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Abstract

The task of human reposing involves generating a realis-
tic image of a person standing in an arbitrary conceivable
pose. There are multiple difficulties in generating percep-
tually accurate images, and existing methods suffer from
limitations in preserving texture, maintaining pattern co-
herence, respecting cloth boundaries, handling occlusions,
manipulating skin generation, etc. These difficulties are fur-
ther exacerbated by the fact that the possible space of pose
orientation for humans is large and variable, the nature
of clothing items is highly non-rigid, and the diversity in
body shape differs largely among the population. To alle-
viate these difficulties and synthesize perceptually accurate
images, we propose VGFlow. Our model uses a visibility-
guided flow module to disentangle the flow into visible and
invisible parts of the target for simultaneous texture preser-
vation and style manipulation. Furthermore, to tackle dis-
tinct body shapes and avoid network artifacts, we also in-
corporate a self-supervised patch-wise ”realness” loss to
improve the output. VGFlow achieves state-of-the-art re-
sults as observed qualitatively and quantitatively on differ-
ent image quality metrics (SSIM, LPIPS, FID). Results can
be downloaded from Project Webpage

1. Introduction

People are frequently featured in creative content like
display advertisements and films. As a result, the ability to
easily edit various aspects of humans in digital visual media
is critical for rapidly producing such content. Changing the
pose of humans in images, for example, enables several ap-
plications, such as automatically generating movies of peo-
ple in action and e-commerce merchandising. This paper
presents a new deep-learning-based framework for reposing
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Figure 1. Human reposing involves changing the orientation of a
source image to a desired target pose. To get accurate results, we
learn to preserve the region visible (green) in the source image and
transfer the appropriate style to the invisible region (red)

humans guided by a target pose, resulting in high-quality
and realistic output.

Recent approaches for human-image reposing based on
deep-learning neural networks, such as [19,26,39], require a
person image, their current pose, represented as a sequence
of key-points or a 2D projection of a 3D body-pose map,
and the target pose represented similarly. These methods
fail to reproduce accurate clothing patterns, textures, or re-
alistic reposed human images. This mainly happens when
either the target pose differs significantly from the current
(source) pose, there are heavy bodily occlusions, or the gar-
ments are to be warped in a non-rigid manner to the target
pose. Many of these failures can be attributed to the in-
ability of these networks to discern regions of the source
image that would be visible in the target pose from those
that would be invisible. This is an important signal to deter-
mine which output pixels must be reproduced from the in-
put directly and which must be predicted from the context.
We present VGFlow, a framework for human image repos-
ing that employs a novel visibility-aware detail extraction
mechanism to effectively use the visibility input for preserv-
ing details present in the input image.

VGFlow consists of two stages - encoding the changes
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in appearance and pose of the source image required to
achieve the new pose and decoding the encoded input to
the re-posed human image. The encoding stage includes
a pose-based warping module that takes the source image
and the source and target pose key-points as input and pre-
dicts two 2D displacement fields. One corresponds to the
visible region of the source image in the target pose, and
the other to the invisible areas. It also predicts a visibil-
ity mask indicating both visible and invisible regions in the
source image, as they should appear in the target pose. The
displacement fields, known as appearance flows, are used to
sample pixels from the source image to produce two warped
images. These warped images and the visibility masks are
then encoded into the appearance features, a multi-scale
feature pyramid. The encoding stage also tries to capture
the relationship between the source and target poses by en-
coding their respective key-points together. The encoded
pose key-points are translated into an image during the de-
coding stage, with the appearance features modulating the
translation at each scale. This appearance-modulated pose
to image decoding provides the final reposed output, which
is then subjected to multiple perceptual and reconstruction
losses during training.

The vast majority of existing methods [5, 26, 27, 39] are
trained using paired source and target images. However, in
terms of output realism, we observe various artifacts and
a lack of generalization in these methods to unpaired in-
puts, especially when the source image differs significantly
in body shape or size [20]. To that end, VGFlow is trained
with a self-supervised patch-wise adversarial loss on un-
paired images alongside the pairwise supervised loss to en-
sure a high level of realism in the final output. In sum-
mary, this paper proposes a new human reposing network
VGFlow, based on:

• A novel visibility-aware appearance flow prediction
module to disentangle visible and invisible regions of
the person image in the target pose.

• An image decoder employing multi-scale texture mod-
ulated pose encoding.

• And, a patch-wise adversarial objective to improve the
realism of the produced images leading to fewer output
artifacts.

Our method achieves state-of-the-art on image quality
metrics for the human reposing task. We present extensive
qualitative and quantitative analysis with previous base-
lines, as well as ablation studies. Next, we discuss work
related to the proposed method.

2. Related work
Human Reposing In recent years, several works have
tried to generate a person in the desired target pose [1, 16,
23, 25, 32, 37, 39]. One of the initial work was PG2 [21],
which concatenated the source image with the target pose

to generate the reposed output. Their work produced erro-
neous results due to the misalignment between the source
and target image. Follow-up works tried to mitigate the
problem by using a deformable skip connection [30] or
progressive attention blocks [40] to achieve better align-
ment. However, modeling complex poses and bodily oc-
clusions were still challenging. Recently, there have been
some attention-based approaches [26, 39] proposed to learn
the correspondence between the source and target pose. Al-
though these attention [26] and style distribution-based [39]
methods have shown impressive results, they need improve-
ment for handling complex transformations. Apart from be-
ing computationally expensive, they do not preserve spatial
smoothness and are inefficient in modeling fine-grained tex-
ture. In contrast, our approach is a flow-based method that
can naturally handle complex and large transformations by
using flow to warp the person in the source image to the
target pose while preserving geometric integrity.

Flow-based methods Flow estimation aids in learning
the correspondence between the content of two images or
video frames and has been used in a variety of computer
vision tasks such as optical flow estimations [33, 36], 3D
scene flow [15], video-to-video translation [3], video in-
painting [14], virtual-try-on [4, 9], object tracking [6] etc.
Flow-based methods are also heavily explored for the hu-
man reposing task [1, 5, 19, 27] in which pixel-level flow
estimates help to warp the texture details from the source
image to the target pose. Still, as they don’t incorporate
visibility cues in their architecture, the network often relies
more on in-painting rather than preserving the source im-
age content. DIF [13] utilized a visibility mask to refine
their flow estimation by splitting the appearance features
into visible and invisible regions and applying a convolution
on top. However, we show that visible and invisible infor-
mation contain crucial complementary details and should
be treated separately in the network pipeline. Most current
networks are trained with paired poses, in which the tar-
get image is of the same person as the source image. The
inference is usually performed for a different human, with
the target pose derived from someone with a different body
shape and size. This results in unusual distortions in the
output. FDA-GAN [20] proposed a pose normalization net-
work in which they added random noise to the target pose
using SMPL [18] fitting to make reposing robust to noise.
However, adding random noise would not lead to the imita-
tion of real human pose distributions. We tackle this prob-
lem by introducing a self-supervised adversarial loss using
unpaired poses during training.

3. Methodology
Our human reposing network requires three inputs,

source image, source pose keypoints, and target pose key-
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points. The task is to use the appearance and pose informa-
tion from inputs to generate an image in the target pose. We
subdivide this task into two key sub-parts. A detail extrac-
tion task, conditioned on the target pose, followed by a gen-
eration task where the extracted details are used to create a
realistic image. Our detail extraction task is performed by a
flow module FlowV is, which warps and aligns the texture
and body shape information from the source image with the
target pose. The outputs of FlowV is are passed through
our generator module, where texture and latent vectors from
different resolutions are merged with the pose encoding us-
ing 2D style modulation. We also fine-tune the network
using self supervised patch-wise realness loss to remove the
generator artifacts. More details can be found in subsequent
sections.

3.1. Flow & Visibility module

CNNs are well suited for image-to-image transformation
tasks where there is a per-pixel mapping between input and
output. An absence of such pixel-to-pixel mapping requires
incorporation of other methods to aid learning. Therefore,
many human reposing networks [1,5,19,27] usually employ
some warping to deform source images to align them with
output pose to get a better spatial correspondence between
input and output. Warping an image requires a per pixel dis-
placement flow field of size 2 ×H ×W , where H and W
are the height and width of the image respectively. This flow
field can be learnable or obtained using a 3d model of hu-
mans such as SMPL [18] or UV maps [8]. The flow gener-
ated by existing works are not able to preserve the intricate
geometry and patterns present on real clothes. These inad-
equacies get highlighted in the presence of complex poses
and occlusions in the source image. To alleviate these is-
sues, we propose a novel visibility aware flow module.

Our FlowV is Module (Fig 2) takes in the source im-
age Is, source pose keypoints Ks, and target pose keypoints
Kt as inputs and generates a visibility map V isMap, two
flow field pyramids f l

v, f
l
i (for visible and invisible regions

respectively) and two warped image pyramids I lV is(I lv),
I lInvis(I li ) using the generated flow fields. The V isMap,
f l
v and f l

i are generated by a Unet [28] like architecture
FlowPredictor(FP). V isMap segments the target image It
into visible and invisible regions in the source image (Fig
2). The visible region(green in V isMap ) corresponds to
an area that is visible in Is, and the invisible part (red) is
the area that is occluded in Is. The two separate per-pixel
displacement flow-field pyramids f l

v and f l
i are predicted

at different resolutions l. These flows are used to warp
the source image to align with the target pose and gener-
ate the target’s visible I lv and invisible I li regions. The in-
sight for predicting two flow fields comes from the obser-
vation that prediction for both the visible I lv and invisible
I li target regions may require pixels from the same location
in the source. Therefore we need two flow fields to miti-
gate this issue because a single flow field can only map a

source pixel to either one of the two regions. Flows from
multiple resolutions are combined using the Gated aggrega-
tion [4] (GA) technique which filters flow values from dif-
ferent radial neighborhoods to generate a composite flow.
This allows the network to look at multiple scales sequen-
tially and refine them at each step. To construct the flow at
the final 256 × 256 level, we upsample the flow from the
previous layer using convex upsampling. Convex upsam-
pling [34] is a generalization of bilinear upsampling where
the upsampling weights for a pixel are learnable and con-
ditioned on the neighborhood features. Convex upsampling
aids in the preservation of fine-grained details and sharpens
the warped output. Moreover, employing a single decoder
to generate both flow pyramids helps preserve consistency
and coherence between visible and invisible warped images.
The module is summarised in the following equations.

f l
v, f

l
i , V isMap← FP (Is,Ks,Kt)

fagg
v , fagg

i ← GA(f l
v, f

l
i )

fo
v , f

o
i ← ConvexUpsample(fagg

v , fagg
i )

Ilv, I
l
i ←Warp(Is, f

l
v),Warp(Is, f

l
i )

(1)

Losses We train the flow module seperately before pass-
ing the output to the generator. FlowV is is trained to
generate Iv and Ii by minimizing the losses on the visible
and invisible regions of the human model respectively. The
V isMap can be broken down to visible area mask mv and
invisible area mask mi by comparing the per-pixel class.
For the visible region, we can find an exact correspondence
between predicted and the target image and hence we utilize
L1 and perceptual loss Lvgg [31] on the masked visible part.
The loss on the visible area minimizes texture distortion and
loss in detail(L1). For the invisible region, there is no exact
correspondence between Ii and It but we can still optimize
using the target image style. For example, in-case a per-
son needs to be reposed from a front pose to back pose then
the entire body will be invisible in Is. However, there is a
very strong style similarity that we can leverage for repos-
ing. Hence, we use perceptual [31] and style loss Lsty [7]
to capture the resemblance for these regions on the masked
invisible regions. We also minimize tv norm [35] on the
flow pyramids to ensure spatial smoothness of flow and the
losses are computed for the entire flow pyramid. V ismap is
optimized by imposing cateogrical cross entropy loss, Lcce.
The ground truth for the visibility map V ismapgt, was ob-
tained by fitting densepose [8] on Is, It and then matching
the acquired UV coordinates to generate the visible and in-
visible mask. We further use teacher forcing technique [24]
for training FlowV is, in which the ground truth VisMap
is used with 50% probability for the warping losses. The
losses guiding the flow module can be summarized as fol-
lows. Here ⊙ indicates per pixel multiplication.

mv,mi ← V isMap

Lwrp =
∑
l

Lvis(I
l
v,mv, fl) + Linvis(I

l
i ,mi, fl)

+Lcce(V isMap, V isMapgt)

(2)
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Figure 2. Our FlowVis module takes in concatenated Is,Ks & Kt as input. We predict two flow pyramids at multiple scales for different
visibility regions using a Unet architecture. Subsequently, these flow pyramids are combined using Gated Aggregation [4] and upsampled
via Convex upsampling [34]. Losses L1, Lvgg are imposed on the visible areas and Lvgg, Lsty are imposed on the invisible areas.

where,

Lvis(I,m, f) = β1Lvgg(I ⊙m, It ⊙m) +

β2∥I ⊙m, It ⊙m∥1+β3Ltv(f)

Linvis(I,m, f) = β1Lvgg(I ⊙m, It ⊙m)

+ β4Lsty(I ⊙m, It ⊙m) + β3Ltv(f)

(3)

3.2. Generator module

The generator module (Fig 3) takes as input the source
and target poses and the output of FlowV is module. It is
important to point out that only the final level of the trans-
formed image pyramid I lv, I

l
i , i.e. the level at resolution

256× 256 referred now as Iv, Ii, is used in our generator.

Pose encoder Majority of the previous networks [5, 27,
39] encoded the pose information only as a function of 18
channel target keypoints. However, single view reposing is
fundamentally an ill defined task. The network has to hallu-
cinate the body and clothing region whenever it is invisible
in the source image. Hence, it should be able to distinguish
between the portions of the target image for which it can ob-
tain corresponding texture from the source image and those
for which it must inpaint the design of the respective cloth-
ing item. Therefore, to model the correlation between the
source(Ks) and target poses(Kt), we pass both source and
target keypoints to a Resnet architecture PoseEnc to obtain
a 16× 16 resolution pose feature volume.

ep = PoseEnc(Ks,Kt) (4)

Figure 3. Our Generator module consumes the FlowVis outputs
to generate the final reposed output. It utilizes 2D style modu-
lation [1] to inject Multi-scale Appearance features into the pose
encoding for the generation process

Texture injection & Image Generation The texture en-
coder takes in Iv, Ii and V ismap as input and uses a ResNet
architecture similar to pose encoder to obtain texture en-
codings at different hierarchical scales. The low resolution
layers are useful for capturing the semantics of the cloth-
ing items, identity of the person and the style of individ-
ual garments while the high resolution layers are useful for
encapsulating the fine grained details in the source image.
We also add skip connections in our texture encoder which
helps in combining low and high resolution features and
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capture different levels of semantics.
The image decoder module takes in the pose encoding ep

as input and up samples them to higher resolutions. The tex-
ture is injected into these pose encodings at different scales
by using 2D style modulation [1]. After the modulation,
features are normalized such that they have zero mean and
unit standard deviation. Similar to [1] which is based on
StyleGAN2 architecture, RGB images are predicted at mul-
tiple resolutions and sequentially lower resolution image is
added to next higher resolution image after upsampling it to
obtain the final output image (Fig 3). As the network has
to fill in the invisible region (Ii) by generating new content
similar to neighbourhood pixels at inference, we perform an
auxiliary task of inpainting 20% of the training time, similar
to [5]. Here, a random mask is applied on the target image
and given as input to the model. The generator is then asked
to output the complete target image. This teaches our net-
work to complete any missing information of warped im-
ages in a visually convincing manner. VGFlow achieves
SOTA in the single view human reposing task.

eltex = TexEnc(Ivis, IInvis, V isMap)

Igen = ResNetDec(ep, 2DStyleMod(eltex))
(5)

Losses We enforce L1, VGG, Style and LSGAN [22]
losses between Igen and It. L1 loss helps to preserve the
identity, body pose and cloth texture with pixel level cor-
respondence. Vgg and Style loss are useful in conserv-
ing high level semantic information of garments present on
source human and bringing the generated image perceptu-
ally closer to target. For the LSGAN loss, we pass target
pose(Kt) along with generated image(Igen) to the discrimi-
nator for better pose alignment. Adverserial loss assist in re-
moving small artifacts and making the image more sharper.
We utilize LSGAN loss as it has been shown to produce bet-
ter output than traditional GAN loss [22] and is more stable
during training. Overall, the loss function can be defined as:

Lsup = αrec∥Igen, It∥1+αperLvgg(Igen, It)

+ αstyLsty(Igen, It) + αadvLLSGAN (Igen, It,Kt)
(6)

The α’s are the weight for the different losses. Lsup refers
to the supervised loss used when the input and output are of
same person in the same attire.

Self supervised realness Loss Even though the network
is able to produce perceptually convincing results with the
above supervised training, there are still bleeding artifacts
present that occur when there is a complicated target pose or
occluded body regions. There is also a discontinuity present
between the clothing and skin interface at some places.
Moreover, during training, the target pose is taken from
paired image where the input and output are for the same

Figure 4. Addition of patch-wise Self Supervised loss(LSS) helps
in enhancing the image quality and increases realness

person wearing the same apparel. This would introduce a
bias in the network as it would not be robust to alterations in
body types(e.g. fat, thin, tall) between Ks,Kt [20]. During
inference this could deteriorate results when, for example,
the body shape of the person from which the target pose
is extracted vary significantly from the source image hu-
man body shape. To alleviate these issues, we fine tune our
network with an additional patch wise adversarial loss [11]
whose task is to identify if a particular patch is real or not.
Therefore during fine-tuning, we choose unpaired images
with 50% probability(Sec 4) from a single batch. Only an
adversarial loss is applied on the unpaired images and Lsup

loss is present on the paired images(Fig 4).

LSS = LPatchGAN (Igen, It) (7)

All these losses i.e. Lwrp, Lsup and LSS are used to fine-
tune the networks in an end-to-end fashion.

4. Experiments
Dataset We perform experiments on the In-shop clothes
benchmark of Deepfashion [17] dataset. The dataset con-
sists of 52,712 pairs of high resolution clean images with
200,000 cross-pose/scale pairs. The images are divided into
48,674 training and 4038 testing images and resized to a
resolution of 256 × 256. The keypoints of all images are
extracted using OpenPose [2] framework. We utilize the
standard 101,966 training and 8,570 testing pairs, following
previous works [1, 5, 26]. Each pair consists of source and
target image of the same person standing in distinct pose. It
is also worth noting that the identity of training and testing
pairs are separate from one another in the split.

Evaluation metrics We compute structural similarity in-
dex(SSIM), Learned Perceptual Image Patch Similarity
(LPIPS) and Fretchet Inception Distance(FID) for compar-
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ison with previous baselines. SSIM quantifies image degra-
dation by employing luminance, contrast and and structure
present in the image [29]. LPIPS [38] compute patchwise
similarity using features from a deep learning model. It
has been shown to correlate well with human perception
of image similarity. FID [10] works by comparing the 2-
wasserstein distance between the InceptionNet statistics of
the generated and ground truth dataset. This provides a
good metric for estimating the realness of our generated re-
sults.

Implementation details All the experiments were carried
out using pytorch framework on 8 A100 gpus. We first
train our reposing network using only supervised losses for
30 epochs with Adam [12] optimizer, batch size of 32 and
learning rate of 1e-4. Afterwards, we fine tune the model
using self supervised loss. For the self supervised training
of our model, we randomly choose a target sample or pose
image from the complete training dataset during training.
We also choose the patch size of 16 × 16 for the discrim-
inator which provides a good tradeoff between high level
and low level feature preservation. We found that impos-
ing the self supervised loss works better when we impose it
intra-batch. So, supervised and self supervised losses were
propagated together in the same mini-batch and we used
loss masking to stop gradients for the respective branches.
In contrast, the inpainitng auxilliary task was carried out
among different mini-batches. The intra-batch strategy pro-
vides an anchoring to the network with supervised losses in
a single backward pass as we don’t have a pairwise supervi-
sion for a random target pose. Without intra-batch training,
the network starts hallucinating details which are not con-
sistent with the source image but looks plausible. The fine-
tuning was carried out with a batch size of 32 and a reduced
learning rate of 5e-5. We highlight additional advantages of
using self supervised learning technique in sec 6.

5. Results

We compare our method with several strong previous
works [1, 5, 19, 26, 27, 39]. Among these, Gfla [27], Spgnet
[19], Dior [5] and PWS [1] leverage flow-based warping in
their network to align source image with the target pose.
The flow obtained by them is used to warp the features ob-
tained from the source image and move them to the kt ori-
entation. PWS [1] takes additional information in the form
of UV maps of the target image as input(more discussion
in supplementary). Note that the densepose UV maps of
the target image contain a lot more information than simple
keypoints. PWS [1] exploits the UV map and symmetry to
directly calculate the flow and inpaint the occluded part us-
ing a coordinate completion model. However, in the case
of unpaired images at inference, obtaining the ground truth
UV maps is a difficult task, and the body shape problem is

worsened further. Moreover, UV map contains information
about the per-pixel mapping of the body regions between Is
& It. Such extensive information won’t be accurate if we
use a UV map from an unpaired pose and hence, keypoints-
based methods are not directly comparable with UV-based
methods. We include qualitative results from [1] for com-
pleteness and to highlight the issues in UV based warping
in Sec.6. In contrast to flow-based techniques, NTED [26]
and CASD [39] utilize semantic neural textures and cross-
attention-based style distribution respectively to diffuse the
texture of the source image onto the target pose. However,
disentangling the texture and reconstructing it in a different
orientation is a challenging task without warping assistance,
especially for intricate patterns and text. We further corrob-
orate this phenomenon in our qualitative analysis.

Method SSIM ↑ FID ↓ LPIPS ↓
Intr-Flow [13] - 16.31 0.213

GFLA [27] 0.713 10.57 0.234
ADGAN [23] 0.672 14.45 0.228
SPGNet [19] 0.677 12.24 0.210

Dior [5] 0.725 13.10 0.229
CASD [39] 0.724 11.37 0.193

Ours 0.726 9.29 0.185

Table 1. Our network outperforms all the previous baselines for
quantitative image metrics at 256× 256 resolution

Quantitative comparison for human reposing We com-
pare our method with previous works which have generated
images with 256 × 256 resolution as their output size. As
can be seen from Table 1, VGFlow performs significantly
better in SSIM, LPIPS and FID compared to other baselines.
The improvement in LPIPS and SSIM metric, which com-
pare images pairwise, can be attributed to better modelling
of the visible regions of the model. On the other hand, FID,
which measures the statistical distance between the latent
space distribution of real and generated images, becomes
better due to our superior style transfer for the invisible re-
gion.

Qualitative comparison for human reposing We high-
light improvements in human reposing from several qualita-
tive dimensions in Fig 5. In (a), VGFlow generates images
with accurate pattern reproduction and seamless intersec-
tion of top and bottom designs. Other works were either not
able to maintain coherence during generation or produced
unnatural artifacts in their final outputs. In (b), our network
was able to reproduce the back ribbon at the correct target
location along with the strap. Whereas, PWS [1] is not able
to model the ribbon as the UV map is a dense representation
of only the human body and does not capture the details of
loose clothes properly. (c) and (d) highlight texture preser-
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Figure 5. In this figure, we underscore improvements along different qualitative aspects over previous works. We emphasize enhancement
in preserving pattern & segmentation (a), handling complex poses (b), design consistency (c), conserving text readability (d), reducing
bleeding, skin generation & identity reproduction (e), maintaining geometric integrity (f) and pattern coherence (g). (Best viewed in zoom)

vation while reposing where the text maintains its relative
orientation during warping. The words in the original pose
are only intelligible for VGFlow. In (e), the blue color is
bleached onto the white shirt, and face reproduction is not
accurate for multiple other reposed outputs. (f) shows the
faithful geometric construction of parallel lines and (g) em-
phasizes pattern coherence while global deformation of tex-
ture. We see that only the warping-based methods were able
to preserve the rough texture in (g) while NTED [26] and
CASD [39] completely dismantled the structural integrity
of the“&” symbol on the t-shirt. Additional results can be
found in supplementary material.

6. Ablation and Analysis

Warping functions Flow estimation is integral to many
reposing pipelines [1, 5, 27], including ours. Therefore we
perform an analysis of the warping capabilities of differ-
ent flow modules. The images in Fig 6 show the quality
of warping of the source image based on the flow predicted
by the respective methods. As flow warping moves pixels,
it can only hallucinate within the bound of the source im-
age’s content. We see that VGFlow performs significantly
better than previous flow-based warping techniques in pre-
serving the semantic layout of the source human. The fine-
grained texture details are transferred seamlessly along with
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Figure 6. Qualitative comparison between different warping func-
tions for PWS [1], Gfla/Dior [5, 27] and our (Ivis, IInvis) warp.
Gfla and Dior used the same flow prediction module

the overall body shape. PWS is limited due to mistakes in
estimating UV maps by off-the-shelf components [8], and
GFLA [27] had a sub-optimal flow estimation module. By
letting our network predict different flow fields for visible
and invisible regions while simultaneously constraining it
to use the same latent features, we were able to achieve a
good consistency between Iv and Ii.

Figure 7. Introducing PatchWise Self-Supervised Loss alleviates
unnatural segmentation (a) and increases realness (b)

Ablation study To gauge the effectiveness of different
components of our pipeline, we perform various ablations
of our network in Table 2. Note that the Self Supervised
loss is excluded in all the ablations. The result of ablations
are as follow:-

• Zflow Iwarp We replace our flow network with Zflow
[4] architecture, which includes a flow pyramid with
GA(Gated Aggregation) to predict a single 2D dis-
placement flow field and finetune our VGFlow genera-
tor. This model produced sub-optimal flow and lacked
the ability to preserve high-frequency components like

Method SSIM ↑ FID ↓ LPIPS ↓
ZFlow Iwarp 0.719 11.70 0.205

w/o VisMap, Ii, LSS 0.719 9.89 0.196
w/o Ii, LSS 0.724 9.93 0.190

w/o Ks, LSS 0.726 9.90 0.186
w/o LSS 0.725 9.70 0.186

Full 0.726 9.29 0.185

Table 2. We perform extensive ablations to gauge the importance
of each component in our network

text & design. The quantiative metrics significantly
deteriorate against VGFlow(Tab 2) and we show the
qualitative comparison in supplementary.

• w/o VisMap, Ii, LSS The result of removing the
Vismap and Ii from the inputs of texture encoder and
only passing Iv indicates that the visibility map plays
an integral role in capturing the appropriate relation-
ship for the texture encodings.

• w/o Ii, LSS The degradation of quantitative image
metrics on the removal of only the Ii from the input
of texture encoder shows that even though Iv and Ii
produce similarly warped images, they do provide cru-
cial complementary information.

• w/o ks, LSS The deterioration in FID score(9.70 →
9.90) on removing the Ks input from the pose encod-
ing indicates that passing in Ks helps in modeling the
correlation between source and target pose.

• w/o LSS We also study the effect of finetun-
ing with self-supervised loss LSS . LSS plays
a major role in improving the FID(9.70→ 9.29)
and marginally improving SSIM(0.725→0.726) and
LPIPS(0.186→0.185). We also show qualitative im-
provements of integrating LSS in Fig 7

• Full This model contains all the components presented
in the paper. These ablations show that our configura-
tion of VGFlow produces the best output.

We also include some failure cases due to warping errors
and target segmentation faults in supplementary material.

7. Conclusion

We propose VGFlow, a visibility-guided flow estimation
network for human reposing that generates the reposed out-
put by leveraging flow corresponding to different visibility
regions of the human body. We propose an additional self-
Supervised Patchwise GAN loss to reduce artifacts and im-
prove the network’s ability to adapt to various body shapes.
VGFlow achieves SOTA in the pose-guided person image
generation task, and we demonstrate the significance of our
contributions through extensive ablation studies.
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