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Figure 1. Text-to-SVG with VectorFusion. When (a) raster graphics sampled from Stable Diffusion are (b) auto-traced, they lose details that
are hard to represent within the constraints of the abstraction. (c-d) VectorFusion improves fidelity and consistency with the caption by
directly optimizing paths with a distillation-based diffusion loss. Find videos and more results at https://ajayj.com/vectorfusion.

Abstract

Diffusion models have shown impressive results in text-
to-image synthesis. Using massive datasets of captioned
images, diffusion models learn to generate raster images
of highly diverse objects and scenes. However, designers
frequently use vector representations of images like Scalable
Vector Graphics (SVGs) for digital icons or art. Vector
graphics can be scaled to any size, and are compact. We
show that a text-conditioned diffusion model trained on pixel
representations of images can be used to generate SVG-
exportable vector graphics. We do so without access to large
datasets of captioned SVGs. By optimizing a differentiable
vector graphics rasterizer, our method, VectorFusion, distills
abstract semantic knowledge out of a pretrained diffusion
model. Inspired by recent text-to-3D work, we learn an SVG
consistent with a caption using Score Distillation Sampling.
To accelerate generation and improve fidelity, VectorFusion
also initializes from an image sample. Experiments show
greater quality than prior work, and demonstrate a range of
styles including pixel art and sketches.

∗Equal contribution

1. Introduction

Graphic designers and artists often express concepts in
an abstract manner, such as composing a few shapes and
lines into a pattern that evokes the essence of a scene. Scal-
able Vector Graphics (SVGs) provide a declarative format
for expressing visual concepts as a collection of primitives.
Primitives include Bézier curves, polygons, circles, lines and
background colors. SVGs are the defacto format for export-
ing graphic designs since they can be rendered at arbitrarily
high resolution on user devices, yet are stored and transmit-
ted with a compact size, often only tens of kilobytes. Still,
designing vector graphics is difficult, requiring knowledge
of professional design tools.

Recently, large captioned datasets and breakthroughs in
diffusion models have led to systems capable of generating
diverse images from text including DALL-E 2 [28], Im-
agen [33] and Latent Diffusion [31]. However, the vast
majority of images available in web-scale datasets are raster-
ized, expressed at a finite resolution with no decomposition
into primitive parts nor layers. For this reason, existing dif-
fusion models can only generate raster images. In theory,
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a train* an owl standing on a wire* Underwater Submarine* a boat*

A photo of a Ming Dynasty vase on a
leather topped table.*

A smiling sloth wearing a leather jacket,
a cowboy hat and a kilt.*

a tuba with red flowers protruding from
its bell*

a blue poison dart frog sitting on a water
lily*

a crown* the silhouette of an elephant* an espresso machine* the Sydney Opera House*

a baby penguin* a tree* a family vacation to Walt Disney
World*

a spaceship flying in a starry night
sky*

the Great Wall*

Electric guitar** A delicious hamburger** Daft Punk** watercolor painting of a fire-
breathing dragon†

a bottle of beer next to an
ashtray with a half-smoked
cigarette†

a brightly colored mushroom
growing on a log†

Figure 2. Given a caption, VectorFusion generates abstract vector graphics in an SVG format. We use a pre-trained diffusion model trained
only on rasterized images to guide a differentiable vector renderer. VectorFusion supports diverse objects and styles. To select a style such as
flat polygonal vector icons, abstract line drawings or pixel art, we constrain the vector representation to subset of possible primitive shapes
and use different prompt modifiers to encourage an appropriate style: * ...minimal flat 2d vector icon. lineal color. on a white background. trending
on artstation, ** ...pixel art. trending on artstation, †...minimal 2d line drawing. trending on artstation. Please see videos of the optimization process
on our project webpage.
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diffusion models could be trained to directly model SVGs,
but would need specialized architectures for variable-length
hierarchical sequences, and significant data collection work.

How can we use diffusion models pretrained on pixels
to generate high-quality vector graphics? In this work, we
provide a method for generating high quality abstract vector
graphics from text captions, shown in Fig. 1.

We start by evaluating a two phase text-to-image and
image-to-vector baseline: generating a raster image with a
pretrained diffusion model, then vectorizing it. Traditionally,
designers manually convert simple rasterized images into a
vector format by tracing shapes. Some ML-based tools [19]
can automatically approximate a raster image with an SVG.
Unfortunately, we find that text-to-image diffusion models
frequently produce complex images that are hard to represent
with simple vectors, or are incoherent with the caption (Fig 1,
Stable Diffusion + LIVE).

To improve quality of the SVG and coherence with the
caption, we incorporate the pretrained text-to-image diffu-
sion model in an optimization loop. Our approach, VectorFu-
sion, combines a differentiable vector graphics renderer [16]
and a recently proposed score distillation sampling (SDS)
loss [26] to iteratively refine shape parameters. Intuitively,
score distillation converts diffusion sampling into an opti-
mization problem that allows the image to be represented by
an arbitrary differentiable function. In our case, the differen-
tiable function is the forward rasterization process, and the
diffusion model provides a signal for improving the raster.
To adapt SDS to text-to-SVG synthesis, we make the follow-
ing contributions:

• We extend score distillation sampling to open source
latent space diffusion models like Stable Diffusion,

• improve efficiency and quality by initializing near a
raster image sample,

• propose SVG-specific regularization including path
reinitialization,

• and evaluate different sets of shape primitives and their
impact on style.

In experiments, VectorFusion generates iconography, pixel
art and line drawings from diverse captions. VectorFusion
also achieves greater quality than CLIP-based approaches
that transfer a discriminative vision-language representation.

2. Related Work
A few works have used pretrained vision-language mod-

els to guide vector graphic generation. VectorAscent [11]
and CLIPDraw [4] optimize CLIP’s image-text similarity
metric [27] to generate vector graphics from text prompts,
with a procedure similar to DeepDream [23] and CLIP fea-
ture visualization [5]. StyleCLIPDraw [35] extends CLIP-
Draw to condition on images with an auxiliary style loss with
a pretrained VGG16 [36] model. Arnheim [3] parameterizes
SVG paths with a neural network, and CLIP-CLOP [22] uses

an evolutionary approach to create image collages. Though
we also use pretrained vision-language models, we use a
generative model rather than a discriminative model.

Recent work has shown the success of text-to-image gen-
eration. DALL-E 2 [28] learns an image diffusion model
conditioned on CLIP’s text embeddings. Our work uses
Stable Diffusion [31] (SD), a text-to-image latent diffusion
model. While these models produce high-fidelity images,
they cannot be directly transformed into vector graphics.

A number of works generate vector graphics from input
images. We extend the work of Layer-wise Image Vectoriza-
tion (LIVE) [19], which iteratively optimizes closed Bézier
paths with a differentiable rasterizer, DiffVG [16].

We also take inspiration from inverse graphics with dif-
fusion models. Diffusion models have been used in zero-
shot for image-to-image tasks like inpainting [18]. DDPM-
PnP [6] uses diffusion models as priors for conditional image
generation, segmentation, and more. DreamFusion [26] uses
2D diffusion as an image prior for text-to-3D synthesis with a
more efficient loss than DDPM-PnP, discussed in Section 3.3.
Following [26], we use diffusion models as transferable pri-
ors for vector graphics. Concurrent work [20] also adapts
the SDS loss for latent-space diffusion models.

3. Background
3.1. Vector representation and rendering pipeline

Vector graphics are composed of primitives. For our work,
we use paths of segments delineated by control points. We
configure the control point positions, shape fill color, stroke
width and stroke color. Most of our experiments use closed
Bézier curves. Different artistic styles are accomplished with
other primitives, such as square shapes for pixel-art synthesis
and unclosed Bézier curves for line art.

To render to pixel-based formats, we rasterize the prim-
itives. While many primitives would be needed to express
a realistic photogaph, even a few can be combined into rec-
ognizable, visually pleasing objects. We use DiffVG [16],
a differentiable rasterizer that can compute the gradient of
the rendered image with respect to the parameters of the
SVG paths. Many works, such as LIVE [19], use DiffVG to
vectorize images, though such transformations are lossy.

3.2. Diffusion models

Diffusion models are a flexible class of likelihood-based
generative models that learn a distribution by denoising. A
diffusion model generates data by learning to gradually map
samples from a known prior like a Gaussian toward the data
distribution. During training, a diffusion model optimizes a
variational bound on the likelihood of real data samples [37],
similar to a variational autoencoder [15]. This bound reduces
to a weighted mixture of denoising objectives [9]:

LDDPM(ϕ,x) = Et,ϵ [w(t)∥ϵϕ(αtx+ σtϵ)− ϵ∥22] (1)
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where x is a real data sample and t ∈ {1, 2, . . . T} is a uni-
formly sampled timestep scalar that indexes noise schedules
αt, σt [14]. ϵ is noise of the same dimension as the image
sampled from the known Gaussian prior. Noise is added by
interpolation to preserve variance. ϵϕ is a learned denoising
autoencoder that predicts the noise content of its input. For
images, ϵϕ is commonly a U-Net [9, 32], and the weighting
function w(t) = 1 [9]. Denoising diffusion models can be
trained to predict any linear combination of x and ϵ, such as
the clean, denoised image x, though an ϵ parameterization is
simple and stable.

At test time, a sampler starts with a draw from the prior
xT ∼ N (0, 1), then iteratively applies the denoiser to update
the sample while decaying the noise level t to 0. For example,
DDIM [38] samples with the update:

x̂ = (xt − σtϵϕ(xt))/αt, Predict clean image
xt−1 = αt−1x̂+ σt−1ϵϕ(xt) Add back noise (2)

For text-to-image generation, the U-Net is conditioned on
the caption y, ϵϕ(x, y), usually via cross-attention layers and
pooling of the features of a language model [24]. However,
conditional diffusion models can produce results incoher-
ent with the caption since datasets are weakly labeled and
likelihood-based models try to explain all possible images.
To increase the usage of a label or caption, classifier-free
guidance [10] superconditions the model by scaling up con-
ditional model outputs and guiding away from a generic
unconditional prior that drops y:

ϵ̂ϕ(x, y) = (1 + ω) ∗ ϵϕ(x, y)− ω ∗ ϵϕ(x) (3)

CFG significantly improves coherence with a caption at the
cost of an additional unconditional forward pass per step.

High resolution image synthesis is expensive. Latent
diffusion models [31] train on a reduced spatial resolution by
compressing 512×512 images into a relatively compact 64×
64, 4-channel latent space with a VQGAN-like autoencoder
(E,D) [2]. The diffusion model ϵϕ is trained to model
the latent space, and the decoder D maps back to a high
resolution raster image. We use Stable Diffusion, a popular
open-source text-to-image model based on latent diffusion.

3.3. Score distillation sampling

Diffusion models can be trained on arbitrary signals, but it
is easier to train them in a space where data is abundant. Stan-
dard diffusion samplers like (2) operate in the same space
that the diffusion model was trained. While samplers can be
modified to solve many image-to-image tasks in zero-shot
such as colorization and inpainting [37, 39], until recently,
pretrained image diffusion models could only generate ras-
terized images.

In contrast, image encoders like VGG16 trained on
ImageNet and CLIP (Contrastive Language–Image Pre-
training) [27] have been transferred to many modalities like

mesh texture generation [23], 3D neural fields [12, 13], and
vector graphics [4, 11]. Even though encoders are not gen-
erative, they can generate data with test time optimization:
a loss function in the encoder’s feature space is backpropa-
gated to a learned image or function outputting images.

DreamFusion [26] proposed an approach to use a pre-
trained pixel-space text-to-image diffusion model as a loss
function. Their proposed Score Distillation Sampling (SDS)
loss provides a way to assess the similarity between an image
and a caption:

LSDS = Et,ϵ [σt/αtw(t)KL(q(xt|g(θ); y, t)∥pϕ(xt; y, t))] .

pϕ is the distribution learned by the frozen, pretrained diffu-
sion model. q is a unimodal Gaussian distribution centered
at a learned mean image g(θ). In this manner, SDS turned
sampling into an optimization problem: an image or a differ-
entiable image parameterization (DIP) [23] can be optimized
with LSDS to bring it toward the conditional distribution of
the teacher. This is inspired by probability density distilla-
tion [41]. Critically, SDS only needs access to a pixel-space
prior pϕ, parameterized with the denoising autoencoder ϵ̂ϕ.
It does not require access to a prior over the parameter space
θ. DreamFusion [26] used SDS with the Imagen pixel space
diffusion model to learn the parameters of a 3D Neural Ra-
diance Field [21]. In practice, SDS gives access to loss
gradients, not a scalar loss:

∇θLSDS = Et,ϵ

[
w(t) (ϵ̂ϕ(xt; y, t)− ϵ)

∂x

∂θ

]
(4)

4. Method: VectorFusion
In this section, we outline two methods for generating

abstract vector representations from pretrained text-to-image
diffusion models, including our full VectorFusion approach.

4.1. A baseline: text-to-image-to-vector

We start by developing a two stage pipeline: sampling
an image from Stable Diffusion, then vectorizing it automat-
ically. Given text, we sample a raster image from Stable
Diffusion with a Runge-Kutta solver [17] in 50 sampling
steps with guidance scale ω = 7.5 (the default settings in the
Diffusers library [43]). Naively, the diffusion model gener-
ates photographic styles and details that are very difficult to
express with a few constant color SVG paths. To encourage
image generations with an abstract, flat vector style, we ap-
pend a suffix to the text: “minimal flat 2d vector icon. lineal
color. on a white background. trending on artstation”. This
prompt was tuned qualitatively.

Because samples can be inconsistent with captions, we
sample K images and select the Stable Diffusion sample that
is most consistent with the caption according to CLIP ViT-
B/16 [27]. CLIP reranking was originally proposed by [29].
We choose K=4.

1914



(b) Convert raster image to a vector (c) VectorFusion: Fine tune 
by latent score distillation

(a) Sample raster image

with Stable Diffusion

A panda rowing a boat in a pond.

Figure 3. VectorFusion generates SVGs in three stages. (a) First, we sample a rasterized image from
a text-to-image diffusion model like Stable Diffusion with prompt engineering for iconographic
aesthetics. (b) Since this image is finite resolution, we approximate it by optimizing randomly
initialized vector paths with an L2 loss. The loss is backpropagated through DiffVG, a differentiable
vector graphics renderer, to tune path coordinates and color parameters. Paths are added in stages
at areas of high loss following [19]. (c) However, the diffusion sample often fails to express all the
attributes of the caption, or loses detail when vectorized. VectorFusion finetunes the SVG with a
latent score distillation sampling loss to improve quality and coherence.

Representable

by SVG

p(image | text)

(b) Best SVG

approximationRandom SVG

(c) VectorFusion (a) Diffusion

sample

Figure 4. Conceptual diagram motivat-
ing our approach. While vectorizing
a rasterized diffusion sample is lossy,
VectorFusion can either finetune the
best approximation or optimize a ran-
dom SVG from scratch to sample an
SVG that is consistent with the caption.

Next, we automatically trace the raster sample to con-
vert it to an SVG using the off-the-shelf Layer-wise Image
Vectorization program (LIVE) [19]. LIVE produces rela-
tively clean SVGs by initializing paths in stages, localized to
poorly recontructed, high loss regions. To encourage paths
to explain only a single feature of the image, LIVE weights
an L2 reconstruction loss by distance to the nearest path,

LUDF =
1

3

w×h∑
i=1

d′i

3∑
c=1

(Ii,c − Îi,c)
2 (5)

where I is the target image, Î is the rendering, c indexes
RGB channels in I , d′i is the unsigned distance between
pixel i, and the nearest path boundary, and w, h are width and
height of the image. LIVE also optimizes a self-intersection
regularizer LXing

LXing = D1(ReLU(−D2)) + (1−D1)(ReLU(D2)), (6)

where D1 is the characteristic of the angle between two
segments of a cubic Bézier path, and D2 is the value of
sin(α) of that angle. For further clarifications of notation,
please refer to LIVE [19].

This results in a set of paths θLIVE = {p1, p2, . . . pk}. Fig-
ure 3(b) shows the process of optimizing vector parameters
in stages that add 8-16 paths at a time. Figure 1 shows more
automatic conversions. While simple, this pipeline often
creates images unsuitable for vectorization.

4.2. Sampling vector graphics by optimization

The pipeline in 4.1 is flawed since samples may not be
easily representable by a set of paths. Figure 4 illustrates the
problem. Conditioned on text, a diffusion model produces

samples from the distribution pϕ(x|y). Vectorization with
LIVE finds a SVG with a close L2 approximation to that
image without using the caption y. This can lose information,
and the resulting SVG graphic may no longer be coherent
with the caption.

For VectorFusion, we adapt Score Distillation Sampling
to support latent diffusion models (LDM) like the open
source Stable Diffusion. We initialize an SVG with a set of
paths θ = {p1, p2, . . . pk}. Every iteration, DiffVG renders
a 600× 600 image x. Like CLIPDraw [4], we augment with
perspective transform and random crop to get a 512×512 im-
age xaug. Then, we propose to compute the SDS loss in latent
space using the LDM encoder Eϕ, predicting z = Eϕ(xaug).
For each iteration of optimization, we diffuse the latents
with random noise zt = αtz+ σtϵ, denoise with the teacher
model ϵ̂ϕ(zt, y), and optimize the SDS loss using a latent-
space modification of Equation 4:

∇θLLSDS =

Et,ϵ

[
w(t)

(
ϵ̂ϕ(αtzt + σtϵ, y)− ϵ

) ∂z

∂xaug

∂xaug

∂θ

]
(7)

Since Stable Diffusion is a discrete time model with T =
1000 timesteps, we sample t ∼ U(50, 950) For efficiency,
we run the diffusion model ϵ̂θ in half-precision. We found it
important to compute the Jacobian of the encoder ∂z/∂xaug
in full FP32 precision for numerical stability. The term
∂xaug/∂θ is computed with autodifferentiation through the
augmentations and differentiable vector graphics rasterizer,
DiffVG. LLSDS can be seen as an adaptation of LSDS where
the rasterizer, data augmentation and frozen LDM encoder
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Figure 5. An overview of VectorFusion’s latent score distillation optimization procedure. We adapt Score Distillation Sampling [26] to
support a vector graphics renderer and a latent-space diffusion prior for raster images. First, we rasterize the SVG given path parameters. We
apply data augmentations, encode into a latent space, compute the Score Distillation loss on the latents, and backpropagate through the
encoding, augmentation and renderering procedure to update paths.

are treated as a single image generator with optimizable
parameters θ for the paths. During optimization, we also
regularize self-intersections with (6).

4.3. Reinitializing paths

In our most flexible setting, synthesizing flat iconographic
vectors, we allow path control points, fill colors and SVG
background color to be optimized. During the course of
optimization, many paths learn low opacity or shrink to a
small area and are unused. To encourage usage of paths
and therefore more diverse and detailed images, we periodi-
cally reinitialize paths with fill-color opacity or area below
a threshold. Reinitialized paths are removed from optimiza-
tion and the SVG, and recreated as a randomly located and
colored circle on top of existing paths.

4.4. Stylizing by constraining vector representation

Users can control the style of art generated by VectorFu-
sion by modifying the input text, or by constraining the set of
primitives and parameters that can be optimized. We explore
three settings: iconographic vector art with flat shapes, pixel
art, and sketch-based line drawings.

Iconography We use closed Bézier paths with trainable
control points and fill colors. Our final vectors have 64 paths,
each with 4 segments. For VectorFusion from scratch, we
initialize 64 paths randomly and simultaneously, while for
SD + LIVE + SDS, we initialize them iteratively during
the LIVE autovectorization phase. We include details about
initialization parameters in the supplement. Figure 6 qual-
itatively compares generations using 16, 64 and 128 paths
(SD + LIVE initialization with K=20 rejection samples and
SDS finetuning). Using fewer paths leads to simpler, flatter
icons, whereas details and more complex highlights appear
with greater numbers of paths.

Pixel art Pixel art is a popular video-game inspired style,
frequently used for character and background art. While an
image sample can be converted to pixel art by downsam-

A teapot

A pumpkin

64 paths 128 paths16 paths

Figure 6. The number of Bézier paths controls the level of detail in
generated vector graphics.

pling, this results in blurry, bland, and unrecognizable im-
ages. Thus, pixel art tries to maximize use of the available
shapes to clearly convey a concept. Pixray [44] uses square
SVG polygons to represent pixels and uses a CLIP-based
loss following [4, 11]. VectorFusion able to generate mean-
ingful and aesthetic pixel art from scratch and with a Stable
Diffusion initialization, shown in Fig. 2 and Fig. 7. In addi-
tion to the SDS loss, we additionally penalize an L2 loss on
the image scaled between -1 and 1 to combat oversaturation,
detailed in the supplement. We use 32× 32 pixel grids.

Sketches Line drawings are perhaps the most abstract
representation of visual concepts. Line drawings such as
Pablo Picasso’s animal sketches are immediately recogniz-
able, but bear little to no pixel-wise similarity to real subjects.
Thus, it has been a long-standing question whether learning
systems can generate semantic sketch abstractions, or if they
are fixated on low-level textures. Past work includes directly
training a model to output strokes like Sketch-RNN [7], or
optimizing sketches to match a reference image in CLIP
feature space [42]. As a highly constrained representation,
we optimize only the control point coordinates of a set of
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Table 1. Evaluating the consistency of text-to-SVG generations us-
ing 64 primitives with input captions. Consistency is measured with
CLIP R-Precision and CLIP similarity score (×100). Higher is bet-
ter. We compare a CLIP-based approach, CLIPDraw, with diffusion
baselines: the best of K raster samples from Stable Diffusion (SD),
converting the best of K samples to vectors with LIVE [19], and
VectorFusion from scratch or initialized with the LIVE converted
SVG. VectorFusion generations are significantly more consistent
with captions than Stable Diffusion samples and their automatic
vector conversions. CLIPDraw is trained to maximize CLIP score,
so it has artificially high scores.

Caption consistency
CLIP L/14 OpenCLIP H/14

Method K R-Prec Sim R-Prec Sim

CLIPDraw (scratch) – 85.2 27.2 77.3 31.7

Stable Diff (raster) 1 67.2 23.0 69.5 26.7
+ rejection sampling 4 81.3 24.1 80.5 28.2

SD init + LIVE 1 57.0 21.7 59.4 25.8
+ rejection sampling 4 69.5 22.9 65.6 27.6

VectorFusion (scratch) – 76.6 24.3 69.5 28.5
+ SD init + LIVE 1 78.1 29.1 78.1 29.3
+ rejection sampling 4 81.3 24.5 78.9 29.4

fixed width, solid black Bézier curves. We use 16 strokes,
each 6 pixels wide with 5 segments, randomly initialized and
trained from scratch, since the diffusion model inconsistently
generates minimal sketches.

5. Experiments

In this section, we quantitatively and qualitatively evalu-
ate the text-to-SVG synthesis capabilities of VectorFusion
guided by the following questions. In Section 5.2, we ask
(1) Are SVGs generated by VectorFusion consistent with
representative input captions? and (2) Does our diffusion
optimization-based approach help compared to simpler base-
lines? In Section 5.3, we qualitatively compare VectorFu-
sion’s diffusion-based results with past CLIP-based methods.
Section 5.4 and 5.5 describe pixel and sketch art generations.
Overall, VectorFusion performs competitively on quantita-
tive caption consistency metrics, and qualitatively produces
the most coherent and visually pleasing vectors.

5.1. Experimental setup

It is challenging to evaluate text-to-SVG synthesis, since
we do not have target, ground truth SVGs to use as a refer-
ence. We collect a diverse evaluation dataset of captions and
evaluate text-SVG coherence with automated CLIP metrics.
Our dataset consists of 128 captions from past work and
benchmarks for text-to-SVG and text-to-image generation:
prompts from CLIPDraw [4] and ES-CLIP [40], combined

Figure 7. VectorFusion generates coherent, pleasing pixel art.
Stable Diffusion can generate a pixel art style, but has no control
over the regularity and resolution of the pixel grid (left). This causes
artifacts and blurring when pixelating the sample into a 32x32 grid,
even with a robust L1 loss (middle). By finetuning the L1 result,
VectorFusion improves quality and generates an abstration that
works well despite the low resolution constraint.

with captions from PartiPrompts [45], DrawBench [34],
DALL-E 1 [29], and DreamFusion [26]. Like previous
works, we calculate CLIP R-Precision and cosine similarity.

CLIP Similarity We calculate the average cosine simi-
larity of CLIP embeddings of generated images and the text
captions used to generate them. Any prompt engineering
is excluded from the reference text. As CLIP Similarity in-
creases, pairs will generally be more consistent with each
other. We note that CLIPDraw methods directly optimize
CLIP similarity scores and have impressive metrics, but ren-
dered vector graphics are sketch-like and messy unlike the
more cohesive VectorFusion samples. We provide examples
in Figure 8. To mitigate this effect, we also evaluate the open
source Open CLIP ViT-H/14 model, which uses a different
dataset for training the representations.

CLIP R-Precision For a more interpretable metric, we
also compute CLIP Retrieval Precision. Given our dataset
of captions, we calculate CLIP similarity scores for each
caption and each rendered image of generated SVGs. R-
Precision is the percent of SVGs with maximal CLIP Simi-
larity with the correct input caption, among all 128.

5.2. Evaluating caption consistency

As a baseline, we generate an SVG for each caption in
our benchmark using CLIPDraw [4] with 64 strokes and
their default hyperparameters. We sample 4 raster graphics
per prompt from Stable Diffusion as an oracle. These are
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Figure 8. VectorFusion produces more coherent vector art than baselines that optimize CLIP score, even with fewer paths (64 shapes). On
the right, the resulting SVG can be enlarged to arbitrary scale. Individual paths are highlighted with blue dashed lines. The result can be
edited intuitively by the user in design software.

selected amongst with CLIP reranking (rejection sampling).
Stable Diffusion produces rasterized images, not SVGs, but
can be evaluated as an oracle with the same metrics. We
then autotrace the samples into SVGs using LIVE with 64
strokes, incrementally added in 5 stages of optimization.
Finally, we generate with VectorFusion, trained from scratch
on 64 random paths per prompt, or initialized with LIVE.

5.3. Comparison with CLIP-based approaches

Figure 8 qualitatively compares diffusion with CLIP-
guided text-to-SVG synthesis. ES-CLIP [40] is an evolution-
ary search algorithm that searches for triangle abstractions
that maximize CLIP score, whereas CLIPDraw uses gradient-
based optimization. VectorFusion produces much clearer,
cleaner vector graphics than CLIP baselines, because we in-
corporate a generative prior for image appearance. However,
a generative prior is not enough. Optimizing paths with the
latent SDS loss LLSDS (right two columns) further improves
vibrancy and clarity compared to tracing Stable Diffusion
samples with LIVE.

5.4. Pixel art generation

VectorFusion generates aesthetic and relevant pixel art.
Figure 2 shows that VectorFusion from scratch can generate
striking and coherent samples. Figure 7 shows our improve-
ments over L1-pixelated Stable Diffusion samples, which are
pixelated by minimizing an L1 loss with respect to square
colors.

5.5. Sketches and line drawings

Figure 2 includes line drawing samples. VectorFusion
produces recognizable and clear sketches from scratch with-
out any image reference, even complex scenes with multiple

objects. In addition, it is able to ignore distractor terms irrel-
evant to sketches, such as “watercolor” or “Brightly colored”
and capture the semantic information of the caption.

6. Discussion

We have presented VectorFusion, a novel text-to-vector
generative model. Without access to datasets of captioned
SVGs, we use pretrained diffusion models to guide gener-
ation. The resulting abstract SVG representations can be
intuitively used in existing design workflows. Our method
shows the effectiveness of distilling generative models com-
pared to using contrastive models like CLIP. In general, we
are enthusiastic about the potential of scalable generative
models trained in pixel space to transfer to new tasks, with
interpretable, editable outputs. VectorFusion provides a ref-
erence point for designing such systems.

VectorFusion faces certain limitations. For instance, for-
ward passes through the generative model are more compu-
tationally expensive than contrastive approaches due to its
increased capacity. VectorFusion is also inherently limited
by Stable Diffusion in terms of dataset biases [1] and qual-
ity, though we expect that as text-to-image models advance,
VectorFusion will likewise continue to improve.
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