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Abstract

Recent research on video moment retrieval has mostly
focused on enhancing the performance of accuracy, effi-
ciency, and robustness, all of which largely rely on the abun-
dance of high-quality annotations. While the precise frame-
level annotations are time-consuming and cost-expensive,
few attentions have been paid to the labeling process. In
this work, we explore a new interactive manner to stimu-
late the process of human-in-the-loop annotation in video
moment retrieval task. The key challenge is to select “am-
biguous” frames and videos for binary annotations to fa-
cilitate the network training. To be specific, we propose a
new hierarchical uncertainty-based modeling that explicitly
considers modeling the uncertainty of each frame within the
entire video sequence corresponding to the query descrip-
tion, and selecting the frame with the highest uncertainty.
Only selected frame will be annotated by the human ex-
perts, which can largely reduce the workload. After ob-
taining a small number of labels provided by the expert, we
show that it is sufficient to learn a competitive video mo-
ment retrieval model in such a harsh environment. More-
over, we treat the uncertainty score of frames in a video as
a whole, and estimate the difficulty of each video, which
can further relieve the burden of video selection. In gen-
eral, our active learning strategy for video moment retrieval
works not only at the frame level but also at the sequence
level. Experiments on two public datasets validate the ef-
fectiveness of our proposed method. Our code is released
at https://github.com/renjie-liang/HUAL.

1. Introduction
Video Moment Retrieval (VMR) aims to localize the

temporal region of an untrimmed video corresponding to
query description, which is a fundamental task in the video
understanding area, and can benefit a lot of downstream
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Figure 1. We propose a new interactive method named HUAL
which only requires binary annotations to reduce the annotation
cost. (a) In each round, user (student) selects a frame with the
largest uncertainty, and the expert (teacher) returns the binary la-
bel of this frame as feedback. (b) With more labels provided, the
VMR model is retrained and the whole process can be treated in a
human-in-the-loop manner.

tasks, such as video question answering [19, 40, 53], dense
video captioning [4, 6], video relation detection [14, 34],
video dialog [29], etc. Recent methods on VMR mainly
focus on modeling the cross-modal context in temporal,
and have achieved significant performance gains in public
datasets, which heavily rely on the well-annotated datasets,
such as Charades [9], ActivityNet [35], etc.
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However, the precise labels on VMR datasets are time-
consuming and cost-expensive, and relying on the well-
annotated dataset will restrict the generalization ability of
the current models. Hence, we revisit the process of anno-
tation and propose a new active learning-based method to
relieve the heavy burden of annotations in the VMR task.
We have two assumptions: 1) not each frame should be
considered equally, as the frame with the higher uncertainty
is more valuable than the rest; and 2) not each video can
be treated as a hard sample, annotating complex video and
query pairs first benefits more than annotating simple ones.

The whole process of our active learning-based method
is shown in Figure 1. In each round, for each video in
the training set, the user (student) first selects one frame
with the highest uncertainty regarding the consistency of the
video and query in this video, then the expert (teacher) re-
turns the label of this frame (positive or negative). After
that, the user takes the label of a single frame as supervi-
sion and trains the model, and the uncertainty score of each
video will be updated. In the next round, the user can se-
lect another frame with the highest uncertainty. The whole
process can be described as: “A student asks a hard ques-
tion first, then the teacher returns the answer as feedback,
the student then digests what have learned, and the process
can be repeated.” Besides, the amount of videos that need
to be annotated can be further compressed. The uncertainty
of each video can also be utilized in the sequence level. A
certain percentage of videos with high uncertainty can be
treated as hard samples with more benefits when annotat-
ing.

Hence, the whole process of interactive annotating can
be treated as Human-in-the-Loop. The key techniques rely
on the computation of uncertainty and the selection of the
video frame or the whole video sequence as hard samples.
To be specific, we consider the uncertainty in two aspects:
the classification confidence of each frame, and the distance
of the current frame from the known labels (e.g., the start
and end boundaries of each video are negative samples, and
the annotated frames in previous rounds). For the classi-
fication confidence of each frame, we choose a weakly-
supervised VMR model (such as CPL [50]) to obtain the ini-
tial classification result and confidence score of each frame,
and the frame with alow confidence score can be treated
with high uncertainty. By adding the distance score and
confidence score together, the frame with the highest uncer-
tainty is selected. We then utilize a fully-supervised VMR
model (such as SeqPAN [45]) to train with the labels pro-
vided by the expert in each round. Besides considering the
frame-level uncertainty, we also seek the reduction of an-
notated videos at the sequence level via accumulating the
frame-level uncertainty. Hence, the annotation cost can be
further reduced with a minor performance drop.

Our main contributions are summarized as follows:

• We propose a new interactive framework named
HUAL to reduce the annotation cost, which only re-
quires binary annotations. To verify the feasibility, we
stimulate the process of annotation in the video mo-
ment retrieval task, which is model-agnostic and can
be treated in a Human-in-the-Loop manner.

• Specifically, we consider the hierarchical design,
which is frame-level and sequence-level uncertainty
estimation to select hard samples and fully take ad-
vantages of limited binary annotations by the expert.
This annotation method can greatly reduce the anno-
tation cost while achieving comparable performance
compared with the fully supervised setting.

• Extensive experimental results on two public datasets
indicate that binary annotations are sufficient for video
moment retrieval. The proposed method can achieve
competitive performance with much fewer annota-
tions, which show the effectiveness of our proposed
methods.

2. Related Work
2.1. Video Moment Retrieval

Given the descriptive query, Video Moment Retrieval
(VMR) aims to retrieve video segments with consistent se-
mantics of query [21–23, 41, 43], which is also relevant to
video grounding [13,16–18]. Most works focus on achiev-
ing satisfying performance in fully-supervised or weakly-
supervised setting. In early works, some proposal-based
methods [1, 11, 24, 38] treat this task as a ranking problem
and follow the propose-and-rank pipeline. By generating
proposals in various lengths by sliding window [9] first,
these methods calculate the cross-modal semantic similar-
ity to find the best matching proposal for the query. How-
ever, densely sampling video moment proposals will leads
to large computation costs. Then, some proposal-free meth-
ods are proposed [25,44,48]. For example, Zhang et al. [47]
propose a 2D temporal map to model the temporal rela-
tions of different moments with variant length, and the two
dimensions indicate the start and end timestamps, respec-
tively. The performance of all these methods mentioned
above heavily relied on the well-annotated datasets, while
we propose a new interactive labeling method with only bi-
nary annotations to achieve satisfying results.

To relieve the heavy burden of annotation, in the weakly-
supervised setting, only video-text pairs can be treated as
supervision, no temporal information is provided. Exist-
ing supervised VMR methods can be categorized into two
groups. 1) Multiple Instance Learning (MIL) based
[27, 37]: They treat video-query pairs as positive samples,
and video with other queries and query with other videos
as negative samples. Then, they train the model by maxi-

23014



Pseudo Label

Frame Uncertainty

Label probability

 Sequence Uncertainty

Selected Frame

New Pseudo Label

Query:  person drinks 
from a glass.

Weakly Supervised 
VMR Model

Fully Supervised 
VMR Model

Expert
Query:  person drinks 
from a glass.

�1

�2
∙
∙
∙

��

0.9 High Priority

0.4 Low Priority

 Sequence Uncertainty

0.3 Low Priority

Frame Uncertainty

High Priority Sequence 

Low Priority Sequence 

Figure 2. The whole pipeline of our HUAL method. Given video and query pair, we first obtain the pseudo label via a weakly supervised
VMR model. Then we calculate the frame-level and sequence-level uncertainty by training a fully supervised VMR, and select the frame
and video with highest uncertainty to be annotated by the expert.

mizing similarity score between positive samples and min-
imizing similarity scores between negative samples. 2)
Reconstruction-based method [20, 36, 50]: They take ad-
vantage of the assumption that the video segment that can
best reconstruct the text query is close to the ground-truth.
Compared with fully supervised methods, there exists a
large performance gap although weakly supervised methods
are trained without precise temporal information. Hence,
we propose to further improve the performance of weakly
supervised VMR method with minor annotation cost, such
as binary labels.

2.2. Active Learning

Active learning plays an important role in machine learn-
ing area, which aims to maximize a model’s performance
gain while annotating the fewest samples possible [31].
Current methods for active learning can be categorized
into three classes: uncertainty-based method [2, 15, 30,
51]; diversity-based method [8, 10, 32], and expect model
change [7,33,52]. To be specific, uncertainty-based method
uses the probability distribution of prediction, which is sim-
ple in form and has low computational complexity. The
diversity-based method is the second category selecting di-
verse samples that expanse the input space maximally and
represent the whole distribution of the unlabeled pool. And
the last category is based on model performance change,
which selects the data points that would cause the greatest
change to the current model parameters and encourage op-
timal model improvement. In the video moment retrieval
task, few works pay attention to reducing the annotation

burden, the most similar work to ours is ViGA [5], which
takes one single frame among the groundtruth as supervi-
sion. Different from this work, we sample the frame with
highest uncertainty to be annotated without any prior, we
don’t restrict the sample is positive or negative, which is a
more natural and looser setting.

3. Method
We introduce a novel pipeline named Hierarchical

Uncertainty-based Active Learning (HUAL) as shown in
Fig. 2. In this section, we first provide the problem defi-
nition in Sec. 3.1. HUAL includes two parts: frame-level
and sequence-level uncertainty estimation, which are intro-
duced in Sec. 3.2 and Sec. 3.4, respectively. We finally in-
troduce the training and testing phrase of the whole model.

3.1. Problem Definition

Given an untrimmed video V = {vt}Tt=1 and the lan-
guage query Q = {qj}Mj=1, where T and M are the number
of frames and words, respectively, our goal is to predict the
start and end timestamp (τs, τe) in the video corresponding
to query Q, where (τs, τe) = f(V,Q). In this paper, we
explore an interactive framework with few selective frames
annotated, rather than complete groundtruth of (τs, τe) in
fully supervised setting.

From the perspective of annotation, each frame in the
video can be classified as relevant or irrelevant with the
query Q, which can be treated as positive or negative sam-
ples. The naive and intuitive idea is selecting frames among
the video randomly, which is inefficient and heavily relied
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on the distribution of groundtruth (τs, τe). For example,
if the (τs, τe) is very short, it will cost numerous rounds
before sampling the frame within the groundtruth. Hence,
we consider a more effective sampling method to further re-
duce the annotation cost from two aspects: Frame-level and
Sequence-level uncertainty estimation.

3.2. Frame-level Uncertainty

For each video V and query Q pair, we feed them into a
weakly-supervised VMR model. Here, we select CPL [50]
as example. Then, the model will output the labels of binary
classification result vclass as initial pseudo labels.

Then, we consider how to effectively select the frame
to be annotated by the expert. The selection of a frame is
related to two factors: the uncertainty of the selected frame,
and the distance to frames with known labels. For example,
the start and end boundary of the video sequence can be
treated as negative. And the labels returned by the expert
in previous rounds are also known. Hence, the uncertainty
score of each frame can be calculated as:

Uframe
i = Umodel(fmodel(vi)) + α ∗ Udis(vi) (1)

where α is the weighted factor, Umodel represents the un-
certainty score of the fully supervised model fmodel, such
as SeqPAN [45]. Uncertainty denotes the difference of vi
with and without dropout layer. We train the SeqPAN model
from scratch with pseudo label vclass. Actually, the output
of SeqPAN is two curves represent the start and end pos-
sibility of each frame. Here we use fmodel(vi) to represent
the output for convenience. Udis(vi) represents the distance
to known labels, the distance uncertainty will be higher if
the selected frame is farther away known labels. If there are
m labeled frame with positive/negative values, then there
are m + 2 frames with label, including the start and end
boundary of video v. Udis(vi) is the superposition of m+1
Gaussian curves. For m-th Gaussian curve, the peak posi-
tion is in the middle of m− 1-th and m-th frame, as shown
in Fig. 3.

Then, the frame with the largest uncertainty score in the
video will be selected to be annotated by the expert.

3.3. Pseudo Label Generation

After the expert provides the label of the frame (positive
or negative), the surrounding frames within a range will also
be annotated with the same label.
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Figure 4. Since there is a prior that only one continuous range is
corresponding to the query. After several rounds of annotation
with positive/negative frames, there are some rules to generate
informative labels. In the probability score curve, yellow/green
curve represents start/end timestamp. Red/blue triangle represents
positive/negative sample, respectively. In the pseudo label, light
red region represents possible positive frames in video, dark red
means absolute positive, blue means negative frames. Red dotted
line represents the positive regions tcan possibly occur in three in-
tervals.

Some rules can be utilized to eliminate the uncertainty
section, based on the prior of only one continuous interval
corresponding to the query. For example:

1) If there are two positive samples s1 and s2 as shown
in Fig 4 (a), then the region in pseudo label between s1
and s2 must be positive, and the frames after s1 can not
be start frames, which are masked with zero (grey curve).
Accordingly, frames before s2 can not be end frames, which
are also masked with zero.

2) If s1 is negative and s2 is positive as shown in Fig 4
(b), then the corresponding region must be after s1 and in-
cludes s2, so the start frame is within (s1, s2), end frame
is within (s2, send). In the pseudo label, frames within
(sstart, s1) are negative, frames surround s2 are positive in
Gaussian distribution. Fig 4 (c) is the mirror version of Fig
4 (b) but in different order of sampled frame.

3) If the two annotated frame s1 and s2 are both negative
as shown in Fig 4 (d), then the positive frames are possi-
ble to locate among (sstart, s1), (s1, s2), (s2, send). The
only useful information is the negative frames surrounding
s1 and s2.

Based on the rules above, the label of each frame Lframe

is updated. For the r round, the pseudo label is calculated
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as:

Lframe
r = Lframe

r−1 + β ∗ Pmodel(v) + γ ∗ Pdis(v) (2)

where β and γ are the weighted parameters, Pmodel(v)
is the probability score of whole video sequence v, which
is the output of SeqPAN, Pdis(v) is the probability of dis-
tance between samples, the computation of Pdis(v) is simi-
lar as Udis(vi), the only difference is we add an offset in the
Pdis(v).

3.4. Sequence-level Uncertainty

Moreover, we think in the whole training set, not all
videos should be treated equally. Some video and query
pairs with simple semantics (such as the description of com-
mon objects and actions) can be treated as simple samples,
and annotating hard samples is more valuable than simple
ones.

Hence, considering the whole training dataset Mtrain =
{V }Ni=1, we calculate the uncertainty score Useq of the
whole video sequence:

Useq =

n∑
i=1

Uframe
i (3)

which is the accumulation of frame-level uncertainty.
And it is reasonable that the video with more frames with
uncertainty should be annotated first.

After calculating the uncertainty score of all videos, we
sort them in descending order according to their uncertainty
score and choose K% top-ranked from N videos to anno-
tated and update the labels.

Training. In the training stage, the output of Seq-
PAN [45] model is the probability distributions of start/end
boundaries Ps/e. The training objective is:

Lloc =
1

2
×
[
fCE(Ps, Ys) + fCE(Pe, Ye)

]
(4)

where fCE is the cross-entropy function, Ys/e is the one-hot
labels for start/end (is/ie) boundaries.

Since we only have pseudo labels to train the SeqPAN,
which is not precise as ground truth, we propose soft la-
bel to replace hard label: For the start/end frame, we use
a Gaussian distribution to model the labels of surrounding
frames, where the peak position of Gaussian is the start/end
frame.

The overall training loss of SeqPAN is to minimize the
combined loss of Lloc and supervision to intermediate fea-
tures during the training process. Considering the uncer-
tainty regularization [51], the rectified loss is:

Lu =
Lloc

exp(σ)
+ σ, (5)

where σ is the variance of the prediction Pmodel(V ), and
σ ≥ 0. If the prediction is consistent, the σ is close to zero,
and the loss will converge to the original Lloc. If the predic-
tion fluctuates, which indicates the pseudo label may con-
tain noise, we decrease the punishment on the such label.

Inference. When testing, the predicted start and end
boundaries of the given video-query pair (V,Q) are gen-
erated by maximizing the joint probability as:

(̂is, îe) = argmax
âs,âe

Ps(â
s)× Pe(â

e)

s.t.: 0 ≤ îs ≤ îe ≤ N − 1
(6)

where îs and îe are the best start and end boundaries of the
predicted moment for the given video-query pair. And the
predicted start/end time is computed by t̂s(e) = îs(e)/(N −
1)× T , where T is the duration of the given video.

4. Experiment
4.1. Datasets

To evaluate the performance of our proposed, we con-
duct experiments on two challenging video moment re-
trieval datasets: Charades-STA [9] is composed of daily
indoor activities videos, which is based on Charades
dataset [35]. This dataset contains 6672 videos, 16,128 an-
notations, and 11,767 moments. The average length of each
video is 30 seconds. 12, 408 and 3, 720 moment annotations
are labeled for training and testing, respectively; Activi-
tyNet Caption [3] is originally constructed for dense video
captioning, which contains about 20k YouTube videos with
an average length of 120 seconds.

4.2. Evaluation Metrics

Following existing video moment retrieval works, we
evaluate the performance in two main metrics: mIoU:
“mIoU” is the average predicted Intersection over Union
over all testing samples; Recall: We adopt “R@n, IoU =
µ” as the evaluation metrics, following [9]. The
“R@n, IoU = µ” represents the percentage of language
queries having at least one result whose IoU between top-
n predictions with ground-truth is larger than µ. In our
experiments, we reported the results of n = 1 and µ ∈
{0.3, 0.5, 0.7}.

4.3. Implementation Details

For language query Q, we use the 300-D GloVe [28] vec-
tors to initialize each lowercase word, and these word em-
beddings are fixed during training. For video V , we down-
sample frames and extracted RGB visual features using the
3D ConvNet which was pre-trained on the Kinetics dataset.
We set the dimension of all the hidden layers in the model
as 128, the kernel size of the convolutional layer as 7, and
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Supervision Method Charades-STA ActivityNet Captions
R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

Full
Supervision

CTRL [9] - 23.63 8.89 - - - - -
QSPN [42] 54.7 35.6 15.8 - 45.3 27.7 13.6 -
2D-TAN [47] - 39.7 23.31 - 59.45 44.51 26.54 -
VSLNet [46] 73.84 60.86 41.34 53.92 61.65 45.50 28.37 45.11
SeqPAN [45] 70.46 54.19 35.22 50.02 63.16 43.22 26.16 43.19

Weak
Supervision

TGA [27] 32.14 19.94 8.84 - - - - -
SCN [20] 42.96 23.58 9.97 - 47.23 29.22 - -
BAR [39] 44.97 27.04 12.23 - 49.03 30.73 - -
RTBPN [49] 60.04 32.36 13.24 - 49.77 29.63 - -
VLANet [26] 45.24 31.83 14.17 - - - - -
MARN [36] 48.55 31.94 14.81 - 47.01 29.95 - -
LoGAN [37] 51.67 34.68 14.54 - - - - -
CRM [12] 53.66 34.76 16.37 - 55.26 32.19 - -
CPL [50] 66.40 49.24 22.39 - 55.73 31.37 - -

Single Frame ViGA [5] 71.21 45.05 20.27 44.57 59.61 35.79 16.96 40.12

Active
Learning

Random 44.17 14.65 3.58 30.57 50.11 23.47 11.91 35.07
HUAL (Baseline) 66.91 45.48 22.5 43.76 51.58 31.5 16.12 36.78
HUAL (50%, 2) 69.89 50.78 26.69 46.63 56.62 32.94 15.31 38.11
HUAL (50%, 5) 70.40 52.69 28.9 48.11 59.95 38.09 19.64 40.86

Table 1. Performance comparison with the state-of-the-art methods under different supervision settings. With binary annotations, our
HUAL can achieve comparable performance with some fully supervised method. HUAL (K = 50%, r = 2) means selecting 50% videos
in the training and annotated two frames for each video in 2 rounds. Best performance are noted in bold.

the head size of multi-head attention as 8. For all datasets,
models are trained for 50 epochs. The batch size is set to 64.
Dropout and early stopping strategies are adopted to prevent
overfitting. The whole framework is trained by Adam opti-
mizer with an initial learning rate 0.0002. For ActivityNet
Captions, We set α = 4, β = 2, and a initial value γ = 2
that gradually decreases with iteration. For Charades-STA,
α = 4, β = 0.8 were used, and γ was gradually decreased
from 4 in the following experiments. All experiments are
conducted on 1 Nvidia RTX A5000 GPU with 24GB mem-
ory. More details can be found in Supplementary Material.
We will make our code open-source for reproducing all ex-
periments.

4.4. Comparison with SOTA methods

Table 1 summarizes the experimental results on
Charades-STA and ActivityNet Captions dataset. We
mainly compare our HUAL with the following SOTA meth-
ods. Fully-supervised method: CTRL [9], QSPN [42],
2D-TAN [47], VSLNet [46], SeqPAN [45]; Weakly-
supervised method: TGA [27], SCN [20], BAR [39],
RTBPN [49], VLANet [26], MARN [36], LoGAN [37],
CRM [12], CPL [50]; Single Frame-supervised method:
ViGA [5].

From the results, we observe that our HUAL method can

effectively improve the performance of baseline networks in
all metrics and benchmarks. Here HUAL (baseline) means
there is no supervision provided, the pseudo label is the out-
put of weak-supervised model (CPL). Random means ran-
domly selecting one frame from each video to annotated.
HUAL (K = 50%, r = 2) represents selecting 50% video
sequences to annotate with 2 rounds. With more annota-
tions, there exists steady performance gains in our HUAL
model, and even comparable with fully-supervised meth-
ods.

For Charades-STA dataset, we can see that HUAL works
well in even stricter metrics, such as R@0.7. Compared
with ViGA [5], HUAL (50%, 2) achieves a significant
3.82% absolute improvement in R@0.7, which demon-
strates the effectiveness of the proposed model. By compar-
ing the performance of ViGA and Random, we can discover
that positive samples have huge benefits to performance im-
provement, which is 14% in mIoU on Charades.

We further compare the results on ActivityNet Captions
dataset. Note that the ground-truth video segments in Activ-
ityNet Captions have a longer averaged duration with var-
ious lengths. So it needs more rounds to annotate frames
with distinction. Since the ground truth may cover more
than 80% duration of the video, or smaller than 5% length
of the video, annotating with several rounds will meet the
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condition that all samples are positive or negative. Then,
our HUAL model needs more rounds to annotate than in the
Charades.

4.5. Quantitative Analysis

We further perform qualitative analysis of our method
so as to enable a better understanding of its strength. The
qualitative results of HUAL on Charades-STA dataset are
demonstrated in Figure 6. With more rounds of annota-
tion, our HUAL method continues refining the prediction
of video and language query pairs.

4.6. Ablation Studies

We mainly conduct the ablation studies and make com-
parisons with other SOTA methods on the Charades dataset.

Performance in Different Rounds. We first compare
the performance of HUAL in different rounds. As shown in
Fig. 5, in each round with one more frame annotated, the
performance gain is about 0.9% on average in the metric of
mIoU. With more annotated frames as supervision, the per-
formance of HUAL is increasing steadily, which proves that
our HUAL model can effectively utilize the new-annotated
labels. To make a trade-off between accuracy and anno-
tation cost, we set r = 5 with the best performance. On
the Charades dataset, HUAL (50%, 2) can suppress ViGA
with the same annotation cost but in looser restriction. With
more rounds of annotations, the performance of HUAL can
keep increasing. However, as shown in Table 1, HUAL
needs more rounds of annotation to reach a comparable
performance with ViGA on the ActivityNet than Charades
dataset. This is because of the unbalanced distribution of
ground truth with various lengths in AcitivityNet dataset. It
will take more rounds to sample frames with both positive
and negative frames, and the positive frame is more benefi-
cial to improve the performance of HUAL.
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Figure 5. Performance comparison (%) of HUAL with different
rounds on Charades and ActivityNet Captions datasets. With more
rounds of annotation provides, our HUAL can achieve steady per-
formance gain in all metrics.

Table 2. Performance comparison (%) of HUAL with different
components on Charades dataset. Each components can improve
the performance.

Probability R@0.3 R@0.5 R@0.7 mIoU
Pdistance Pmodel Lframe

r−1

✓ 56.56 33.58 13.25 36.82
✓ ✓ 66.8 46.64 21.37 43.5
✓ ✓ ✓ 70.40 52.69 28.90 48.11

Different Components in Frame-level Uncertainty.
As shown in Table 2, we analyse the effectiveness of dif-
ferent components in frame-level uncertainty introduced in
Eq. 2. If we only consider the probability of distance,
HUAL can only reach the performance of 36.82% in mIoU.
With the probability score of the model considered, the per-
formance of HUAL can be improved to 43.5% in mIoU. By
further considering the labels in the last round, HUAL can
achieve the best performance of 48.11% in mIoU. Hence,
each component is proved effective in the performance.

Selection of Sequence-level Uncertainty. Table 3
shows the ablation studies of different settings in the
sequence-level uncertainty on Charades dataset. We first
conduct experiments on the setting of different proportions
K of selected queries. When K = 50%, the HUAL can
achieve 48.11% in mIoU.

With more videos annotated, the performance of HUAL
will be improved with no doubt, but with a higher label cost.
To achieve a balance between accuracy and label cost, we
select K = 50% as the best choice.

Quality of Generated Pseudo Label. We also analysis
the quality of generated pseudo label in each round. As can
be shown in Fig. 7, with more rounds of annotations, the
pseudo label is more similar to ground truth, and the pred-
icated result is more accurate, which verifies the effective-
ness of our HUAL in sample selection based on frame-level
and sequence-level uncertainty and pseudo label generation
with rules.

Annotation Cost. To relieve the annotation burden, we
stimulate the process of labeling with binary annotations.
Compared with annotating with precise start and end times-
tamps, our HUAL only needs the binary label of the selected
frame, which needs less time than annotation in fully super-

Table 3. Performance comparison (%) of HUAL with different
selection K on Charades dataset.

Components (K) R@0.3 R@0.5 R@0.7 mIoU
HUAL (10%, 5) 67.77 49.11 24.95 45.46
HUAL (30%, 5) 68.44 50.38 26.51 46.53
HUAL (50%, 5) 70.40 52.69 28.90 48.11
HUAL (70%, 5) 71.16 53.09 28.82 48.84

HUAL (100%, 5) 70.91 56.13 32.69 49.70
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Ground Truth:

ViGA

Query: person sit on a chair.

3.18 32.36
Random

HUAL
25.06 33.42

21.72 33.42

ViGA

Query: a person eating something off of a plate.

2.53 30.32
Random

HUAL
3.48 14.91

6.70 19.10

ViGA

Query: person turns on a lightswitch.

0.50 22.11
Random

HUAL
0.0 4.42

1.34 9.44

Figure 6. Qualitative results of HUAL on Charades-STA dataset. Compared with other methods, our HUAL method can locate the temporal
region more accurately via several binary annotations.
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Figure 7. (a) Comparison between the pseudo label and HUAL
results. (b) Visualization of the pseudo label in different rounds.
With more rounds of annotation, the pseudo label is more similar
to the ground truth in fully supervised setting.

vised method or ViGA. For the simple case like Charades,
annotating 0.5 frames on average will achieve comparable
performance as ViGA, as shown in Table 3 of (HUAL (10%,
5)). For complex cases like ActivityNet, our method needs
more rounds of annotation, which is still a relatively small
expense. And positive sample can bring more benefits to
the performance improvement compared with negative one.

5. Conclusion

In this paper, we propose a new interactive manner to
stimulate the process of annotation in video moment re-
trieval task, which can be treated as human-in-the-loop. To
be specific, we model the uncertainty of each frame among
the whole video sequence corresponding to query descrip-
tion, and select the frame with the highest uncertainty to be
annotated by expert. After obtaining the label provided by
the expert, the model can be trained with sparse but correct
labels. Moreover, we treat the uncertainty score of frames
in a video as a whole, and estimate the uncertainty of each
video, which can further relieve the burden of video anno-
tations. In general, our active learning strategy for video
moment retrieval works not only at the frame level but also
at the sequence level. Experiments on two public datasets
validate the effectiveness of our proposed method. In the fu-
ture, we consider further exploring the positive and negative
frames with contrastive learning for better feature learning
and lower label costs, and extend this pipeline to other rele-
vant tasks.
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