Trit-plane coding enables deep progressive image compression, but it cannot use autoregressive context models. In this paper, we propose the context-based trit-plane coding (CTC) algorithm to achieve progressive compression more compactly. First, we develop the context-based rate reduction module to estimate trit probabilities of latent elements accurately and thus encode the trit-planes compactly. Second, we develop the context-based distortion reduction module to refine partial latent tensors from the trit-planes and improve the reconstructed image quality. Third, we propose a retraining scheme for the decoder to attain better rate-distortion tradeoffs. Extensive experiments show that CTC outperforms the baseline trit-plane codec significantly, e.g. by -14.84% in BD-rate on the Kodak lossless dataset, while increasing the time complexity only marginally. The source codes are available at https://github.com/seungminjeon-github/CTC.

1. Introduction

Image compression is a fundamental problem in both image processing and low-level vision. A lot of traditional codecs have been developed, including standards JPEG [47], JPEG2000 [40], and VVC [11]. Many of these codecs are based on discrete cosine transform or wavelet transform. Using handcrafted modules, they provide decent rate-distortion (RD) results. However, with the rapidly growing usage of image data, it is still necessary to develop advanced image codecs with better RD performance.

Deep learning has been explored with the advance of big data analysis and computational power, and it also has been successfully adopted for image compression. Learning-based codecs have similar structures to traditional ones: they transform an image into latent variables and then encode those variables into a bitstream. They often adopt convolutional neural networks (CNNs) for the transformation. Several innovations have been made to improve RD performance, including differentiable quantization approximations [5, 6], hyperprior [7], context models [20, 32, 33], and prior models [13, 15]. As a result, the deep image codecs are competitive with or even superior to the traditional ones.

It is desirable to compress images progressively in applications where a single bitstream should be used for multiple users with different bandwidths. But, relatively few deep codecs support such progressive compression or scalable coding [35]. Many codecs should train their networks multiple times to achieve compression at as many bitrates [5, 6], hyperprior [7], context models [20, 32, 33], and prior models [13, 15]. Some codecs support variable-rate coding [15, 51], but they should generate multiple bitstreams for different bitrates. It is more efficient to truncate a single bitstream to satisfy different bitrate requirements. Lu et al. [30] and Lee et al. [27] are such progressive codecs, based on nested quantization and trit-plane coding, respectively.

In this paper, we propose the context-based trit-plane coding (CTC) algorithm for progressive image compression, based on novel context models. First, we develop the context-based rate reduction (CRR) module, which entropy-encodes trit-planes more compactly by exploiting already decoded information. Second, we develop the context-based distortion reduction (CDR) module, which refines...
partial latent tensors after entropy decoding for higher-quality image reconstruction. Also, we propose a simple yet effective retraining scheme for the decoder to achieve better RD tradeoffs. It is demonstrated that CTC outperforms the existing progressive codecs [27, 30] significantly.

This paper has the following major contributions:

- We propose the first context models, CRR and CDR, for deep progressive image compression. As illustrated in Figure 1, CRR reduces the bitrate, while CDR improves the image quality effectively, in comparison with the baseline trit-plane coding [27].
- We develop a decoder retraining scheme, which adapts the decoder to refined latent tensors by CDR to improve the RD performance greatly.
- The proposed CTC algorithm outperforms the state-of-the-art progressive codecs [27, 30] significantly. Relative to [27], CTC yields BD-rates of -14.84% on the Kodak dataset [3], -14.75% on the CLIC validation set [4], and -17.00% on the JPEG-AI testset [1].

2. Related Work

Learning-based codecs: Early learning-based image codecs [19, 23, 44, 45] are based on recurrent neural networks (RNNs), but more codecs [6, 7, 13, 33, 43] employ CNN-based autoencoders [46]. Ballé et al. [6] proposed an additive noise model to approximate quantization and trained their network in an end-to-end manner. In [7, 33], hyperprior information was used to estimate the probability distributions of latent elements more accurately. Cheng et al. [13] used residual blocks and attention modules in the autoencoder and adopted a Gaussian mixture prior.

Recently, vision transformer [17] or self-attention has been adopted to yield better RD results [24, 38, 53, 54]. Qian et al. [38] developed transformer-based hyper-encoder and hyper-decoder. Kim et al. [24] decomposed hyperprior parameters to global and local ones. Zou et al. [54] used window attention modules in their CNN-based encoder and decoder. Zhu et al. [53] adopted the Swin transformer [29] for their encoder, decoder, hyper-encoder and hyper-decoder.

Variable-rate compression: The aforementioned codecs can compress an image at a single rate only. For variable-rate compression, they should be trained multiple times, which is inefficient in both time and memory. In contrast, there are several variable-rate codecs [14, 15, 41, 43, 51]. Theis et al. [43] and Choi et al. [14] adopted scale parameters for quantization to achieve variable-rate coding. Yang et al. [51] adopted the slimmable neural networks [52] and used subsets of network parameters to control bitrates. Cui et al. [15] proposed the gain unit for channel-wise bit allocation. Song et al. [41] utilized a pixelwise quality map for rate control. These variable-rate codecs support multiple bitrates via single network training, but they still generate separate bitstreams at different bitrates.

Progressive compression: A single bitstream can support multiple bitrates in progressive compression. For example, the traditional JPEG and JPEG2000 have optional progressive modes [40, 47]. Most of learning-based progressive codecs are based on RNNs [19, 23, 44, 45], which support a limited number of quality levels. Also, Cai et al. [12] supports only two quality levels with two decoders.

It is more desirable to offer fine granular scalability (FGS) [28, 39]: a single bitstream can be truncated at any point for the decoder to reconstruct an image. Lu et al. [30] used nested quantization for FGS. Lee et al. [27] proposed trit-plane coding and RD-prioritized transmission of trits. These FGS codecs yield comparable RD curves to conventional deep image codecs.

Context models: As context-based entropy coding techniques such as CABAC [31] are used in traditional codecs [9, 49], context models are also employed in learning-based codecs [20, 26, 32–34]. Minnen et al. [33] and Mentzer et al. [32] developed autoregressive context models using masked 2D and 3D CNNs, respectively. The autoregressive models exploit spatial contexts serially, demanding high time complexity. Lee et al. [26] proposed bit-consuming and bit-free contexts to estimate latent distributions. Minnen et al. [34] explored a channelwise autoregressive model with latent residual prediction. He et al. [20] developed a checkerboard context model to reduce time complexity. All these context models can be used for fixed-rate compression only. In contrast, we develop two context models, CRR and CDR, for progressive compression based on trit-plane coding, which improve the RD performance significantly with only a marginal increase of time complexity.

3. Proposed Algorithm

3.1. Trit-Plane Coding

Trit-plane coding was introduced in [27] for deep progressive image compression. Figure 2 shows the framework of the proposed CTC algorithm, which is also based on the trit-plane representation of latent elements. The encoder g_{a} and the hyper-encoder h_{a} transform an image X into a latent tensor Y and a hyper latent tensor Z sequentially. Then, using the quantized \hat{Z}, the hyper-decoder h_{s} yields M and Σ, representing the mean and standard deviation of Y.

For trit-plane coding, we express the centered and quantized latent tensor $Y = q(Y - M)$ in a ternary number system through the trit-plane slicing module: $\hat{Y} \in \mathbb{R}_{}^{C \times H \times W}$ is sliced into L trit-planes $T_{L}, l = 1, \ldots, L$. Each trit-plane is a tensor of the same size as Y. Also, T_{0} is the most significant trit-plane (MST), while T_{L} is the least significant one (LST). The trit-planes are entropy-encoded into a bitstream progressively from MST to LST.
be a latent element. Using the available trits, the decoder first identifies the interval I where y belongs and then reconstructs it to the conditional mean, given by

$$\hat{y}_l = E[y|y \in I].$$ \hspace{1cm} (1)$$

Finally, the CDR module reduces distortions in \hat{Y}_l to yield Y_{l_1}, and the decoder g_e reconstructs the image \hat{X}_l from the refined latent tensor Y_{l_1}.

3.2. Context-Based Rate Reduction

Context models are useful for compressing correlated signals efficiently [9]. In the learning-based codecs, an autoregressive context model [33] predicts the entropy parameters of a latent element using already encoded elements and it improves the RD performance significantly. However, it is impossible to use the autoregressive model for trit-plane coding. The model assumes that $C \times H \times W$ latent elements are coded in the same raster scan order by both the encoder and the decoder. Hence, when trit-planes are only partially reconstructed, the decoder cannot perform the same prediction as the encoder, so the decoding breaks down [27].

We propose the first context models for trit-plane coding. Instead of predicting latent elements in the raster scan order, we predict each trit-plane T_l, $l = 1, \ldots, L$, by exploiting already coded information, including the more significant trit-planes $T_{1:l-1}$. Note that the probability tensor P_l is used to encode T_l. We refine the probability estimates in P_l to yield an updated tensor \hat{P}_l using the CRR module in Figure 4(a). \hat{P}_l requires fewer bits during the entropy coding than P_l, improving the RD performance.

To this end, we use already coded information: First, the approximate latent tensor Y_{l-1}, reconstructed from $T_{1:l-1}$, provides a context. Second, the entropy parameters Φ and Σ are concatenated and used as another context. Third, the expected latent tensor E_l is also used. Assuming that each trit in T_l equals 0, 1, or 2, the expected value of the corresponding latent element is computed via (1). E_l contains the three possible values of every latent element, so $E_l \in \mathbb{R}^C \times H \times W$.
whose each element is within ΔP term times more channels. It is split channelwise into an additive S.

First, ΔP tensor has the same spatial resolution as $3C / 3C$ through residual blocks and convolution layers. The fused \tilde{y} values, as shown in the top color bar.

In Figure 4(a), CRR extracts features from the input P_I and the three contexts separately and fuses them lately through residual blocks and convolution layers. The fused tensor has the same spatial resolution as P_I does, but four times more channels. It is split channelwise into an additive term $\Delta P \in \mathbb{R}^{3C \times H \times W}$ and a scaling term $S \in \mathbb{R}^{C \times H \times W}$. First, S is converted into B by

$$B = s_I + (s_h - s_I) \times \text{sigmoid}(S),$$

(2)

whose each element is within (s_I, s_h). Then, P_I is added to ΔP, and the sum is modulated by B to yield an updated probability tensor \tilde{P}_I. More specifically, let $\{x_0, x_1, x_2\}$ and β be the elements in $(P_I + \Delta P)$ and B, respectively, corresponding to a trit in T_l. Then, the corresponding updated probabilities $\{\tilde{p}_0, \tilde{p}_1, \tilde{p}_2\}$ in \tilde{P}_I are determined using the softmax function,

$$\tilde{p}_i = \frac{e^{\beta x_i}}{\sum_{j=0}^{2} e^{\beta x_j}}, \quad i = 0, 1, 2. \quad (3)$$

Intuitively, a high β sharpens the probability mass function around the largest input, whereas a low β flattens it. It is proven in Appendix A that the entropy $H(\{\tilde{p}_0, \tilde{p}_1, \tilde{p}_2\})$ is a monotonic decreasing function of β. Thus, to reduce the entropy, we should set a large β. However, the number of required bits is not the ordinary entropy but the cross-entropy

$$\ell_{CRR} = \sum_{i=0}^{2} q_i \log_2 \tilde{p}_i, \quad \beta \leq 0. \quad (4)$$

where $\{q_0, q_1, q_2\}$ is the ground-truth one-hot vector for the trit. If the trit corresponds to a highly complicated image region, its probabilities are hard to predict. In such a case, it is beneficial to flatten $\{\tilde{p}_0, \tilde{p}_1, \tilde{p}_2\}$ with a small β and thus to reduce ℓ_{CRR} in (4) on average.

We train CRR to minimize the sum of the cross-entropies in (4) for all trits in T_l. In other words, CRR is learned to modify the input probabilities in P_I with the additive term ΔP and then flatten or sharpen the resulting probabilities with the modulating term B, so the output probabilities in \tilde{P}_I minimize the length of the bitstream.

Figure 5 shows that there are spatial redundancies in Y. Hence, neighboring trits in T_l are also correlated. Even though T_l for a large l contains more random trits, as indicated by their high entropies in $H(P_I)$, CRR refines their probability estimates and reduces the entropies in $H(\tilde{P}_I)$. The entropy reduction is observed especially in simple regions, such as sky and shadow, as shown in the last column.

It is worth pointing out that CRR can be regarded as a ternary classifier, trained with the cross-entropy loss in (4), that uses the contexts to classify each trit in T_l into one of the three classes 0, 1, or 2.
As the contexts, CDR refines the partial latent tensor \(\tilde{Y}_{l-2} \) and yields the sum

\[
\tilde{Y}_l = \tilde{Y}_l + \Delta Y
\]

as the refined tensor. Note that, different from CRR, CDR does not use \(E_l \) and \(P_l \) as contexts, for they contain probabilistic information about \(T_l \). Since \(T_l \) is already decoded and used to reconstruct \(\tilde{Y}_l, E_l \) and \(P_l \) hardly provide additional information not included in \(\tilde{Y}_l \). Also, note that CDR is a regressor for reducing the distortion, whereas CRR is a classifier for reducing the bitrate.

The CDR module is trained to minimize the loss

\[
\ell_{\text{CDR}} = \| Y - \tilde{Y}_l \|_F.
\]

For example, Figure 6(a) shows the reconstructed images from partial latent tensors \(\tilde{Y}_{L-2} \), with noticeable compression artifacts. In contrast, Figure 6(b) is the reconstruction from the refined tensors \(\hat{Y}_{L-2} \) by CDR, in which the artifacts are alleviated.

3.4. Decoder Retraining

In trit-plane coding, both the encoder and the decoder are trained for a fixed point in the RD curve (usually a high-rate, low-distortion point), and a resultant latent tensor \(Y \) is sliced into trit-planes for progressive compression [27]. We also adopt this strategy to first train the encoder \(g_a \), the hyper-encoder \(h_a \), the decoder \(g_s \), and the hyper-decoder \(h_s \) in Figure 2. Then, we obtain \(Y \) and truncate it to various versions \(Y_l, 0 < l \leq L \). Using these partial tensors \(Y_l \), we train the CRR and CDR modules, respectively, to reduce the required bitrates and the distortions by minimizing the losses in (4) and (6).

In Figure 2, trit-plane slicing and reconstruction are not differentiable, so CRR and CDR, which process trit-planes \(T_l \) and partial tensors \(Y_l \), cannot be trained jointly with \(g_a, h_a, g_s, \) and \(h_s \) in an end-to-end manner. Hence, we adopt the sequential training scheme.

CDR refines \(Y_l \) into \(\hat{Y}_l \), which is used as the new input to the decoder \(g_s \). Thus, we retrain \(g_s \) to further improve the quality of the reconstructed image \(\hat{X}_l \). Specifically, we generate \(\hat{Y}_l \) for various \(l \) and retrain the decoder \(g_s \) to minimize

\[
\ell_{\text{DEC}} = \sum_l w_l \times \| g_s(\hat{Y}_l) - X \|_F,
\]

where \(w_l \) is a weighting parameter for each significance level \(l \). The retraining improves the reconstruction quality, as illustrated in Figure 6(c).

4. Experiments

4.1. Implementation and Evaluation

We implement the proposed CTC algorithm based on the Cheng et al.'s network [13], composed of residual blocks and attention modules. However, we eliminate the autoregressive model and instead adopt CRR and CDR to exploit contexts. Also, we employ the unimodal Gaussian prior, rather than the Gaussian mixture model in [13], to simplify the sequential training scheme.

For evaluation, we use the Kodak lossless dataset [3], the CLIC professional validation dataset [4], and the JPEG-AI testset [1]. Kodak consists of 24 images of resolution 512 × 768 or 768 × 512, while CLIC and JPEG-AI contain 41 and 16 images of up to 2K resolution. We report bitrates in bits per pixel (bpp) and measure image qualities in PSNR and MS-SSIM [48]. For MS-SSIM, we present decibel scores
by MS-SSIM (dB) = \(-10 \cdot \log_{10}(1 - \text{MS-SSIM})\). Also, we compare the compression performances of two algorithms using the BD-rate metric [37].

4.2. Performance Comparison

RD curves: We compare the proposed CTC algorithm with traditional BPG444 [10], VTM 12.0 [11], and learning-based codecs in [13, 15, 16, 20, 23, 27, 30, 33, 42, 45, 51, 53].

Figure 7 compares the RD curves of CTC with those of progressive codecs on the Kodak lossless dataset. CTC outperforms all conventional codecs with meaningful gaps in both PSNR and MS-SSIM at a wide range of bitrates. For example, at 0.5bpp, CTC yields at least 0.8dB better PSNR than the competing codecs Lee et al. [27] and Lu et al. [30] do. Notice that CTC and these two codecs support FGS. Whereas these codecs do not use any context models, CTC exploits CRR and CDR and improves the RD curves significantly. On the other hand, Su et al. [42] supports a narrow range of bitrates only, while the other learning-based codecs in [16, 23, 45] provide even worse PSNR curves than JPEG2000 [2].

Next, Figure 8 compares CTC with non-progressive codecs: traditional codecs [2, 10, 11], learning-based fixed-rate codecs [13, 20, 33, 53] and variable-rate codecs [15, 51]. ‘Minnen w/o C’ means the Minnen et al.’s network without the context model [33]. Although CTC supports the additional functionality of FGS, it yields a comparable curve to these non-progressive codecs. Especially, around 0.6bpp, CTC provides competitive PSNRs to the existing codecs, including Cui et al. [15] and VTM 12.0 [11], which are

Table 1. BD-rate performances (%) with respect to Lee et al. [27].

<table>
<thead>
<tr>
<th>Codec</th>
<th>Kodak</th>
<th>CLIC</th>
<th>JPEG-AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPEG2000</td>
<td>31.19</td>
<td>48.54</td>
<td>37.46</td>
</tr>
<tr>
<td>BPG444 [10]</td>
<td>-12.16</td>
<td>-1.25</td>
<td>-7.95</td>
</tr>
<tr>
<td>Fixed-rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnen w/o C</td>
<td>-8.61</td>
<td>-0.90</td>
<td>-4.12</td>
</tr>
<tr>
<td>Minnen et al.</td>
<td>-16.65</td>
<td>-11.11</td>
<td>-13.92</td>
</tr>
<tr>
<td>Cheng et al.</td>
<td>-23.99</td>
<td>-15.99</td>
<td>-</td>
</tr>
<tr>
<td>FGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee et al. +PP</td>
<td>-6.84</td>
<td>-6.87</td>
<td>-7.19</td>
</tr>
<tr>
<td>CTC</td>
<td>-14.84</td>
<td>-14.75</td>
<td>-17.00</td>
</tr>
</tbody>
</table>

Table 2. Complexity comparison of CTC with Minnen et al. [33] and Lee et al. [27]. The average encoding and decoding times for a single image in the Kodak lossless dataset are reported.

<table>
<thead>
<tr>
<th>Codec</th>
<th># Parameters</th>
<th>Encoding (s)</th>
<th>Decoding (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minnen et al.</td>
<td>30.6M</td>
<td>4.01</td>
<td>11.02</td>
</tr>
<tr>
<td>Lee et al. +PP</td>
<td>27.2M (+50M)</td>
<td>1.73</td>
<td>1.40 (+0.10)</td>
</tr>
<tr>
<td>CTC</td>
<td>39.9M</td>
<td>1.78</td>
<td>1.55</td>
</tr>
</tbody>
</table>
the state-of-the-art variable-rate codecs. Also, CTC outperforms ‘Minnen w/o C’ [33] and BPG444 [10] at almost every bitrate. More RD curves on other datasets are available in Appendix C.

BD-rates: Table 1 lists the BD-rates relative to Lee et al. [27] on the three test datasets. Among the FGS codecs, the proposed CTC provides by far the best results on all datasets. For instance, on JPEG-AI, CTC achieves 17.00% bitrate saving, while Lu et al. [30] rather increases the required bitrates. Also, on CLIC, CTC is comparable to Cheng et al. [13] and better than VTM 12.0 [11].

Complexities: Table 2 compares the complexities of CTC with those of Minnen et al. [33] and Lee et al. [27]. Minnen et al. is a fixed-rate codec using the autoregressive context model. The Lee et al.’s codec supports FGS based on triplane coding, but it uses no context model. For Lee et al. and CTC, the times are measured for encoding and decoding an entire bitstream.

CTC is much faster than Minnen et al., since both CRR and CDR exploit contexts efficiently in parallel using common convolution layers, whereas Minnen et al. perform context-based prediction serially. Compared with Lee et al., CRR and CDR demand about 12.7M more parameters but increase time complexities only marginally. In other words, CRR and CDR are not only effective for improving the RD performance but also efficient in terms of time complexity. Moreover, in Lee et al., the postprocessing (PP) networks are optionally used to improve the reconstruction quality as shown in Figure 8, but they increase the number of parameters by 50M. Without using such PP, CTC outperforms Lee et al. significantly.

Qualitative results Figure 9 compares reconstructed images obtained by existing codecs [10, 11, 27, 33] and CTC. Near sharp edges or in textured regions, such as the window and wall patterns, flowers, and feathers, the traditional codecs [10, 11] yield blur artifacts. The reconstruction quality of the proposed CTC is better than that of Lee et al. [27] and is comparable to that of the Minnen et al.’s non-
progressive codec [33].

Figure 10 compares progressive reconstruction results, obtained by Lee et al. [27] and CTC. At each column, both trit-plane coding algorithms reconstruct the images \hat{X}_l up to the same significance level l. The proposed CTC yields higher RD performances by employing context models and decoder retraining. Consequently, CTC provides a better image quality than Lee et al. does.

4.3. Ablation Study

We conduct an ablation study to analyze the three contributions — CRR, CDR, and decoder retraining — of the proposed CTC algorithm as compared with the baseline trit-plane codec, Lee et al. [27]. Table 3 lists the BD-rates of four ablated methods relative to the baseline on the Kodak dataset. CRR and CDR in methods I and II improve the RD performances, respectively, by reducing bitrates and improving image qualities. Both CRR and CDR achieve about 7% of bitrate saving. When they are used together, the bitrate saving in method III is as big as 10.93%. Also, the decoder retraining with CDR provides a similar reduction of 10.81%, indicating that the retraining for partial latent tensors \hat{Y}_I is also essential in trit-plane coding. By combining the three components, the proposed CTC algorithm achieves a significant bitrate saving of 14.84%.

Figure 11(a) compares the RD curves of the ablated methods in Table 3, and Figure 11(b) plots the bitrate saving percentages in terms of PSNR with respect to the baseline. We see that method I is more effective at a high PSNR range, since trit probabilities can be more accurately predicted using contexts when latent elements are finely reconstructed. On the other hand, method II performs better in a low PSNR range because quantization noise of coarsely reconstructed latent elements can be more easily reduced. The method III exhibits a relatively even bitrate saving in the entire PSNR range. Method IV yields a bitrate saving curve skewed to low PSNRs. Finally, CTC reduces the bitrate requirement significantly, by more than 10%, when PSNR is between 20dB and 35dB. Therefore, the whole bitrate saving is 14.84% as listed in Table 3.

5. Conclusions

We proposed an effective trit-plane codec, called CTC, for progressive image compression using the two context modules: CRR and CDR. Before entropy encoding, CRR updates a probability tensor to compress trit-planes more compactly. After entropy decoding, CDR refines a partial latent tensor to reconstruct a higher-quality image. Both CRR and CDR are based on convolutional layers, so they are efficient in terms of time complexity. Moreover, we developed a decoder retraining scheme, which, combined with CDR, achieves better RD tradeoffs. It was shown that CTC outperforms conventional progressive codecs greatly.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. NRF-2021R1A4A1031864 and No. NRF-2022R1A2B5B03002310), and by IITP grant funded by the Korea government (MSIT) (No. 2021-0-02068, Artificial Intelligence Innovation Hub).

Table 3. Ablation study of CTC: for each ablated method, the BD-rate relative to the baseline, Lee et al. [27], is reported.

<table>
<thead>
<tr>
<th>Method</th>
<th>CRR</th>
<th>CDR</th>
<th>g_r retraining</th>
<th>BD-rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method I</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-6.90%</td>
</tr>
<tr>
<td>Method II</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-6.68%</td>
</tr>
<tr>
<td>Method III</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-10.93%</td>
</tr>
<tr>
<td>Method IV</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>-10.81%</td>
</tr>
<tr>
<td>CTC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-14.84%</td>
</tr>
</tbody>
</table>
References

[16] Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang, and Hongwei Qin. Checkerboard context model for efficient learned image compression. In CVPR. 2021. 1, 2, 5, 6, 13

[29] David Minnen, Johannes Ballé, and George Toderici. Joint autoregressive and hierarchical priors for learned image compression. In NeurIPS. 2018. 1, 2, 3, 5, 6, 7, 8, 12, 13

