining real-
time performance.

3. Preliminaries

Data Acquisition. We use a multiview calibrated capture
system consisting of 106 cameras and 460 white LED lights
to capture both fully-lit and partially-lit images of hands in
motion, using a setup similar to [4]. Images are captured at
4096 x 2668 resolution at 90 frames per second. We repre-
sent the state of a hand using pose parameters, and estimate
them for all the frames in the following way: for fully-lit
frames, we perform skeletal hand tracking using a person-
alized Linear Blend Skinning (LBS) model. Specifically,
we first obtain 3D reconstruction meshes using [15] and de-
tect 3D hand keypoints using [26] with a ResNet backbone
and RANSAC-based triangulation. An LBS model is per-
sonalized using reconstructions and keypoints on a collec-
tion of key frames, and is used for skeletal tracking [12] to
estimate pose parameters for fully-lit frames. For partially-
lit frames, we perform spherical linear interpolation of the
pose parameters from adjacent fully-lit frames. Our dataset
contains independently captured sequences of right and left
hands. We collected 92, 313 and 88, 413 frames for Subject
1’s hands and 22, 754 and 22, 354 frames for Subject 2 from
106 cameras. 80% of the segments are used for training and
the rest for testing.
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Figure 2. Overview of the teacher model. Our texture decoder U-Net takes as input view and light directions in local primitive coordinates,
and visibility at each voxel in the primitives. Input pose parameters are encoded into joint features, and fed into the bottleneck layer of
U-Net. The output OLAT textures are aggregated by the weighted sum using the intensity of each light. The network weights are trained

in an end-to-end manner via inverse rendering losses.

Articulated Geometry Modeling. We adopt the articu-
lated mixture of volumetric primitives (MVP) [47], which
extends the original work of MVP [30] to articulated ob-
jects. As demonstrated in [47], the articulated MVP im-
proves fidelity over mesh-based representations due to its
volumetric nature while being computationally efficient for
real-time rendering. Additionally, it only requires a coarse
mesh from an LBS model as guidance, in contrast to prior
mesh-based works [2, 29], which rely on precise surface
tracking.

Given a coarse articulated mesh M = {V, T, F, 6} with
vertices V), texture coordinates 7, faces F, and hand pose
parameters 6 representing joint angles, we decode a set
of volumetric primitives. Specifically, our pose-dependent
hand geometry is modeled by N primitives, where the k-th
primitive is defined by Py = {tx, Rg, sk, Ck, Ok}, com-
prising the primitive center location t;, € R3, rotation
Ry € SO(3), per-axis scale s;, € R3, and voxels that con-
tain color Cj, € R3*9*5xS and opacity Q) € RS*Sx5
for each primitive, where S denotes the resolution of voxels
on each axis. To explicitly model articulations, primitives
are loosely attached to the articulated mesh M produced
by LBS. Given pose 6, the geometry decoder G(6) predicts
residual rotations, translations, and scale together with the
opacity of primitives {Oy}2_,. The texture decoder C(6)
predicts the color of primitives {Cy,}2_,. Both color and
opacity decoders employ a sequence of 2D transpose con-
volutions, and the channel dimension in the last layer ad-
ditionally stacks the depth-axis of each primitive’s voxels.
The decoded primitives {Py }Y_, are rendered using differ-
entiable ray marching [30]; we refer to [47] for details.

In this work, we first train the articulated MVP [47] from
fully-lit images without relighting to obtain a personalized
geometry decoder G(0). After training, we discard the non-
relightable texture decoder C(#) and learn a relightable ap-

pearance decoder.

4. Method

Our goal is to build a relightable appearance model for
hands that can be rendered under natural illuminations in
real-time from a light-stage capture based on point lights.
To this end, we use a similar teacher-student framework as
proposed in [4], but extend it to articulated MVPs. The
teacher model learns OLAT relightable textures using the
partially-lit frames. Because the teacher model computes
illumination for single point light sources, it generalizes to
arbitrary illuminations due to the linearity of light trans-
port [9]. However, multiple OLAT textures need to be gen-
erated to obtain a rendering under natural illumination. This
leads to significant computational overheads for rendering
(~30s per frame). Thus, we use the teacher OLAT model to
synthesize images under natural illuminations, and train an
efficient student model that can be conditioned by an envi-
ronment map to match with the pseudo ground-truth gener-
ated by the teacher model.

4.1. Teacher Model

Our teacher model Aqpar predicts the appearance of the
hand model under OLAT as follows:

{Ci}r = Aorar(0, v, i, {V(L)r }x), 9]

where v is the viewer’s position, 1; is the position of i-th
point light, and V(1;),€R*5*5 are the visibility maps
from the primitive to light 1, computed using Deep Shadow
Maps [28]. Instead of OLAT, our partially lit frames use
L=>5 grouped lights to increase brightness and reduce mo-
tion blur. By leveraging the linearity of light transport,

Raymarching from each light to primitives and accumulating opacity.
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the final color {C%} under these lights is computed as the
weighted sum of primitive colors for each light:

L
Cr =) bCj, )
=1

where b; is the intensity of each light and L is the total num-
ber of lights.

Compared to a mesh-based OLAT teacher model for
face relighting [4], we made several important modifica-
tions in the architecture design to support hand relighting
with a hybrid mesh-volumetric representation. In [4], view-
dependent intrinsic feature maps are generated at 512 x 512
resolution, and per-texel features are further transformed by
an MLP together with the incoming light direction to infer
radiance. However, an MVP-based decoder requires signifi-
cantly larger channel dimensions to represent the additional
volumetric depth axis. Hence, decoding radiance at every
single voxel using an MLP is not computationally tractable.
To address this, we adopt a U-Net architecture that takes
as input reshaped visibility maps and spatially aligned light
and view directions. Namely, for each primitive k and
light 7, light directions are encoded as F}"* ¢ R3*5xSx5
and viewing directions as F¥ € R3*5*5%5  These are ar-
ranged into UV space as in [30,47] to produce volumetric
texture maps of size {FE}N | R3XwSxwSXS with w=64
the number of primitives per side of the UV map layout, and
N = wxw the total number of primitives, and similarly for
light directions. Figure 2 illustrates the overall architecture
of the teacher model.

While the spatially aligned light directions are computed
in a model-centric space in [4], this global parameterization
leads to severe overfitting for articulated objects because it
ignores local orientation changes produced by articulation.
To address this, we propose to reorient view and light direc-
tions into primitive-centric coordinates. More specifically,
the view directions F* at each primitive k are represented

Target

Figure 3. Overview of the student model. Given a hand pose and a target envmap, the visibility-aware diffuse and specular features are
computed on the coarse LBS mesh. These features are then projected onto UV map and fed into the texture decoder together with the joint
encoding. Finally, the predicted texture is rendered to image space via differentiable ray marching for supervision.

as follows:
[Fi], =RI(v—pry) [IV-prslla"s 3

where [-]; indexes voxels inside the primitive, R] is the in-
verse rotation matrix of the k-th primitive and p;, ; denotes
the 3D location of the j-th voxel inside the k-th primitive.
Similarly, the light directions Ff’l are expressed as follows:

B =RIG-pe)) L —piglh’ @

where 1 is the location of the point light.

Additionally, joint features are input at the lowest res-
olution level of the U-Net layer such that the resulting
appearance explicitly accounts for pose-dependent texture
changes, such as small wrinkles, that may not be repre-
sented by the primitive geometry. We use a spatially aligned
joint feature encoder J;(0)cR64*64%64 jn UV space as
in [2]. Our loss is expressed by

L= )\MSE‘CMSE + )\VGGEVGG + )\negﬁnegy &)

where L);sg is the mean-squared error between ground-
truth and rendered images, Ly g is the weighted sum of
the VGG feature loss at each layer, £, is a regularization
term and penalizes the texture with a negative intensity:

N
v
Lneg = 1763 O || max(=Cy, 0)|3, (6)
k

with weight schedule v = exp (— max (nnegt_%,O))
where t is the number of current iterations, and t, is the
iteration when the regularization loss starts decaying.

4.2. Student Model

Our student model A.,, predicts the appearance of the
hand model under natural illuminations represented as en-
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Figure 4. Effect of visibility integration. The visibility integra-
tion based on ray tracing leads to accurate encoding of shadow
information in both specular and diffuse features.
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vironment maps E € RM*3 as follows:
{Cr} = A (0, E). (7

The principal challenge in the student model is efficient
light encoding that can be generalized to illuminations and
poses unseen during training. The state-of-the-art model-
based approach for face relighting [4] introduces an efficient
hypernet architecture conditioned on a 512-dimensional
bottleneck representation of a 16 x 32 environment map.
We find that such a bottleneck illumination representation
is difficult to generalize because it loses the spatial geome-
try of illumination by collapsing it into a single vector. As
we demonstrate in our evaluation (Sec. 5.2), this issue is
even more pronounced for relightable hands, as it is non-
trivial to disentangle global light transport between such
bottleneck illumination and pose features. A similar obser-
vation has been made for portrait relighting, where methods
based on image-aligned light features [42, 66] outperform
an approach using a bottleneck representation [55]. Inspired
by this success, we propose a spatially aligned illumination
representation tailored for model-based hand relighting that
accurately accounts for self-occlusion due to pose changes.

Namely, we produce our texel-aligned feature represen-
tation by casting M rays (one per envmap location) from
each vertex and compute a weighted sum of envmap values
to produce diffuse and specular components. We incorpo-
rate the visibility information by setting the contribution of
rays hitting other mesh parts to zero. Figure 4 shows the ef-
fect of the visibility integration. In practice, we use a coarse
mesh to compute per-vertex features, which are then pro-
jected to texel-aligned space via barycentric interpolation.
The projected features are fed into a fully convolutional de-
coder, retaining the spatial alignment between features and
the output appearance {Cy, }. Figure 3 illustrates the overall
architecture of the student model.

More precisely, the diffuse feature d; € R? at vertex i is

represented with Lambertian BRDF computed as follows:

d; = Z E(r]")h;(r]") max(n; - r]*,0) , (8)

m=1

where E(r™™) € R? is the vector of the envmap intensity
sampled along the ray direction r’™ € R? (based on a far-
field environment assumption), h;(r) is a binary visibility
term, and n; € R® is a vertex normal. The specular fea-
ture s;(c) € R3 is represented with Phong specular BRDF
computed as

M
si(@) = Y E(@)hi(r]") max(v; -r}",00*,  (9)

m=1

where « is a shininess coefficient, and Vv, is the view direc-
tion reflected around the normal. To account for spatially
varying material properties on hands, we take specular fea-
tures with multiple shininess values (16, 32,64). The fea-
ture maps are also concatenated with spatially aligned joint
features J, () cRO4*128x128

Note that we train the student model A, using the same
losses used for the teacher model (Eq.5).

4.3. Implementation Details

To train the teacher and student models, we use
Adam [22] optimizer and set the hyperparameters A\y/sg,
Aveas and Apeq to 1.0, 1.0, and 0.01 respectively. We train
each of the geometry module, teacher model, and student
model for 100, 000 iterations with the learning rate of 0.001,
and batch size of 4, 2, and 4, respectively, on NVIDIA V100
and A100. In addition, we use N=4096 primitives whose
per-axis resolution S is 16. We describe the detailed net-
work architecture in the supplemental. To reduce redun-
dancy in our training data in terms of poses, we adopt im-
portance sampling based on kernel density estimation using
the subset of tracked hand vertices in root-normalized co-
ordinates. We generate 25,000 images with 1000 frames
and 25 cameras to train the student model. To compute
the texel-aligned lighting features, we use envmap of size
M=512(16 x 32), and coarse mesh with 2825 vertices. The
visibility is computed with a GPU-accelerated triangle-ray
intersection using NVIDIA OptiX [43].

5. Experimental Results

We evaluate our method using 2 subjects with left, right
and two hands captured in a light-stage as described in
Sec. 3. For evaluation, we exclude several segments to
assess the generalization of our model to novel poses. To
evaluate the generalization of the student model to novel il-
lumination, we use 3094 high-resolution HDR environment
maps consisting of the ones in [13] and [55]. We use 2560
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Figure 5. Qualitative results of the teacher model. We evaluate
our method using the ground-truth images captured in the light-

stage. Our approach successfully models inter-reflection, shadow,
and subsurface scattering.

of them for training and 534 for evaluation. Note that the
two-hand sequences are used only for teacher model evalu-
ation. We also compare our approach with the state-of-the-
art model-based relighting method [4]. As [4] was origi-
nally proposed for face relighting, we make several modifi-
cations for fair comparison. Please refer to the supplemental
for details.

We report mean squared error (MSE) and Structural Sim-
ilarity Index (SSIM) to measure the quality of the generated
images by the teacher and student models. To solely eval-
uate the quality of hands, we remove the background by
using a mask image obtained from the tracked hand geom-

etry.
5.1. Evaluation of Teacher Models

We first evaluate the effectiveness of the proposed
teacher model using the images captured with the light-
stage as ground-truth.

Qualitative Evaluation. We evaluate the quality of the im-
ages generated by our model against the real images cap-
tured in the light-stage. As shown in Figure 5, our teacher
model is able to reproduce diverse pose-dependent appear-
ance under multiple point-light sources, such as shadows on
the wrinkles and reflection on the skin and nails.

Ablation on Visibility Conditioning. Table 1 shows that
the visibility input significantly improves the accuracy on
all the metrics especially for the two hand sequences. As
shown in Figure 6, while the model without visibility input
can overfit to training poses by relying on the joint infor-
mation, it does not generalize to unseen poses or two hand
cases. Thus, the visibility conditioning is essential to gen-
eralize beyond training pose and light distributions.

5.2. Evaluation of Student Models

Table 2 shows that our method achieves the best MSE
and SSIM scores on all the metrics under unseen hand poses

Ground-Truth

w/ Visibility w/o Visibility

Figure 6. Ablation on visibility conditioning of the teacher
model. The lack of visibility features leads to incorrect shadows.

and illumination settings. Since we do not have ground-
truth real images under natural illumination, we use test
images generated by the teacher model for evaluation. To
confirm the effectiveness of our method, we compare our
method against the latest model-based relighting method [4]
and perform ablation study on visibility awareness and
specular features.

Comparison to Bottleneck Light Conditioning. To eval-
uate the effectiveness of our spatially aligned lighting fea-
tures, we compare against a bottleneck light representation
with a hyper-network proposed in [4]. For fair compari-
son, we replace our illumination encoding with their hyper-
network while retaining everything else. Figure 7 shows
that a bottleneck-based light encoding fails to match the
overall intensity compared to the ground-truth. Moreover,
it lacks fine-grained illumination effects such as reflection
from grazing angles and soft shadows. In contrast, our spa-
tially aligned representation even without the proposed vis-
ibility integration significantly improves the fidelity of re-
construction. This observation is also strongly supported
by our quantitative evaluation as shown in Table 2.
Ablation on Visibility Integration. We also evaluate the
effectiveness of the proposed efficient visibility integration
for computing features. Figure 7 and Table 2 show that,
compared to the model without the visibility integration, our
full model achieves more faithful reconstruction of shadows
even for novel poses and illuminations.

Ablation on Specular Features. We also validate the im-
portance of specular features in the student model. Figure 7
and Table 2 illustrate that our specular feature provides suf-
ficient information to reproduce specular highlight despite
having the feature computed on a coarse proxy geometry.
This suggests that spatially aligned lighting features are es-
sential for achieving generalizable neural relighting.
Runtime Analysis. One of our key contributions is the ef-
ficient rendering speed. While the teacher model takes ap-
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Subject 1 Subject 2
MSE (x107%) | SSIM 7+ MSE (x107%) | SSIM +
Right Left Both Right Left Both Right Left Both Right Left Both
Ours 49126 5.8608 15.7589 | 0.9790 0.9805 0.9536 | 8.8205 7.9357 22.3559 | 0.9541 0.9559 0.9075
wlo Visibility || 7.3201 7.8870 22.8308 | 0.9773 0.9792 0.9488 | 9.7104 9.9781 26.5647 | 0.9536 0.9543  0.9050

Table 1. Quantitative comparison of the teacher model. We measure
sequences. The result shows that conditioning visibility significantly improves generalization to test poses and illuminations.

the MSE and SSIM metrics on the right, left, and two-hand

Subject 1 Subject 2
MSE (x1073) | SSIM MSE (x1073) | SSIM
Right Left Both Right Left Both Right Left Both Right Left Both
DRAM [4] 31.1372 244368 64.2035 | 0.9904 0.9927 0.9752 | 30.6582 24.7238 70.4215 | 0.9901 0.9898 0.9665
Ours 54076 59600 43474 | 0.9961 0.9960 0.9915 | 5.7977  7.2598  4.5196 | 0.9952 0.9954 0.9881
w/o Specular 5.7660 7.2631 5.0732 | 0.9956 0.9952 0.9914 | 7.1569 7.4892 4.9008 | 0.9948 0.9943 0.9881
w/o Visibility || 6.6110  8.1886  11.6771 | 0.9955 0.9948 0.9893 | 7.8589  8.5550  9.1859 | 0.9938 0.9938 0.9862

Table 2. Quantitative evaluation of the student model. Our student model outperforms the state-of-the-art model-based relighting
method [4] by a large margin. In addition, the proposed visibility and specular features integration significantly improve the generalization

to unseen poses and natural illuminations.

M
M

DRAM [4] w/o Visibility
Figure 7. Qualitative comparison of the student model. A model-based relighting method [4] fails to reproduce the precise color and
fine-grained shading effects. Our model without visibility integration or specular features also lacks pose-dependent shadow or specular
highlight respectively. In contrast, our full model successfully reproduces both effects. The green and red bounding boxes denote success

and failure cases respectively.

proximately 30 seconds to generate a texture with an en-
vmap by aggregating over 512(= 16 x 32) light sources,
the student model achieves 48 fps (21 ms) for a single hand
and 31 FPS (32 ms) for two hands on NVIDIA V100.

6. Discussion and Future Work

We introduced the first model-based neural relighting for
articulated hand models to enable photorealistic rendering
of personalized hands under various illuminations in real-
time. We successfully extend the teacher-student frame-
work to build articulated models using a mesh-volumetric
hybrid representation from multi-view light-stage capture
data. The hybrid representation allows us to use a coarse
mesh to efficiently compute physics-inspired light features
as input conditioning for the proposed student model. Our

w/o Specular Feature

Ours Ground-Truth (Teacher)

experiments show that the spatially aligned light representa-
tion and explicit visibility integration are critical for highly
generalizable relighting to novel poses and illuminations.

Limitations and Future Work. Our student model cur-
rently does not support inter-reflection by other nearby ob-
jects due to far-field light assumption, which can be par-
tially addressed by taking surroundings as a spatially vary-
ing envmap. Future work also includes extending the pro-
posed approach to clothed bodies, where computing visi-
bility at a coarse mesh would not be sufficient for recov-
ering fine-level shading caused by clothing deformations.
Another exciting direction is to build a universal relightable
hand model that spans inter-subject variations. As demon-
strated by recent work [5], such a universal model would
enable adaptation from in-the-wild inputs.
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