
Context-Based Trit-Plane Coding for Progressive Image Compression

Seungmin Jeon1, Kwang Pyo Choi2, Youngo Park2, Chang-Su Kim1*

1Korea University, 2Samsung Electronics
seungminjeon@mcl.korea.ac.kr, {kp5.choi, youngo.park}@samsung.com, changsukim@korea.ac.kr

Abstract

Trit-plane coding enables deep progressive image com-
pression, but it cannot use autoregressive context mod-
els. In this paper, we propose the context-based trit-plane
coding (CTC) algorithm to achieve progressive compres-
sion more compactly. First, we develop the context-based
rate reduction module to estimate trit probabilities of la-
tent elements accurately and thus encode the trit-planes
compactly. Second, we develop the context-based distor-
tion reduction module to refine partial latent tensors from
the trit-planes and improve the reconstructed image qual-
ity. Third, we propose a retraining scheme for the de-
coder to attain better rate-distortion tradeoffs. Extensive
experiments show that CTC outperforms the baseline trit-
plane codec significantly, e.g. by −14.84% in BD-rate on
the Kodak lossless dataset, while increasing the time com-
plexity only marginally. The source codes are available at
https://github.com/seungminjeon-github/CTC.

1. Introduction

Image compression is a fundamental problem in both

image processing and low-level vision. A lot of tradi-

tional codecs have been developed, including standards

JPEG [47], JPEG2000 [40], and VVC [11]. Many of these

codecs are based on discrete cosine transform or wavelet

transform. Using handcrafted modules, they provide de-

cent rate-distortion (RD) results. However, with the rapidly

growing usage of image data, it is still necessary to develop

advanced image codecs with better RD performance.

Deep learning has been explored with the advance of big

data analysis and computational power, and it also has been

successfully adopted for image compression. Learning-

based codecs have similar structures to traditional ones:

they transform an image into latent variables and then en-

code those variables into a bitstream. They often adopt con-

volutional neural networks (CNNs) for the transformation.

Several innovations have been made to improve RD per-

formance, including differentiable quantization approxima-

*Corresponding author.

RD points

bpp

PS
N

R
 (d

B
)

32

34

CRR

CDR
33

Baseline
(0.210, 32.47)

Context models
(0.191, 33.27)

0.18

Baseline Context models

0.19 0.20 0.21

34.5

33.5

Original

Figure 1. Illustration of the proposed context models: CRR re-

duces the bitrate, while CDR improves the image quality, as com-

pared with the context-free baseline [27].

tions [5, 6], hyperprior [7], context models [20, 32, 33], and

prior models [13,15]. As a result, the deep image codecs are

competitive with or even superior to the traditional ones.

It is desirable to compress images progressively in ap-

plications where a single bitstream should be used for mul-

tiple users with different bandwidths. But, relatively few

deep codecs support such progressive compression or scal-

able coding [35]. Many codecs should train their networks

multiple times to achieve compression at as many bitrates

[7, 13, 33, 53]. Some codecs support variable-rate coding

[15, 51], but they should generate multiple bitstreams for

different bitrates. It is more efficient to truncate a single

bitstream to satisfy different bitrate requirements. Lu et al.
[30] and Lee et al. [27] are such progressive codecs, based

on nested quantization and trit-plane coding, respectively.

But, they cannot use existing context models [20,26,32–34],

which assume the synchronization of the latent elements,

used as contexts, in the encoder and the decoder. Those

latent elements are at different states depending on bitrates.

In this paper, we propose the context-based trit-plane

coding (CTC) algorithm for progressive image compres-

sion, based on novel context models. First, we develop the

context-based rate reduction (CRR) module, which entropy-

encodes trit-planes more compactly by exploiting already

decoded information. Second, we develop the context-

based distortion reduction (CDR) module, which refines

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14348

partial latent tensors after entropy decoding for higher-

quality image reconstruction. Also, we propose a simple yet

effective retraining scheme for the decoder to achieve better

RD tradeoffs. It is demonstrated that CTC outperforms the

existing progressive codecs [27, 30] significantly.

This paper has the following major contributions:

• We propose the first context models, CRR and CDR,

for deep progressive image compression. As illus-

trated in Figure 1, CRR reduces the bitrate, while CDR

improves the image quality effectively, in comparison

with the baseline trit-plane coding [27].

• We develop a decoder retraining scheme, which adapts

the decoder to refined latent tensors by CDR to im-

prove the RD performance greatly.

• The proposed CTC algorithm outperforms the state-of-

the-art progressive codecs [27, 30] significantly. Rela-

tive to [27], CTC yields BD-rates of −14.84% on the

Kodak dataset [3], −14.75% on the CLIC validation

set [4], and −17.00% on the JPEG-AI testset [1].

2. Related Work
Learning-based codecs: Early learning-based image

codecs [19, 23, 44, 45] are based on recurrent neural net-

works (RNNs), but more codecs [6, 7, 13, 33, 43] employ

CNN-based autoencoders [46]. Ballé et al. [6] proposed

an additive noise model to approximate quantization and

trained their network in an end-to-end manner. In [7, 33],

hyperprior information was used to estimate the probability

distributions of latent elements more accurately. Cheng et
al. [13] used residual blocks and attention modules in the

autoencoder and adopted a Gaussian mixture prior.

Recently, vision transformer [17] or self-attention has

been adopted to yield better RD results [24,38,53,54]. Qian

et al. [38] developed transformer-based hyper-encoder and

hyper-decoder. Kim et al. [24] decomposed hyperprior pa-

rameters to global and local ones. Zou et al. [54] used win-

dow attention modules in their CNN-based encoder and de-

coder. Zhu et al. [53] adopted the Swin transformer [29] for

their encoder, decoder, hyper-encoder and hyper-decoder.

Variable-rate compression: The aforementioned codecs

can compress an image at a single rate only. For variable-

rate compression, they should be trained multiple times,

which is inefficient in both time and memory. In contrast,

there are several variable-rate codecs [14, 15, 41, 43, 51].

Theis et al. [43] and Choi et al. [14] adopted scale param-

eters for quantization to achieve variable-rate coding. Yang

et al. [51] adopted the slimmable neural networks [52] and

used subsets of network parameters to control bitrates. Cui

et al. [15] proposed the gain unit for channel-wise bit allo-

cation. Song et al. [41] utilized a pixelwise quality map for

rate control. These variable-rate codecs support multiple

bitrates via single network training, but they still generate

separate bitstreams at different bitrates.

Progressive compression: A single bitstream can support

multiple bitrates in progressive compression. For example,

the traditional JPEG and JPEG2000 have optional progres-

sive modes [40, 47]. Most of learning-based progressive

codecs are based on RNNs [19, 23, 44, 45], which support

a limited number of quality levels. Also, Cai et al. [12] sup-

ports only two quality levels with two decoders.

It is more desirable to offer fine granular scalability

(FGS) [28, 39]: a single bitstream can be truncated at any

point for the decoder to reconstruct an image. Lu et al. [30]

used nested quantization for FGS. Lee et al. [27] proposed

trit-plane coding and RD-prioritized transmission of trits.

These FGS codecs yield comparable RD curves to conven-

tional deep image codecs.

Context models: As context-based entropy coding tech-

niques such as CABAC [31] are used in traditional codecs

[9,49], context models are also employed in learning-based

codecs [20, 26, 32–34]. Minnen et al. [33] and Mentzer

et al. [32] developed autoregressive context models using

masked 2D and 3D CNNs, respectively. The autoregressive

models exploit spatial contexts serially, demanding high

time complexity. Lee et al. [26] proposed bit-consuming

and bit-free contexts to estimate latent distributions. Min-

nen et al. [34] explored a channelwise autoregressive model

with latent residual prediction. He et al. [20] developed a

checkerboard context model to reduce time complexity.

All these context models can be used for fixed-rate com-

pression only. In contrast, we develop two context models,

CRR and CDR, for progressive compression based on trit-

plane coding, which improve the RD performance signifi-

cantly with only a marginal increase of time complexity.

3. Proposed Algorithm
3.1. Trit-Plane Coding

Trit-plane coding was introduced in [27] for deep pro-

gressive image compression. Figure 2 shows the framework

of the proposed CTC algorithm, which is also based on the

trit-plane representation of latent elements. The encoder ga
and the hyper-encoder ha transform an image X into a la-

tent tensor Y and a hyper latent tensor Z sequentially. Then,

using the quantized Ẑ, the hyper-decoder hs yields M and

Σ, representing the mean and standard deviation of Y.

For trit-plane coding, we express the centered and quan-

tized latent tensor Ŷ = q(Y−M) in a ternary number sys-

tem through the trit-plane slicing module: Ŷ ∈ R
C×H×W

is sliced into L trit-planes Tl, l = 1, . . . , L. Each trit-plane

is a tensor of the same size as Ŷ. Also, T1 is the most sig-

nificant trit-plane (MST), while TL is the least significant

one (LST). The trit-planes are entropy-encoded into a bit-

stream progressively from MST to LST. To entropy-encode

14349

Trit-Plane
Slicing

Distortion Reduction
(CDR)

Trit-Plane
Reconstruction

Probability
Computation

Rate Reduction
(CRR)

Entropy
Encoding

Entropy
Decoding

Entropy
Encoding

Entropy
Decoding

Figure 2. The framework of the proposed CTC algorithm. The context-based rate reduction (CRR) and context-based distortion reduction

(CDR) modules are shown in detail in Figure 4.

Trit-Plane Slicing:

Probability Computation:

0-9 2 9

Probabilities for
Entropy Coding

Trit-Plane Slicing:

Probability Computation:

Probabilities for
Entropy Coding

Trit-Plane Slicing:

Probability Computation:

Probabilities for
Entropy Coding

(MST)

(LST)

Figure 3. A toy example for trit-plane slicing and probability com-

putation, where an element ŷ in ̂Y equals 2. In trit-plane slicing,

we determine where the element belongs among three equal subin-

tervals. In probability computation, we compute the conditional

probabilities of each trit. These two steps of trit-plane slicing and

probability computation are carried out recursively from MST to

LST.

the lth trit-plane Tl, we compute the probability tensor Pl

containing the probabilities that each trit in Tl equals 0(3),
1(3), or 2(3).

1 Thus, Pl ∈ R
3C×H×W . In Figure 2, the

probability computation module estimates Pl by employ-

ing the entropy parameters M, Σ and the already encoded

trit-planes T1:l−1. Before the entropy coding, CTC refines

Pl to P̃l using the CRR module. Then, the trits in Tl are

encoded into a bitstream in the decreasing order of their RD

priorities [27]. Figure 3 is a toy example for trit-plane slic-

ing and probability computation.

Conversely, at the decoder side, the trit-planes are

entropy-decoded from the bitstream. At any point of the

entropy decoding, the image can be reconstructed. Assume

that only the first l trit-planes are decoded. Here, l can be

a fractional number. For example, if l = 2.31, T1 and T2

are fully decoded, while 31% of trits in T3 are decoded.

Then, the trit-plane reconstruction module obtains the par-

tial latent tensor Ŷl from the l trit-planes. Specifically, let

1The subscripts (3), indicating the ternary number system, are omitted

in the remaining paper for notational convenience.

y be a latent element. Using the available trits, the decoder

first identifies the interval I where y belongs and then re-

constructs it to the conditional mean, given by

ŷl = E[y|y ∈ I]. (1)

Finally, the CDR module reduces distortions in Ŷl to yield

Ỹl, and the decoder gs reconstructs the image X̂l from the

refined latent tensor Ỹl.

3.2. Context-Based Rate Reduction

Context models are useful for compressing correlated

signals efficiently [9]. In the learning-based codecs, an au-

toregressive context model [33] predicts the entropy param-

eters of a latent element using already encoded elements and

it improves the RD performance significantly. However, it

is impossible to use the autoregressive model for trit-plane

coding. The model assumes that C×H×W latent elements

are coded in the same raster scan order by both the encoder

and the decoder. Hence, when trit-planes are only partially

reconstructed, the decoder cannot perform the same predic-

tion as the encoder, so the decoding breaks down [27].

We propose the first context models for trit-plane coding.

Instead of predicting latent elements in the raster scan order,

we predict each trit-plane Tl, l = 1, . . . , L, by exploiting

already coded information, including the more significant

trit-planes T1:l−1. Note that the probability tensor Pl is

used to encode Tl. We refine the probability estimates in

Pl to yield an updated tensor P̃l using the CRR module

in Figure 4(a). P̃l requires fewer bits during the entropy

coding than Pl does, improving the RD performance.

To this end, we use already coded information: First, the

approximate latent tensor Ŷl−1, reconstructed from T1:l−1,

provides a context. Second, the entropy parameters M and

Σ are concatenated and used as another context. Third,

the expected latent tensor El is also used. Assuming that

each trit in Tl equals 0, 1, or 2, the expected value of the

corresponding latent element is computed via (1). El con-

tains the three possible values of every latent element, so

El ∈ R
3C×H×W .

14350

/
/ 1x1 Convolution Layer

Residual Block
Channelwise Concatenation

(a) Context-based rate reduction (CRR) (b) Context-based distortion reduction (CDR)

Channelwise
Split

Si
gm

oi
dC

 /
C

C
 /

C
C

 /
C

2C
 /

2C
2C

 /
2C

2C
 /

C

3C
 /

3C
3C

 /
3C

3C
 /

C
C

 /
C

C
 /

C

3C
 /

3C
3C

 /
3C

3C
 /

C
C

 /
C

4C
 /

4C

4C
 /

4C

6
4C

 /
4C

Le
ak

y
R

eL
U

4C
/43

So
ftm

ax

2C
 /

2C
2C

 /
2C

2C
 /

2C
2C

 /
C

C
 /

C
C

 /
C

C
 /

C
C

 /
C

2C
 /

2C

2C
 /

2C
2C

 /
C

2C
 /

2C

Figure 4. The architecture of the (a) CRR and (b) CDR modules. Each convolution layer has stride 1 and performs zero padding.

+- 0

Figure 5. Visualization of ̂Yl−1, Tl, the entropies of Pl and ˜Pl,

and the residual H(˜Pl) − H(Pl) in the 141st channel. The top

left subfigure is, however, the original image for reference. In Tl,

ternary values 0, 1, and 2 are shown in black, gray, and white. In

the other cases, green and purple represent positive and negative

values, as shown in the top color bar.

In Figure 4(a), CRR extracts features from the input

Pl and the three contexts separately and fuses them lately

through residual blocks and convolution layers. The fused

tensor has the same spatial resolution as Pl does, but four

times more channels. It is split channelwise into an additive

term ΔP ∈ R
3C×H×W and a scaling term S ∈ R

C×H×W .

First, S is converted into B by

B = sl + (sh − sl)× sigmoid(S), (2)

whose each element is within (sl, sh). Then, Pl is added

to ΔP, and the sum is modulated by B to yield an updated

probability tensor P̃l. More specifically, let {x0, x1, x2}
and β be the elements in (Pl + ΔP) and B, respectively,

corresponding to a trit in Tl. Then, the corresponding up-

dated probabilities {p̃0, p̃1, p̃2} in P̃l are determined using

the softmax function,

p̃i =
eβxi∑2
j=0 e

βxj

, i = 0, 1, 2. (3)

Intuitively, a high β sharpens the probability mass function

around the largest input, whereas a low β flattens it. It is

proven in Appendix A that the entropy H({p̃0, p̃1, p̃2}) is

a monotonic decreasing function of β. Thus, to reduce the

entropy, we should set a large β. However, the number of re-

quired bits is not the ordinary entropy but the cross-entropy

�CRR = −
2∑

i=0

qi log2 p̃i, (4)

where {q0, q1, q2} is the ground-truth one-hot vector for the

trit. If the trit corresponds to a highly complicated image

region, its probabilities are hard to predict. In such a case,

it is beneficial to flatten {p̃0, p̃1, p̃2} with a small β and thus

to reduce �CRR in (4) on average.

We train CRR to minimize the sum of the cross-entropies

in (4) for all trits in Tl. In other words, CRR is learned to

modify the input probabilities in Pl with the additive term

ΔP and then flatten or sharpen the resulting probabilities

with the modulating term B, so the output probabilities in

P̃l minimize the length of the bitstream.

Figure 5 shows that there are spatial redundancies in Y.

Hence, neighboring trits in Tl are also correlated. Even

though Tl for a large l contains more random trits, as indi-

cated by their high entropies in H(Pl), CRR refines their

probability estimates and reduces the entropies in H(P̃l).
The entropy reduction is observed especially in simple re-

gions, such as sky and shadow, as shown in the last column.

It is worth pointing out that CRR can be regarded as a

ternary classifier, trained with the cross-entropy loss in (4),

that uses the contexts to classify each trit in Tl into one of

the three classes 0, 1, or 2.

14351

(a) (b) (c)

PSNR: 31.41 PSNR: 31.62

PSNR: 29.45 PSNR: 29.65 PSNR: 29.82

PSNR: 31.10

Figure 6. Reconstructed images (a) from partial latent tensors
̂YL−2, (b) from refined latent tensors ˜YL−2 and (c) from ˜YL−2

with the retrained decoder.

3.3. Context-Based Distortion Reduction

CRR in Section 3.2, as well as existing context mod-

els [20, 32, 33], aims to reduce the required bits for latent

elements by predicting their probabilities more accurately.

All these context models are used before entropy encod-

ing. In contrast, we propose another context model, CDR,

that is used after entropy decoding. Unlike non-progressive

codecs, the proposed algorithm can use a partial latent ten-

sor Ŷl, for any 0 < l ≤ L, to reconstruct the image X̂l.

Thus, after decoding Ŷl, which is a truncated approxima-

tion of Y, CDR tries to reduce the error ‖Y − Ŷl‖F using

contexts, thereby reducing the image distortion ‖X− X̂l‖F
as well. Here, ‖ · ‖F denotes the Frobenius norm.

Figure 4(b) shows the architecture of CDR. Using M and

Σ as the contexts, CDR refines the partial latent tensor Ŷl

into Ỹl. It regresses the residual ΔY and yields the sum

Ỹl = Ŷl +ΔY (5)

as the refined tensor. Note that, different from CRR, CDR

does not use El and Pl as contexts, for they contain proba-

bilistic information about Tl. Since Tl is already decoded

and used to reconstruct Ŷl, El and Pl hardly provide addi-

tional information not included in Ŷl. Also, note that CDR

is a regressor for reducing the distortion, whereas CRR is a

classifier for reducing the bitrate.

The CDR module is trained to minimize the loss

�CDR = ‖Y − Ỹl‖F . (6)

For example, Figure 6(a) shows the reconstructed images

from partial latent tensors ŶL−2, with noticeable compres-

sion artifacts. In contrast, Figure 6(b) is the reconstruction

from the refined tensors ỸL−2 by CDR, in which the arti-

facts are alleviated.

3.4. Decoder Retraining

In trit-plane coding, both the encoder and the decoder

are trained for a fixed point in the RD curve (usually a high-

rate, low-distortion point), and a resultant latent tensor Y
is sliced into trit-planes for progressive compression [27].

We also adopt this strategy to first train the encoder ga, the

hyper-encoder ha, the decoder gs, and the hyper-decoder hs

in Figure 2. Then, we obtain Y and truncate it to various

versions Ŷl, 0 < l ≤ L. Using these partial tensors Ŷl, we

train the CRR and CDR modules, respectively, to reduce

the required bitrates and the distortions by minimizing the

losses in (4) and (6).

In Figure 2, trit-plane slicing and reconstruction are not

differentiable, so CRR and CDR, which process trit-planes

Tl and partial tensors Ŷl, cannot be trained jointly with ga,

ha, gs, and hs in an end-to-end manner. Hence, we adopt

the sequential training scheme.

CDR refines Ŷl into Ỹl, which is used as the new input

to the decoder gs. Thus, we retrain gs to further improve the

quality of the reconstructed image X̂l. Specifically, we gen-

erate Ỹl for various l and retrain the decoder gs to minimize

�DEC =
∑
l

wl × ‖gs(Ỹl)−X‖F , (7)

where wl is a weighting parameter for each significance

level l. The retraining improves the reconstruction quality,

as illustrated in Figure 6(c).

4. Experiments
4.1. Implementation and Evaluation

We implement the proposed CTC algorithm based on the

Cheng et al.’s network [13], composed of residual blocks

and attention modules. However, we eliminate the autore-

gressive model and instead adopt CRR and CDR to exploit

contexts. Also, we employ the unimodal Gaussian prior,

rather than the Gaussian mixture model in [13], to simplify

the latent reconstruction in (1) and the computation of Pl.

We use the ANS coder [18] for the entropy coding.

To train CTC, we sample frames from the Vimeo-90K

dataset [50] and crop 256 × 256 patches from each frame

as input. We use the Adam optimizer [25] with a batch size

of 8 and set a learning rate of 10−4 with cosine annealing

cycles [21]. First, we train ga, ha, gs, and hs by approxi-

mating the quantizer q(·) in Figure 2 with the additive uni-

form noise model [6]. Second, we train three sets of CRR

and CDR, respectively, for different intervals of l. Third,

we retrain the decoder gs to minimize the loss in (7). More

implementation and training details are in Appendix B.

For evaluation, we use the Kodak lossless dataset [3], the

CLIC professional validation dataset [4], and the JPEG-AI

testset [1]. Kodak consists of 24 images of resolution 512×
768 or 768×512, while CLIC and JPEG-AI contain 41 and

16 images of up to 2K resolution. We report bitrates in bits

per pixel (bpp) and measure image qualities in PSNR and

MS-SSIM [48]. For MS-SSIM, we present decibel scores

14352

bpp0.25 0.50 0.75 1.00 1.250.00

RD curves (PSNR)

PS
NR

 (d
B)

40

35

30

25

20
bpp0.25 0.50 0.75 1.250.00

RD curves (MS-SSIM)
1.00

M
S-

SS
IM

 (d
B)

24

20

15

5

10
Lee
Lee+PP

Su
Diao
Jhonston
Torderici

CTC

Lu

JPEG2000

Figure 7. RD curve comparison of the proposed CTC algorithm with existing progressive codecs on the Kodak lossless dataset: Torderici

et al. [45], Jhonston et al. [23], Diao et al. [16], Su et al. [42], Lu et al. [30] and Lee et al. [27]. ‘+PP’ means that the postprocessing

networks are used to improve Lee et al. The performance of JPEG2000 is measured in the default non-progressive mode to be used as the

same benchmark in both this figure and Figure 8.

bpp0.25 0.50 0.75 1.00 1.250.00

PS
N

R
(d

B)

40

35

30

25

20

Zhu

VTM 12.0

Cui

Cheng
Minnen
Minnen w/o C

CTC

Yang

BPG444

He

JPEG2000

Figure 8. RD curve comparison of CTC with existing non-
progressive codecs on Kodak: JPEG2000 [2], BPG444 [10], VTM

12.0 [11], Minnen et al. [33], Cheng et al. [13], He et al. [20],

Yang et al. [51], Cui et al. [15], and Zhu et al. [53].

by MS-SSIM (dB) = −10 · log10(1−MS-SSIM). Also, we

compare the compression performances of two algorithms

using the BD-rate metric [37].

4.2. Performance Comparison

RD curves: We compare the proposed CTC algorithm

with traditional BPG444 [10], VTM 12.0 [11] and learning-

based codecs in [13, 15, 16, 20, 23, 27, 30, 33, 42, 45, 51, 53].

Figure 7 compares the RD curves of CTC with those of

progressive codecs on the Kodak lossless dataset. CTC out-

performs all conventional codecs with meaningful gaps in

both PSNR and MS-SSIM at a wide range of bitrates. For

example, at 0.5bpp, CTC yields at least 0.8dB better PSNR

than the competing codecs Lee et al. [27] and Lu et al. [30]

do. Notice that CTC and these two codecs support FGS.

Whereas these codecs do not use any context models, CTC

Table 1. BD-rate performances (%) with respect to Lee et al. [27].

Kodak CLIC JPEG-AI

JPEG2000 [2] 31.19 48.54 37.46
Traditional BPG444 [10] −12.16 −1.25 −7.95

VTM 12.0 [11] −13.44 −8.75 −14.58

Minnen w/o C [33] −8.61 −0.90 −4.12
Fixed-rate Minnen et al. [33] −16.65 −11.11 −13.92

Cheng et al. [13] −23.99 −15.99 -

Lu et al. [30] −0.61 - 2.91
FGS Lee et al. +PP [27] −6.84 −6.87 −7.19

CTC −14.84 −14.75 −17.00

Table 2. Complexity comparison of CTC with Minnen et al. [33]

and Lee et al. [27]. The average encoding and decoding times for

a single image in the Kodak lossless dataset are reported.

Parameters Encoding (s) Decoding (s)

Minnen et al. [33] 30.6M 4.01 11.02

Lee et al. (+PP) [27] 27.2M (+50M) 1.73 1.40 (+0.10)

CTC 39.9M 1.78 1.55

exploits CRR and CDR and improves the RD curves signif-

icantly. On the other hand, Su et al. [42] supports a nar-

row range of bitrates only, while the other learning-based

codecs in [16,23,45] provide even worse PSNR curves than

JPEG2000 [2].

Next, Figure 8 compares CTC with non-progressive

codecs: traditional codecs [2, 10, 11], learning-based fixed-

rate codecs [13,20,33,53] and variable-rate codecs [15,51].

‘Minnen w/o C’ means the Minnen et al.’s network without

the context model [33]. Although CTC supports the addi-

tional functionality of FGS, it yields a comparable curve to

these non-progressive codecs. Especially, around 0.6bpp,

CTC provides competitive PSNRs to the existing codecs,

including Cui et al. [15] and VTM 12.0 [11], which are

14353

VTM 12.0BPG Minnen et al. Lee et al. CTCOriginal

bpp / PSNR / MS-SSIM

0.100 / 32.29 / 0.949 bpp / PSNR / MS-SSIM 0.099 / 33.01 / 0.962

0.157 / 30.61 / 0.964 0.157 / 31.53 / 0.9740.158 / 31.31 / 0.969 0.153 / 31.54 / 0.972 0.158 / 30.04 / 0.963

0.099 / 31.87 / 0.953 0.095 / 32.84 / 0.957 0.089 / 33.16 / 0.960

Figure 9. Comparison of reconstructed images by different codecs: BPG [10], VTM 12.0 [11], Minnen et al. [33], Lee et al. [27] and CTC.

Original

Original

bpp / PSNR

Le
e

C
TC

0.386 / 36.130.297 / 34.330.163 / 31.370.088 / 27.940.056 / 26.09
0.386 / 35.400.302 / 33.510.165 / 30.540.090 / 27.180.058 / 25.32

0.043 / 24.71
0.045 / 24.36Lee

CTC 0.051 / 25.67
0.051 / 24.89

Le
e

C
TC

Original

Figure 10. Qualitative comparison of progressive reconstruction results by Lee et al. [27] and CTC. The bitrates (bpp) and PSNRs (dB) for

the entire image are also listed in the corresponding columns.

the state-of-the-art variable-rate codecs. Also, CTC outper-

forms ‘Minnen w/o C’ [33] and BPG444 [10] at almost ev-

ery bitrate. More RD curves on other datasets are available

in Appendix C.

BD-rates: Table 1 lists the BD-rates relative to Lee et al.
[27] on the three test datasets. Among the FGS codecs,

the proposed CTC provides by far the best results on all

datasets. For instance, on JPEG-AI, CTC achieves 17.00%

bitrate saving, while Lu et al. [30] rather increases the re-

quired bitrates. Also, on CLIC, CTC is comparable to

Cheng et al. [13] and better than VTM 12.0 [11].

Complexities: Table 2 compares the complexities of CTC

with those of Minnen et al. [33] and Lee et al. [27]. Minnen

et al. is a fixed-rate codec using the autoregressive context

model. The Lee et al.’s codec supports FGS based on trit-

plane coding, but it uses no context model. For Lee et al.
and CTC, the times are measured for encoding and decod-

ing an entire bitstream.

CTC is much faster than Minnen et al., since both CRR

and CDR exploit contexts efficiently in parallel using com-

mon convolution layers, whereas Minnen et al. perform

context-based prediction serially. Compared with Lee et al.,
CRR and CDR demand about 12.7M more parameters but

increase time complexities only marginally. In other words,

CRR and CDR are not only effective for improving the RD

performance but also efficient in terms of time complexity.

Moreover, in Lee et al., the postprocessing (PP) networks

are optionally used to improve the reconstruction quality as

shown in Figure 8, but they increase the number of parame-

ters by 50M. Without using such PP, CTC outperforms Lee

et al. significantly.

Qualitative results Figure 9 compares reconstructed im-

ages obtained by existing codecs [10, 11, 27, 33] and CTC.

Near sharp edges or in textured regions, such as the win-

dow and wall patterns, flowers, and feathers, the traditional

codecs [10,11] yield blur artifacts. The reconstruction qual-

ity of the proposed CTC is better than that of Lee et al.
[27] and is comparable to that of the Minnen et al.’s non-

14354

bpp0.25 0.50 0.75 1.00 1.250.00
(a) RD curves

PS
N

R
(d

B)

40

35

30

25

20
PSNR2018

(b) Bitrate saving curves

Bi
tra

te
 sa

vi
ng

 (%
)

0

Lee et al.
Method Ⅳ
Method Ⅲ
Method Ⅱ
Method Ⅰ

CTC

34323028262422

2

4

6

8

10

12

14

16

18

Figure 11. (a) RD curves of the four ablated methods in Table 3 and the baseline codec, Lee et al. [27], and (b) the correspoding bitrate

saving curves with respect to the baseline.

progressive codec [33].

Figure 10 compares progressive reconstruction results,

obtained by Lee et al. [27] and CTC. At each column, both

trit-plane coding algorithms reconstruct the images X̂l up

to the same significance level l. The proposed CTC yields

higher RD performances by employing context models and

decoder retraining. Consequently, CTC provides a better

image quality than Lee et al. does.

4.3. Ablation Study

We conduct an ablation study to analyze the three con-

tributions — CRR, CDR, and decoder retraining — of the

proposed CTC algorithm as compared with the baseline trit-

plane codec, Lee et al. [27]. Table 3 lists the BD-rates of

four ablated methods relative to the baseline on the Kodak

dataset. CRR and CDR in methods I and II improve the

RD performances, respectively, by reducing bitrates and im-

proving image qualities. Both CRR and CDR achieve about

7% of bitrate saving. When they are used together, the bi-

trate saving in method III is as big as 10.93%. Also, the

decoder retraining with CDR provides a similar reduction

of 10.81%, indicating that the retraining for partial latent

tensors Ŷl is also essential in trit-plane coding. By com-

bining the three components, the proposed CTC algorithm

achieves a significant bitrate saving of 14.84%.

Figure 11(a) compares the RD curves of the ablated

methods in Table 3, and Figure 11(b) plots the bitrate sav-

ing percentages in terms of PSNR with respect to the base-

line. We see that method I is more effective at a high PSNR

range, since trit probabilities can be more accurately pre-

dicted using contexts when latent elements are finely recon-

structed. On the other hand, method II performs better in a

low PSNR range because quantization noise of coarsely re-

constructed latent elements can be more easily reduced. The

method III exhibits a relatively even bitrate saving in the en-

tire PSNR range. Method IV yields a bitrate saving curve

Table 3. Ablation study of CTC: for each ablated method, the BD-

rate relative to the baseline, Lee et al. [27], is reported.

CRR CDR gs retraining BD-rate

Method I � - - −6.90%
Method II - � - −6.68%
Method III � � - −10.93%
Method IV - � � −10.81%

CTC � � � −14.84%

skewed to low PSNRs. Finally, CTC reduces the bitrate re-

quirement significantly, by more than 10%, when PSNR is

between 20dB and 35dB. Therefore, the whole bitrate sav-

ing is 14.84% as listed in Table 3.

5. Conclusions
We proposed an effective trit-plane codec, called CTC,

for progressive image compression using the two context

modules: CRR and CDR. Before entropy encoding, CRR

updates a probability tensor to compress trit-planes more

compactly. After entropy decoding, CDR refines a partial

latent tensor to reconstruct a higher-quality image. Both

CRR and CDR are based on convolutional layers, so they

are efficient in terms of time complexity. Moreover, we de-

veloped a decoder retraining scheme, which, combined with

CDR, achieves better RD tradeoffs. It was shown that CTC

outperforms conventional progressive codecs greatly.

Acknowledgments
This work was supported by the National Research

Foundation of Korea (NRF) grants funded by the Korea

government (MSIT) (No. NRF-2021R1A4A1031864 and

No. NRF-2022R1A2B5B03002310), and by IITP grant

funded by the Korea government (MSIT) (No. 2021-0-

02068, Artificial Intelligence Innovation Hub).

14355

References
[1] JPEG-AI Test Images. [Online]. Available:

https://jpegai.github.io/test images. 2, 5

[2] JPEG2000 Official Software OpenJPEG. [Online]. Avail-

able: https://jpeg.org/jpeg2000/software.html. 6, 11

[3] Kodak Lossless True Color Image Suite. [Online]. Available:

http://r0k.us/graphics/kodak. 2, 5

[4] Workshop and Challenge on Learned Image
Compression. 2018. [Online]. Available:

http://challenge.compression.cc/tasks/. 2, 5

[5] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen,

Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc

Van Gool. Soft-to-hard vector quantization for end-to-end

learning compressible representations. In NeurIPS, 2017. 1

[6] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli.

End-to-end optimized image compression. In ICLR, 2017.

1, 2, 5

[7] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational image compression

with a scale hyperprior. In ICLR, 2018. 1, 2

[8] Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay

Pushparaja. CompressAI: a PyTorch library and evalua-

tion platform for end-to-end compression research. arXiv
preprint arXiv:2011.03029, 2020. 11

[9] Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text
Compression. Prenticel Hall, 1990. 2, 3

[10] Fabrice Bellard. BPG Image Format. 2014. [Online]. Avail-

able: https://bellard.org/bpg. 6, 7, 11

[11] Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle

Chen, Gary J. Sullivan, and Jens-Rainer Ohm. Overview

of the versatile video coding (VVC) standard and its ap-

plications. IEEE Trans. Circuit Syst. Video Technol.,
31(10):3736–3764, 2021. 1, 6, 7, 11

[12] Chunlei Cai, Li Chen, Xiaoyun Zhang, Guo Lu, and Zhiyong

Gao. A novel deep progressive image compression frame-

work. In Picture Coding Symposium, pages 1–5, 2019. 2

[13] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro

Katto. Learned image compression with discretized Gaus-

sian mixture likelihoods and attention modules. In CVPR,

2020. 1, 2, 5, 6, 7

[14] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Variable

rate deep image compression with a conditional autoencoder.

In ICCV, 2019. 2

[15] Ze Cui, Jing Wang, Shangyin Gao, Tiansheng Guo, Yihui

Feng, and Bo Bai. Asymmetric gained deep image compres-

sion with continuous rate adaptation. In CVPR, 2021. 1, 2,

6

[16] Enmao Diao, Jie Ding, and Vahid Tarokh. DRASIC: Dis-

tributed recurrent autoencoder for scalable image compres-

sion. In Data Compression Conference, 2020. 6

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is

worth 16x16 words: Transformers for image recognition at

scale. In ICLR, 2021. 2

[18] Jarek Duda. Asymmetric numeral systems: Entropy coding

combining speed of Huffman coding with compression rate

of arithmetic coding. arXiv preprint arXiv:1311.2540, 2013.

5

[19] Karol Gregor, Frederic Besse, Danilo J. Rezende, Ivo Dani-

helka, and Daan Wierstra. Towards conceptual compression.

In NeurIPS, 2016. 2

[20] Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang, and

Hongwei Qin. Checkerboard context model for efficient

learned image compression. In CVPR, 2021. 1, 2, 5, 6, 13

[21] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E.

Hopcroft, and Kilian Q. Weinberger. Snapshot ensembles:

Train 1, get m for free. In ICLR, 2017. 5

[22] Seungmin Jeon, Jae-Han Lee, and Chang-Su Kim. RD-

optimized trit-plane coding of deep compressed image latent

tensors. arXiv preprint arXiv:2203.13467, 2022. 11, 12

[23] Nick Johnston, Damien Vincent, David Minnen, Michele

Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel

Shor, and George Toderici. Improved lossy image compres-

sion with priming and spatially adaptive bit rates for recur-

rent networks. In CVPR, 2018. 2, 6

[24] Jun-Hyuk Kim, Byeongho Heo, and Jong-Seok Lee. Joint

global and local hierarchical priors for learned image com-

pression. In CVPR, 2022. 2

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 5

[26] Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack.

Context-adaptive entropy model for end-to-end optimized

image compression. In ICLR, 2019. 1, 2

[27] Jae-Han Lee, Seungmin Jeon, Kwang Pyo Choi, Youngo

Park, and Chang-Su Kim. DPICT: Deep progressive image

compression using trit-planes. In CVPR, 2022. 1, 2, 3, 5, 6,

7, 8, 11, 13

[28] Weiping Li. Overview of fine granularity scalability in

MPEG-4 video standard. IEEE Trans. Circuit Syst. Video
Technol., 11(3):301–317, 2001. 2

[29] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. In

ICCV, 2021. 2

[30] Yadong Lu, Yinhao Zhu, Yang Yang, Amir Said, and Taco S.

Cohen. Progressive neural image compression with nested

quantization and latent ordering. In ICIP, 2021. 1, 2, 6, 7

[31] Detlev Marpe, Heiko Schwarz, and Thomas Wiegand.

Context-based adaptive binary arithmetic coding in the

H.264/AVC video compression standard. IEEE Trans. Cir-
cuit Syst. Video Technol., 13(7):620–636, 2003. 2

[32] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,

Radu Timofte, and Luc Van Gool. Conditional probability

models for deep image compression. In CVPR, 2018. 1, 2, 5

[33] David Minnen, Johannes Ballé, and George Toderici. Joint

autoregressive and hierarchical priors for learned image

compression. In NeurIPS, 2018. 1, 2, 3, 5, 6, 7, 8, 12, 13

[34] David Minnen and Saurabh Singh. Channel-wise autoregres-

sive entropy models for learned image compression. In ICIP,

2020. 1, 2, 12

14356

[35] Jens-Rainer Ohm. Advances in scalable video coding. Proc.
IEEE, 93(1):42–56, 2005. 1

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

NeurIPS, 2018. 11

[37] Stephane Pateux. Calculation an excel add-in for computing

Bjontegaard metric and its evolution. 6

[38] Yichen Qian, Xiuyu Sun, Ming Lin, Zhiyu Tan, and Rong

Jin. Entroformer: A transformer-based entropy model for

learned image compression. In ICLR, 2022. 2

[39] Amir Said and William A. Pearlman. A new, fast, and ef-

ficient image codec based on set partitioning in hierarchical

trees. IEEE Trans. Circuit Syst. Video Technol., 6(3):243–

250, 1996. 2

[40] Athanassios Skodras, Charilaos Christopoulos, and Touradj

Ebrahimi. The JPEG 2000 still image compression standard.

IEEE Signal Process. Mag., 18(5):36–58, 2001. 1, 2

[41] Myungseo Song, Jinyoung Choi, and Bohyung Han.

Variable-rate deep image compression through spatially-

adaptive feature transform. In ICCV, 2021. 2

[42] Rige Su, Zhengxue Cheng, Heming Sun, and Jiro Katto.

Scalable learned image compression with a recurrent neural

networks-based hyperprior. In ICIP, 2020. 6

[43] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc

Huszár. Lossy image compression with compressive autoen-

coders. In ICLR, 2017. 2

[44] George Toderici, Sean M O’Malley, Sung Jin Hwang,

Damien Vincent, David Minnen, Shumeet Baluja, Michele

Covell, and Rahul Sukthankar. Variable rate image compres-

sion with recurrent neural networks. In ICLR, 2016. 2

[45] George Toderici, Damien Vincent, Nick Johnston, Sung

Jin Hwang, David Minnen, Joel Shor, and Michele Covell.

Full resolution image compression with recurrent neural net-

works. In CVPR, 2017. 2, 6

[46] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and

Pierre-Antoine Manzagol. Extracting and composing robust

features with denoising autoencoders. In ICML, 2008. 2

[47] Gregory K. Wallace. The JPEG still picture compression

standard. IEEE Trans. Consum. Electron., 38(1):18–34,

1992. 1, 2

[48] Zhou Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale

structural similarity for image quality assessment. In The
Thrity-Seventh Asilomar Conference on Signals, Systems &
Computers, 2003. 5

[49] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and

Ajay Luthra. Overview of the H.264/AVC video coding stan-

dard. IEEE Trans. Circuit Syst. Video Technol., 13(7):560–

576, 2003. 2

[50] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and

William T. Freeman. Video enhancement with task-oriented

flow. Int. J. Comput. Vis., 127(8):1106–1125, 2019. 5

[51] Fei Yang, Luis Herranz, Yongmei Cheng, and Mikhail G.

Mozerov. Slimmable compressive autoencoders for practical

neural image compression. In CVPR, 2021. 1, 2, 6

[52] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and

Thomas Huang. Slimmable neural networks. In ICLR, 2018.

2

[53] Yinhao Zhu, Yang Yang, and Taco Cohen. Transformer-

based transform coding. In ICLR, 2022. 1, 2, 6

[54] Renjie Zou, Chunfeng Song, and Zhaoxiang Zhang. The

devil is in the details: Window-based attention for image

compression. In CVPR, 2022. 2

14357

