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Figure 1. Geomety aware texture editing from images and videos. This paper presents a novel approach to predict a geometry aware

texture (UV) map of a garment from an image (first row) and video (second row). The predicted UV map preserves isometry between

texture space and 3D surface by leveraging 3D surface normals. Further, we ensure temporal consistency in the predicted UV map across

frames in a video, resulting in physically plausible human appearance editing. Project website: yasamin.page/normal-guided-uv.

Abstract

Clothes undergo complex geometric deformations,

which lead to appearance changes. To edit human videos

in a physically plausible way, a texture map must take into

account not only the garment transformation induced by the

body movements and clothes fitting, but also its 3D fine-

grained surface geometry. This poses, however, a new chal-

lenge of 3D reconstruction of dynamic clothes from an im-

age or a video. In this paper, we show that it is possible

to edit dressed human images and videos without 3D re-

construction. We estimate a geometry aware texture map

between the garment region in an image and the texture

space, a.k.a, UV map. Our UV map is designed to pre-

serve isometry with respect to the underlying 3D surface by

making use of the 3D surface normals predicted from the

image. Our approach captures the underlying geometry of

the garment in a self-supervised way, requiring no ground

truth annotation of UV maps and can be readily extended

to predict temporally coherent UV maps. We demonstrate

that our method outperforms the state-of-the-art human UV

map estimation approaches on both real and synthetic data.

1. Introduction

While browsing online clothing shops, have you ever

wondered how the appearance of a dress of interest would

look on you as if you were in a fitting room given your dress

with a similar shape? A key technology to enable generat-

ing such visual experiences is photorealistic re-texturing—

editing the texture of clothes in response to the subject’s

movement in the presented images or videos in a geomet-
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rically and temporally coherent way. Over the past few

years, there has been a significant advancement in the im-

age and video editing technologies [4–6, 11–13, 17, 20, 21,

26, 31–33, 38, 46, 54], such as inserting advertising logos

on videos of moving cars or applying face makeup on so-

cial media. However, such editing approaches designed for

rigid or semi-rigid surfaces are not suitable for garments

that undergo complex secondary motion with respect to the

underlying body. For example, the fine wrinkles of the dress

in Figure 1 result in complex warps in texture over time. In

this paper, we present a new method to edit the appearance

of a garment in a given image or video by taking into ac-

count its fine-grained geometric deformation.

Previous works address photorealistic texture editing in

two ways. (1) 3D reconstruction and rendering: these

approaches can achieve high-fidelity texture editing given

highly accurate 3D geometry. On other side of the coin,

their performance is dictated by the quality of the 3D re-

construction. While the 3D geometry of the garment can

be learned from paired human appearance data, e.g., hu-

man modeling repositories with 3D meshes and render-

ings [1], due to the scarcity of such data, it often can-

not generalize well on unseen real images and videos. (2)

Direct texture mapping: by estimating dense UV map,

these methods can bypass the procedure of 3D reconstruc-

tion [18, 22, 39, 41, 55]. However, they usually lack of ge-

ometry details and only capture the underlying human body,

thus, not applicable for editing garments. Moreover, when

applied to videos, visual artifacts of editing become more

salient since they are not aware of underlying deformation

of the garment’s 3D geometry [25, 57].

We design our method to enjoy the advantages of both

two approaches: preserving realistic details in UV mapping

while circumventing 3D reconstruction. Our key insight is

that the fundamental geometric property of isometry can be

imposed into UV map estimation via the 3D surface nor-

mals predicted from an image. We formulate a geometric

relationship between the UV map and surface normals in

the form of a set of partial differential equations.

Our method takes as input an image or video, its sur-

face normal prediction, and dense optical flow (for video),

and outputs the geometry aware UV map estimate. The UV

map is modeled by a multi-layer perceptron that can pre-

dict UV coordinates given a pixel location in an image. We

note that the UV map is defined up to the choice of a refer-

ence coordinate frame. To disambiguate this, we condition

the neural network with a pre-defined proxy UV map (e.g.,

DensePose [18]). We use the isometry constraints as a loss

to optimize the UV map. Further, for a video, we leverage

the per-frame image feature to correlate the UV coordinates

of the pixels across time using optical flow.

Our contributions can be concluded in three aspects: (1)

a novel formulation that captures the geometric relationship

between the 3D surface normals and the UV map by the

isometry contraint, which eliminates the requirement of 3D

reconstruction and ground truth UV map; (2) a neural net-

work design that learns to predict temporally coherent UV

map for the frames by correlating per-frame image features;

(3) stronger performance compared to existing re-texturing

methods and compelling results on a wide range of real-

world imagery.

2. Related Work

Our work lies at the intersection of human UV map pre-

diction from images and neural UV map optimization.

2.1. Human Dense UV Map Estimation

A seminal work of DensePose [18] learns to predict a

UV map of humans presented in an image, which opens a

new opportunity to edit the appearance of a person with-

out 3D reconstruction [3,52]. A series of subsequent works

[18,28,29,39–42,56,58,60] bring out a number of applica-

tions for human tracking. However, due to their representa-

tion specific to the body surface, they exhibit fundamental

limitations in expressing highly deformable loose clothing

such as skirts and dresses.

To address this challenge, recent approaches leverage

multitask learning [61] or incorporate geodesic distance to

learn UV maps [47]. BodyMap [22] incorporates the Vi-

sion Transformers to learn per-pixel image features on a

continuous body surface that handles loose clothes, differ-

ent hairstyles, and occlusion. TemporalUV [55] focuses on

handling garments by extrapolating the initial DensePose

estimates [18] and leveraging image features obtained from

an input video to obtain a UV aligned with the garment

boundary. Despite their promise, the visual artifacts persist

due to a lack of understanding the underlying 3D geome-

try. Unlike previous approaches, we design our framework

such that the resulting UV map satisfies the fundamental

geometric property of isometry, which results in physically

plausible re-texturing.

2.2. Neural UV Optimization from Videos.

Another line of work [24, 25, 34, 44, 57] resorts to a lay-

ered UV map, capturing the geometry to some degree by

incorporating video decomposition [7, 8, 14, 30, 51] to opti-

mize the UV coordinates of the foreground and background

based on the observed motion. Kasten et al. [25] unwrap a

video into a set of layered 2D atlases where for each pixel in

the video, its corresponding 2D coordinate in each of the at-

lases is predicted. Ye et al. [57] proposes a global sprite im-

age that can group the distinct motion trajectories because

the collective object structure has a consistent appearance

throughout time. While preserving the temporal coherency

and maintaining some coarse UV deformations related to

arm or leg movements during a sequence, these methods

fall short of capturing micro deformations like wrinkles in
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Figure 2. Texture mapping geometry. We study the mapping

between the image space, texture space, and 3D space. A point x in

image is mapped to the texture space with u = g(x). The mapping

f(u) = X lifts the texture plane into a 3D garment surface by

an isometric warping. We use the orthographic projection model,

resulting in the first two elements of f is the inverse of g, i.e.,

f1:2 = g−1. The spatial derivatives of f form a tangent plane on

the 3D surface at X, resulting in Nx = fu × fv where Nx is the

3D surface normal, and fu and fv are the spatial derivatives of f

with respect to u and v.

the clothing. Furthermore, these techniques cannot repre-

sent UV mapping for an image and can only be applied to

videos. Unlike these methods, our surface normal condi-

tioned UV map is highly sensitive to small geometric de-

tails and 3D surface deformations, which can be optimized

not only for a video but also for single images.

3. Method

Our goal is to obtain a continuous texture mapping,

which allows editing the appearance of dynamic garments.

We leverage the geometric property of isometry to constrain

the UV map in the form of partial differential equations. We

solve this partial differential equations by optimizing a neu-

ral network to generate a geometry aware UV map.

3.1. Texture Mapping without 3D Reconstruction

Consider a mapping g(x) = u that maps a pixel location

x = (x, y) ∈ R2 in the image space that belongs to a gar-

ment of interest to a point u = (u, v) ∈ R2 in the UV space

of the garment as shown in Figure 2. The goal of our work

is to find such a mapping g that takes into account the local

surface geometry measured by the surface normal predicted

at x. We denote the predicted 3D surface normal of x in the

camera space as Nx ∈ S2.

Let us define an isometric map from the UV texture map

to the 3D surface, f(u) = X. This is the fundamental prop-

erty of a non-stretchable cloth texture mapping [10].

∥fu∥ = ∥fv∥ = 1, fT

u fv = 0, (1)

where fu and fv are the partial derivatives of f with respect

to u and v, respectively. Geometrically, fu and fv are the

tangential vectors on the 3D surface where their cross prod-

uct forms the surface normal:

Ñx = fu × fv = fu(g(x))× fv(g(x)) (2)

where Ñx ∈ S2 is the surface normal at X corresponding

to x.

We can find the UV mapping g by matching the surface

normal Ñx derived by Equation (2) and the surface normal

predicted from the image Nx:

minimize
θg,θf

∑

x

∥fu(g(x))× fv(g(x))−Nx∥2 ,

s.t. ∥fu∥ = ∥fv∥ = 1, fT

u fv = 0, (3)

where θg and θf are the parameters of the function g and f ,

respectively. A key challenge of solving Equation (3) lies in

the dependency of f that requires full 3D reconstruction of

the surface. Instead, we formulate a new dual problem that

can solve Equation (3) effectively without finding f .

We use two properties to eliminate f from Equation (3).

First, we assume orthographic projection, i.e., (x, y) =

(X,Y ) where X =
[
X Y Z

]T
. This allows us to ex-

press the 3D derivatives using the pixel coordinates:

g =
(
f1:2

)−1
, (4)

where f1:2 is the first two elements (X,Y ) of f . To keep

f1:2 bijective, we assume there is no self occlusion in the

camera projection of f . Note that g−1 is the inverse of g that

maps the UV texture map to the pixel coordinate. Second,

we derive the derivatives of g by using the inverse function

theorem [9]:

f1:2 ◦ g(x) = x → Jg =
(
J(f1:2)

)
−1

, (5)

where Jg =
[
gx gy

]
=

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
is the Jacobian matrix

of the function g.

With Equation (1) and (5), Equation (2) can be re-written

as the following constraints by eliminating f (3D recon-

struction):

∥gx∥ =

√
1 +

ñ2
x

ñ2
z

, ∥gy∥ =

√

1 +
ñ2
y

ñ2
z

, gTxgy =
ñxñy

ñ2
z

, (6)

where Ñx =
[
ñx ñy ñz

]T
. For the derivation of Equa-

tion (6), see Supplementary Material.

Equation (6) is a set of partial differential equations of g

that needs to match with the predicted surface normal Nx =
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Figure 3. 2D simplification of UV map estimation. We illus-

trate the isometric relationship between (a) the surface and (c) the

UV map. The length of the curve in XZ axis needs to be pre-

served when mapping to g(x), i.e., |du| = |dr| =
√
dx2 + dz2

(arc length preservation). This relationship can be re-written as

(b) a partial differential equation using Equation (6) in terms of its

surface normal and the inverse of the spatial derivative of g, i.e.,
(

du
dx

)2
= 1 +

(

dnx

dnz

)2

.

[
nx ny nz

]T
, leading to a loss function:

Lgeo(θg) =
∑

x

((
∂u

∂x

∣∣∣∣
x

)2

+

(
∂v

∂x

∣∣∣∣
x

)2

− 1− n2
x

n2
z

)2

+

((
∂u

∂y

∣∣∣∣
x

)2

+

(
∂v

∂y

∣∣∣∣
x

)2

− 1−
n2
y

n2
z

)2

+

(
∂u

∂x

∣∣∣∣
x

∂u

∂y

∣∣∣∣
x

+
∂v

∂x

∣∣∣∣
x

∂v

∂y

∣∣∣∣
x

− nxny

n2
z

)2

, (7)

where ∂u
∂x

∣∣
x

is the partial derivative of u with respect to x

evaluated at x.

Figure 3 illustrates a 2D simplification of UV map es-

timation. A curve in XZ plane forms a isometric relation

with the UV map, |du| = |dr| =
√
dx2 + dz2. This re-

lationship can be re-written as a partial differential equa-

tion in terms the surface normal (nx, nz) and the inverse

of the spatial derivative of g(x) using Equation (6), i.e.,
(
du
dx

)2
= 1 +

(
dnx

dnz

)2
. We solve these partial differential

equations to estimate g.

3.2. Self­supervised Learning of Texture Mapping

The texture map g is defined up to a bijective function,

i.e., there exists an infinite number of g that are equivalent:

g−1 ◦ g = (T ◦ g)−1 ◦ (T ◦ g), where T is a bijective map

(e.g., Euclidean transform). We resolve this ambiguity by

finding g such that g ≈ g′ where g′ is a pre-defined proxy

map of humans:

Lprox(θg) =
∑

x

∥g′(x)− g(x)∥2. (8)

In practice, we use an extended DensePose [18] as the

pre-defined proxy map. Since DensePose makes predic-

tions only for the human body, we apply an extrapolation

method [50] to inpaint the garment regions that are not cov-

ered by DensePose.

Further, we ensure physical plausibility of the visible 3D

surfaces, i.e., the texture map should result in the surface

normals pointing to +Z direction, by adding the following

loss:

Lz(θg) =
∑

x

max(0, det(Jg|
x
)), (9)

where det(Jg) is the determinant of the Jacobian Jg that is

equivalent to ñz . Jg|x is the Jacobian matrix of g evaluated

at x. See Supplementary Material for derivation.

For a video, we extend the texture map to include the

image feature for each pixel, i.e., g(x, fx) where fx is the

image feature at x. This allows us to generalize the texture

map over time. With the extension, we ensure the temporal

consistency of the texture map by leveraging optical flow

across frames:

Ltmp(θg) =
∑

i,j

∑

xi

∥∥g(xi, fxi
)− g

(
xj , fxj

)∥∥2 , (10)

where xi is a point in the ith frame. This point is mapped

to xj in the jth frame, i.e., xj = Wi→j(xi) where Wi→j is

the optical flow from the ith to jth frames.

Overall, we optimize the following loss to learn the tex-

ture map:

L(θg) = Lgeo + λproxLprox + λzLz + λtmpLtmp, (11)

where λprox, λz, and λtmp are the weights that determine

the relative importance of losses. Note that when a single

image is used, λtmp = 0.

3.3. Implementation Details

We model g using a 12-layer multi-layer perception, with

ReLU [2] as an activation function after each layer that

takes as input a pixel coordinate with positional encod-

ing, γ(x) where γ : R2 → R128 is Fourier based posi-

tional encoding [48]. For videos, we use ResNet [19] to

extract per-frame 256 dimensional image feature fx. Our

network design is illustrated in Figure 4 (for image-based

UV map prediction) and 5 (for video-based UV map predic-

tion). To make our prediction scale-invariant, we crop the

garments region with 256× 256 resolution. We use an off-

the-shelf garment segmentation software, Graphonomy [15]
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Figure 4. Single image framework. For each pixel location on

a garment x, we predict the UV coordinate u using a multi-layer

perceptron. We enforce isometry to the UV map by matching with

the predicted 3D surface normals. Lz ensures that the predicted

surface normals point toward the camera. To disambiguate the

frame of reference of the UV map, we use pre-defined proxy map

(e.g., DensePose [18] extrapolation [50]) by applying Lprox.

to separate the garment area. We use Adam optimizer [27]

with batch size of 2048 and learning rate of 10−4. We set

λprox = 0.2, λz = 0.01, and λtmp = 0.3. We used an

NVIDIA V100 GPU and Intel(R) Xeon(R) CPU E5-2698

v4 @ 2.20GHz, and implemented our approach with Py-

torch [43]. Our method takes 20 minutes for a video of 82

frames while Kasten et al. [25], Ye et al. [57], and Tempo-

ralUV [55] take 10 hours, 30 minutes, and 23 hours, respec-

tively.

4. Evaluation

We evaluate our method both quantitatively and qualita-

tively on real images as well as synthetic data with ground

truth UV map. We also compare with the state-of-the-art

methods on human UV map estimation methods and video

UV map optimization approaches.

Evaluation Datasets We evaluate our method using the

following datasets: (1) five synthetic video sequences of

simulated dress and T-shirt garments from Santesteban et

al. [45] with random texture patterns over 700 frames; (2)

ten real videos from Fashion Video dataset [59]; (3) TikTok

dataset [23] and various YouTube videos as well as in-the-

wild internet images.

Evaluation Metric We use five metrics to evaluate our

method. (1) UV error: for synthetic data, we report the

absolute UV error in the texture space [45]. We use a Pro-

crustes analysis [16] to align the resulting texture map to

account for the diambiguity of the reference frame. We re-

port the mean squared error in metric scale by assuming

the height of the person in the input is 165cm, resulting in

0.41cm/UV for dress and 0.27cm/UV for T-shirt (Table 1).

(2) Average Precision percentage: we report the Average

Precision (AP) percentage metric computed on all the pix-

els considering a per-pixel prediction as correct if the UV

error is lower than a threshold. We visualize the AP metric

for a range of thresholds from 1 to 15 cm and obtain the

graph shown in Figure 7.

(3) Photometric error: we warp the first frame of an input

video to the rest of the frames using the UV map estimates.

We report the error between the ground truth RGB images

and the warped RGB images as reported in Table 1.

(4) Geometric error: we report the Lgeo to show how the

predicted UV map follows the geometric information cap-

tured in the surface normal estimates as reported in Table 1.

(5) Temporal error: we evaluate the capability of the dif-

ferent approaches in preserving the temporal coherency by

reporting the Ltmp error (Table 1).

When the ground truth UV is not available, we use the geo-

metric and temporal errors to evaluate our method.

Baseline Methods We compare our method with previous

works that fall into two categories: (1) human UV map pre-

diction; (2) UV optimization.

1) Human UV map prediction: we compare our method

with state-of-the-art that focus on predicting UV maps for

the naked human body [18] and dressed humans [47, 55].

We also report the performance of the UV map obtained by

extrapolating DensePose predictions as discussed in Section

3.3. Our method achieves the best performance as shown in

Table 1 and Figure 7. We notice that DensePose [18] per-

forms competently in precision percentage when the thresh-

old error is less than 7 cm. This observation is based on

the fact that, for each pixel, DensePose predicts a part la-

bel (among 24 parts) and a UV map with respect to that

body part. When aligning these predictions with the ground

truth, we warp each occupied body part individually, re-

sulting in a more accurate alignment compared to the other

methods (including ours) that are represented by only one

patch. However, the performance of DensePose [18] is not

improved above 7cm because of limited ability to predict

beyond body surface.

2) UV optimization: we compare our method with state-

of-the-art in predicting the UV map of a dynamic object

observed in a video [25, 57]. However, such methods

are not tailored for garments that undergo highly non-

linear transformations as the body moves. Hence, as

reported in Table 1 and Figure 7, our method surpasses

these baselines in the dense UV error, the average preci-

sion percentage, the geometric error, and the temporal error.

Ablation Study We conduct an ablation study to analyze

the impact of the distance (first two terms in Equation (7))

and angle (third term in Equation (7)) constraints (second

and third rows of Table 2 and Figure 7). Our final method

has the best performance in UV error and photometric er-

ror. We also compare the performance of our method with-

out the temporal consistency (Ltmp) (fourth row of Table

2). As expected, this term performs quite similarly to ours

in UV error but very poorly in photometric error since the

consistency between the frames is not enforced. The role of
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Figure 5. Video framework. We apply temporal coherence in the predicted UV maps using optical flow [35,36,49]. With the optical flow

Wi→j , we match the UV prediction of ith frame with jth via Ltmp.

GT dress sequences [45] GT T-shirt sequences [45] Real Fashion sequences [59]

Method UV. error (cm) photo. error UV. error (cm) photo. error geo. error (Lgeo) tmp. error

DensePose [18] 17.27±3.76 52.43±10.20 7.48±0.52 34.19±7.01 1.26±0.47 8.12±2.70

Extrapolated DensePose [18, 50] 8.61±0.76 18.29±3.24 5.34±0.63 18.86±4.55 0.52±0.06 4.62±0.73

HumanGPS [47] 11.97±2.06 97.41±30.87 7.53±0.43 108.10±34.89 1.27±0.69 51.40±41.66

Kasten et al. [25] 7.06±0.60 13.07±2.79 6.64±0.63 14.54±4.26 0.56±0.10 2.30±0.70

Ye et al. [57] 5.56±0.29 33.57±-10.27 5.75±0.20 19.22±5.14 0.71±0.03 1.65±0.15

Ours 3.16±0.28 7.54±2.04 3.58±0.27 11.28±2.01 0.07±0.03 1.50±0.23

Table 1. Quantitative Results. UV. error (cm), photo. error (RGB difference), geo. error (Lgeo), and tmp. error (Ltmp) (image space pixel

distance) respectively (mean±std).

Method UV. error (cm) photo. error (RGB)

Ours 3.16±0.28 7.54±2.04

Distance constraint 3.44±0.25 8.29±1.99

Angle constraint 5.96±0.33 7.68±1.37

W/o Ltmp 3.22±0.24 14.67±4.82

W/o Lprox 3.24±0.35 8.46±2.19

Table 2. Ablation study on dress sequences [45]. UV. error (cm),

photo. error (RGB difference) (mean±std).

Input images w/o Predictions w/ Predictions
Figure 6. The impact of Lprox in UV prediction and retexturing.

2 4 6 8 10 12 14

20Pr
ec

is
io

n 
pe

rc
en

ta
ge

 (%
)

40

60

80

100

UV error threshold (cm)

10

30

50

70

90

Ours
Ours: w/o 
Ours: distance constraint
Ours: angle constraint
Ye et al.
Kasten et al.
DensePose
Extrapolated DensePose
HumanGPS

Figure 7. Average precision. We compute the average of pixels

with a UV error higher than a threshold (1-15cm) on our method,

the baseline methods, and our ablation experiments on ground

truth dress sequences [45].

Lprox is the disambiguation of UV maps, i.e., there exist an

infinite number of equivalent UV maps that minimize our

Lgeo (PDE). While the result without Lprox are, therefore,

quantitatively competitive as summarized in Table 2, such

ambiguity can be resolved by finding UV that is closest to

the proxy UV as shown in Figure 6, i.e., the retexture with-

out Lprox can result in arbitrary orientation across subjects.

Qualitative Results To show our results qualitatively, we

visualize both re-texturing examples and grid UV illustra-

tion to depict the performance of each method in preserv-

ing high-frequency details. For retexturing, we first obtain

an albedo and shading layer from the input image using

an intrinsic image decomposition method [53]. After ap-

plying a new texture pattern to the albedo layer, we com-

posite it back with the original shading layer. We apply

Gamma-correction [37] on the input image, after generating

the albedo layer and shading layer, we inverse the Gamma-

correction back when synthesizing the re-textured image.

We compare our method qualitatively with the baselines

as shown in Figure 8 that illustrates the results on Fash-

ion video sequence [59]. Figure 11 shows the performance

of our method on videos and images. Our method not only

captures the fine-grained surface details but also is tempo-

rally coherent across time.

Method User score

DensePose 4.09±1.94

Proxy DensePose 3.23±1.86

HumanGPS 2.28±2.12

Kasten et al. 5.52±1.88

Ye et al. 7.66±1.27

Ours 9.57±0.81

Table 3. User study.

User Study We conducted

a user study: asking par-

ticipants (n = 21) to rate

realism (1: unrealistic to

10: most realistic) for our

method compared to the

baselines as summarized

in Table 3. Our method

receives the highest score

from the users.
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Figure 8. Qualitative comparison. We compare ours with our initial UV (extrapolated DensePose), DensePose [18], HumanGPS [47],

Kastenn et al. [25], and Ye et al. [57] in image re-texturing and UV map grid visualization.

Original image W/ shading W/o shading Grid UV

Retextured images

Figure 9. Limitation. Due to lack of 3D reconstructed surface,

our method cannot handle folds that introduce texture disconti-

nuity. Our texture map is continuous around the folds, which is

physically incorrect.

5. Discussion

This paper presents a novel approach to predict a high

quality UV map by preserving geometric details from im-

ages and videos. We leverage the geometric property of

isometry encoded in 3D surface normals to optimize the UV

map in the form of partial differential equations. We gen-

eralize our method to videos by integrating optical flow, re-

sulting in a temporally coherent video editing. Our method

produces strong qualitative and quantitative predictions on

real-world imagery compared to state-of-the-art UV map

estimation.

Limitation As discussed in Section 3.1, our method makes

an assumption about projection, i.e., there is one-to-one

correspondence between 3D surface geometry and image.

However, this assumption does not hold when there is a

fold where a region of 3D surface is not visible to the

image. This makes a contrast with 3D reconstruction

based method where the invisible part of 3D surface can

be still mapped to the image via depth reasoning. Fig-

ure 9 illustrates this limitation where there are folds in the

skirt, resulting in negative surface normal nz . Due to the

folds, the texture must be discontinuous while our method

produces continuous texture rendering due to the lack of

3D reconstructed geometry, which is physically incorrect.

Image CP-VTON+ OursImage Retexturing 
w/o shading

Retexturing 
w/ shading

a . Shading extraction limitation b . CP-VTON+ comparison

Figure 10. Limitation. Limita-

tions on textured garment.

Our pipeline is com-

posed of two compo-

nents: (1) UV predic-

tion (our contribution)

and (2) texture map

with shading (not our

contribution). For the

garments with highly

contrasted texture, the

shading operation is of-

ten biased to color con-

trast, resulting in erroneous appearance. Figure 10 il-

lustrates that despite reasonable UV prediction from our

method, the resulting appearance is unrealistic near the tex-

tured region. Improving the shading operation is beyond the

scope of this work, and we leave it as future work.
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Original image Re-textured images
(a) Qualitative results of our method on an image.

Original video Re-textured video
(b) Qualitative results of our method on videos.

Figure 11. Results on images and videos. Our method can produce compelling texture editing given images and videos that preserve

geometric details.

4634



References

[1] https://renderpeople.com/3d-people. 2

[2] Abien Fred Agarap. Deep learning using rectified linear units

(relu). arXiv, 2018. 4

[3] Badour AlBahar, Jingwan Lu, Jimei Yang, Zhixin Shu, Eli

Shechtman, and Jia-Bin Huang. Pose with Style: Detail-

preserving pose-guided image synthesis with conditional

stylegan. TOG, 2021. 2

[4] Yazeed Alharbi and Peter Wonka. Disentangled image gen-

eration through structured noise injection. In CVPR, 2020.

2

[5] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff,

Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba. Seman-

tic photo manipulation with a generative image prior. TOG,

2019. 2

[6] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt,

and Gerard Pons-Moll. Multi-garment net: Learning to dress

3d people from images. In ICCV, 2019. 2

[7] Michael J. Black and P. Anandan. Robust dynamic motion

estimation over time. In CVPR, 1991. 2

[8] Gabriel J Brostow and Irfan A Essa. Motion based decom-

positing of video. In ICCV, 1999. 2

[9] Felix E. Browder. On the unification of the calculus of vari-

ations and the theory of monotone nonlinear operators in ba-

nach spaces. PNAS, 1966. 3

[10] Edwin Earl Catmull. A subdivision algorithm for computer

display of curved surfaces. The University of Utah, 1974. 3

[11] Shu-Yu Chen, Wanchao Su, Lin Gao, Shihong Xia, and

Hongbo Fu. Deepfacedrawing: Deep generation of face im-

ages from sketches. TOG, 2020. 2

[12] Anton Cherepkov, Andrey Voynov, and Artem Babenko.

Navigating the gan parameter space for semantic image edit-

ing. In CVPR, 2021. 2

[13] Edo Collins, Raja Bala, Bob Price, and Sabine Süsstrunk.

Editing in style: Uncovering the local semantics of GANs.

In CVPR, 2020. 2

[14] T. Darrell and A. Pentland. Robust estimation of a multi-

layered motion representation. In Proceedings of the IEEE

Workshop on Visual Motion, 1991. 2

[15] Ke Gong, Yiming Gao, Xiaodan Liang, Xiaohui Shen, Meng

Wang, and Liang Lin. Graphonomy: Universal human pars-

ing via graph transfer learning. In CVPR, 2019. 4

[16] J.C. Gower and G.B. Dijksterhuis. Procrustes problems. new

york: Oxford university press. Psychometrika, 70, 2005. 5

[17] Artur Grigorev, Artem Sevastopolsky, Alexander Vakhitov,

and Victor Lempitsky. Coordinate-based texture inpainting

for pose-guided human image generation. In CVPR, 2019. 2

[18] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos.

Densepose: Dense human pose estimation in the wild. In

CVPR, 2018. 2, 4, 5, 6, 7

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 4

[20] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan,

and Xilin Chen. Attgan: Facial attribute editing by only

changing what you want. TIP, 2019. 2

[21] Xianxu Hou, Xiaokang Zhang, Linlin Shen, Zhihui Lai, and

Jun Wan. Guidedstyle: Attribute knowledge guided style

manipulation for semantic face editing. arXiv, 2020. 2

[22] Anastasia Ianina, Nikolaos Sarafianos, Yuanlu Xu, Ignacio

Rocco, and Tony Tung. Bodymap: Learning full-body dense

correspondence map. In CVPR, 2022. 2

[23] Yasamin Jafarian and Hyun Soo Park. Learning high fidelity

depths of dressed humans by watching social media dance

videos. In CVPR, 2021. 5

[24] Varun Jampani, Raghudeep Gadde, and Peter V. Gehler.

Video propagation networks. In CVPR, 2017. 2

[25] Yoni Kasten, Dolev Ofri, Oliver Wang, and Tali Dekel. Lay-

ered neural atlases for consistent video editing. TOG, 2021.

2, 5, 6, 7

[26] Hyunsu Kim, Yunjey Choi, Junho Kim, Sungjoo Yoo, and

Youngjung Uh. Exploiting spatial dimensions of latent in

gan for real-time image editing. In CVPR, 2021. 2

[27] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method

for stochastic optimization. In ICLR, 2015. 5

[28] Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, and

Shubham Tulsiani. Articulation-aware canonical surface

mapping. In CVPR, 2020. 2

[29] Nilesh Kulkarni, Abhinav Gupta, David F Fouhey, and Shub-

ham Tulsiani. Articulation-aware canonical surface map-

ping. In CVPR, 2020. 2

[30] M. Pawan Kumar, Philip H. S. Torr, and Andrew Zisser-

man. Learning layered motion segmentations of video. IJCV,

2005. 2

[31] Verica Lazova, Eldar Insafutdinov, and Gerard Pons-Moll.

360-degree textures of people in clothing from a single im-

age. 3DV, 2019. 2

[32] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.

Maskgan: Towards diverse and interactive facial image ma-

nipulation. In CVPR, 2020. 2

[33] Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim,

Antonio Torralba, and Sanja Fidler. Editgan: High-precision

semantic image editing. In NeurIPS, 2021. 2

[34] Erika Lu, Forrester Cole, Tali Dekel, Weidi Xie, Andrew Zis-

serman, David Salesin, William T. Freeman, and Michael

Rubinstein. Layered neural rendering for retiming people

in video. TOG, 2020. 2

[35] Bruce D. Lucas and Takeo Kanade. An iterative image reg-

istration technique with an application to stereo vision. In

IJCAI, 1981. 6

[36] Bruce D. Lucas and Takeo Kanade. Optical navigation by

the method of differences. In IJCAI, 1985. 6

[37] Tom McReynolds and David Blythe. Advanced graphics

programming using OpenGL. Elsevier, 2005. 6

[38] Aymen Mir, Thiemo Alldieck, and Gerard Pons-Moll. Learn-

ing to transfer texture from clothing images to 3d humans. In

CVPR, 2020. 2

[39] Natalia Neverova, David Novotny, Vasil Khalidov, Marc

Szafraniec, Patrick Labatut, and Andrea Vedaldi. Continu-

ous surface embeddings. In NeurIPS, 2020. 2

[40] Natalia Neverova, David Novotny, and Andrea Vedaldi. Cor-

related uncertainty for learning dense correspondences from

noisy labels. In NeurIPS, 2019. 2

4635



[41] Natalia Neverova, Artsiom Sanakoyeu, David Novotny,

Patrick Labatut, and Andrea Vedaldi. Discovering rela-

tionships between object categories via universal canonical

maps. In CVPR, 2021. 2

[42] Natalia Neverova, James Thewlis, Riza Alp Güler, Iasonas

Kokkinos, and Andrea Vedaldi. Slim densepose: Thrifty

learning from sparse annotations and motion cues. In CVPR,

2019. 2

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In

NeurIPS. 2019. 5

[44] Alex Rav-Acha, Pushmeet Kohli, Carsten Rother, and An-

drew Fitzgibbon. Unwrap mosaics: A new representation

for video editing. SIGGRAPH, 2008. 2

[45] Igor Santesteban, Nils Thuerey, Miguel A Otaduy, and Dan

Casas. Self-Supervised Collision Handling via Generative

3D Garment Models for Virtual Try-On. In CVPR, 2021. 5,

6

[46] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Inter-

preting the latent space of gans for semantic face editing. In

CVPR, 2020. 2

[47] Feitong Tan, Danhang Tang, Dou Mingsong, Guo Kaiwen,

Rohit Pandey, Cem Keskin, Ruofei Du, Deqing Sun, Sofien

Bouaziz, Sean Fanello, Ping Tan, and Yinda Zhang. Hu-

mangps: Geodesic preserving feature for dense human cor-

respondences. In CVPR, 2021. 2, 5, 6, 7

[48] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-

tures let networks learn high frequency functions in low di-

mensional domains. In NeurIPS, 2020. 4

[49] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field

transforms for optical flow. In ECCV, 2020. 6

[50] Alexandru Telea. An image inpainting technique based on

the fast marching method. Journal of Graphics Tools, 2004.

4, 5, 6

[51] John Y. A. Wang and Edward H. Adelson. Representing

moving images with layers. TIP, 1994. 2

[52] Tuanfeng Wang, Duygu Ceylan, Krishna Kumar Singh, and

Niloy J. Mitra. Dance in the wild: Monocular human ani-

mation with neural dynamic appearance synthesis. In 3DV,

2021. 2

[53] Yair Weiss. Deriving intrinsic images from image sequences.

In ICCV, 2001. 6

[54] Rongliang Wu, Gongjie Zhang, Shijian Lu, and Tao Chen.

Cascade ef-gan: Progressive facial expression editing with

local focuses. In CVPR, 2020. 2

[55] You Xie, Huiqi Mao, Angela Yao, and Nils Thuerey. Tem-

poraluv: Capturing loose clothing with temporally coherent

uv coordinates. In CVPR, 2022. 2, 5

[56] Haonan Yan, Jiaqi Chen, Xujie Zhang, Shengkai Zhang, Ni-

anhong Jiao, Xiaodan Liang, and Tianxiang Zheng. Ul-

trapose: Synthesizing dense pose with 1 billion points by

human-body decoupling 3d model. In ICCV, 2021. 2

[57] Vickie Ye, Zhengqi Li, Richard Tucker, Angjoo Kanazawa,

and Noah Snavely. Deformable sprites for unsupervised

video decomposition. In CVPR, 2022. 2, 5, 6, 7

[58] Zhixuan Yu, Haozheng Yu, Long Sha, Sujoy Ganguly, and

Hyun Soo Park. Semi-supervised dense keypointsusing un-

labeled multiview images. arXiv, 2021. 2

[59] Polina Zablotskaia, Aliaksandr Siarohin, Bo Zhao, and

Leonid Sigal. Dwnet: Dense warp-based network for pose-

guided human video generation. In BMVC, 2019. 5, 6

[60] Wang Zeng, Wanli Ouyang, Ping Luo, Wentao Liu, and Xi-

aogang Wang. 3d human mesh regression with dense corre-

spondence. In CVPR, 2020. 2

[61] Tyler Zhu, Per Karlsson, and Chris Bregler. Simpose: Effec-

tively learning densepose and surface normal of people from

simulated data. In ECCV, 2020. 2

4636


	. Introduction
	. Related Work
	. Human Dense UV Map Estimation
	. Neural UV Optimization from Videos.

	. Method
	. Texture Mapping without 3D Reconstruction
	. Self-supervised Learning of Texture Mapping
	. Implementation Details

	. Evaluation
	. Discussion

