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Abstract

Multimodal semantic understanding often has to deal

with uncertainty, which means the obtained messages tend

to refer to multiple targets. Such uncertainty is problematic

for our interpretation, including inter- and intra-modal un-

certainty. Little effort has studied the modeling of this uncer-

tainty, particularly in pre-training on unlabeled datasets

and fine-tuning in task-specific downstream datasets. In

this paper, we project the representations of all modali-

ties as probabilistic distributions via a Probability Distri-

bution Encoder (PDE) by utilizing sequence-level interac-

tions. Compared to the existing deterministic methods, such

uncertainty modeling can convey richer multimodal seman-

tic information and more complex relationships. Further-

more, we integrate uncertainty modeling with popular pre-

training frameworks and propose suitable pre-training tasks:

Distribution-based Vision-Language Contrastive learning

(D-VLC), Distribution-based Masked Language Modeling

(D-MLM), and Distribution-based Image-Text Matching (D-

ITM). The fine-tuned models are applied to challenging

downstream tasks, including image-text retrieval, visual

question answering, visual reasoning, and visual entailment,

and achieve state-of-the-art results.

1. Introduction

Precise understanding is a fundamental ability of hu-

man intelligence, whether it involves localizing objects from

similar semantics or finding corresponding across multiple

modalities. Our artificial models suppose to do the same,

pinpointing exact concepts from rich multimodal seman-

tic scenarios. However, this kind of precise understanding

is challenging. Information from different modalities can

present rich semantics from each other, but the resulting am-

biguity and noise are also greater than the case with a single
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Figure 1. Multimodal uncertainties and an example for language un-

certainty (b) by modeling as point representations and distribution

representations. The images and text are from MSCOCO [30].

modality.

Multimodal representation learning methods hold the

promise of promoting the desired precise understanding

across different modalities [13]. While these methods have

shown promising results, current methods face the challenge

of uncertainty [7, 51], including within a modality and be-

tween modalities. Considering image (a.0) in Fig. 1 as an

example, one vision region includes multiple objects, such

as a billboard, several zebras and others. Therefore, it is

unclear which objects when mentioning this region. In the

language domain, the complex relationships of words lead

to uncertainty, such as synonymy and hyponymy. In Fig. 1

(c)&(d), the same object often has different descriptions
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from different modalities, such as text and images, which

manifests inter-modal uncertainty. Instead, previous methods

often neglect the uncertainty [11, 19, 46], resulting in limited

understanding ability on complicated concept hierarchies

and poor prediction diversity. Therefore, it is desirable to

model such uncertainty.

Moreover, with multimodal datasets becoming more com-

monplace, there is a flourishing trend to implement pre-

training models, particularly Vision-Language Pre-training

(VLP), to support downstream applications [6,18,23,36,50].

Existing deterministic representations, however, often fail to

understand uncertainty in pre-training data, as they can only

express positions in semantic space and measure the relation-

ship between targets in certainty, such as Euclidean distance.

How can we efficiently model uncertainty in multi-modalities

when dealing with pre-training models?

Applying Gaussian distribution is one of the prominent

approaches used for modeling uncertainty in the representa-

tion space [40,45,51,54]. In these methods, however, the ob-

tained uncertainty depends on individual features rather than

considering the whole features together, which ignores the in-

ner connection between features. To exploit this connection,

we implicitly model them when formulating the uncertainty

with a module called Probability Distribution Encoder (PDE).

Inspired by the self-attention mechanism [44], we further

add the interaction between text tokens and image patches

when constructing our distribution representations to capture

more information. In Figure 1 (e), we provide an example

for two different types of representations to describe the lan-

guage uncertainty, where the distribution representations can

express richer semantic relationships than the conventional

point representations. The distribution variance measures the

uncertainty of the corresponding text. As a byproduct, distri-

bution representations enable diverse generations, providing

multiple reasonable predictions with random sampling.

In this paper, we integrate this uncertainty modeling in

the pre-training framework, resulting in three new tasks:

Distribution-based Vision-Language Contrastive learning

(D-VLC), Distribution-based Masked Language Modeling

(D-MLM), and Distribution-based Image-Text Matching (D-

ITM) pre-training tasks. All these tasks are to deal with cross-

modality alignment. More specifically, D-VLC is to handle

the coarse-grained cross-modal alignment, which measures

the whole distributions to align representations from differ-

ent domains. D-MLM and D-ITM are implemented after the

fine-grained interaction between different modalities, pro-

viding the token level and overall level alignment for images

and text.

Our contributions are summarized as follows:

1) We focus on the semantic uncertainty of multimodal un-

derstanding and propose a new module, called Probability

Distribution Encoder, to frame the uncertainty in multimodal

representations as Gaussian distributions.

2) We develop three uncertainty-aware pre-training tasks to

deal with large-scale unlabeled datasets, including D-VLC,

D-MLM, and D-ITM tasks. To the best of our knowledge,

these are the first attempt to harness the probability distribu-

tion of representations in VLP.

3) We wrap the proposed pre-training tasks into an end-2-end

Multimodal uncertainty-Aware vision-language Pre-training

model, called MAP, for downstream tasks. Experiments show

MAP gains State-of-The-Art (SoTA) performance. Our code

is available at https://github.com/IIGROUP/MAP.

2. Related Works

2.1. Probability Distribution Representations

Current popular representation learning methods extract

features as point representations and focus on searching for

the closest position to ground truth in high-level representa-

tion space. However, there is usually more than one suitable

point representation, which shows the uncertainty in multi-

ple tasks. To address this problem, the following researchers

introduced probability distribution representations to infer

diversely and improve robustness, avoiding model overfitting

to one single solution. In the Natural Language Processing

(NLP) field, multivariate Gaussian distribution was utilized

to represent words [45] due to the powerful capability for rep-

resenting the asymmetric relations among words. Since then,

different distribution families were exploited for word repre-

sentations [2, 28]. In Computer Vision (CV), for modeling

vision uncertainty, some researchers introduce Gaussian rep-

resentations into specific tasks, such as face recognition [4],

person re-identification [54], 3D skeleton action representa-

tion [40] and pose estimation [42]. For solving the long-tail

problem in relation prediction, Gaussian distribution was

utilized to build objects relationship in scene graph genera-

tion [52]. Recently, constructing distributions achieved some

progress to yield diverse predictions for cross-modal retrieval

in multimodal field [7]. However, those existing methods

only consider the feature level to build the distributions for a

whole image or sentence. In this work, we model not only

the whole image or sentence to the distribution representa-

tions but also each token of them, such as patches and words.

Furthermore, our approach learns the multimodal uncertainty

from sequence-level and feature-level interactions.

2.2. Vision-Language Pre-training (VLP)

Inspired by the Transformer structure [44] and pre-

training tasks from BERT [8], the recent emergence of

vision-language pre-training tasks and models have been

explored to learn multimodal representations. The main pro-

cess is first to pre-train the models by exploiting auxiliary

tasks to understand hidden supervision information from

large-scale unlabeled data. Then, the pre-trained models

embed real-world objects into multimodal representations.
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Figure 2. Pre-training model architecture and objectives of MAP. We propose PDE to model distribution representations as multivariate

Gaussian Distributions (GD). ªNLº indicates the layer number of the cross-modal transformer. We perform two-dimensional Gaussian

distribution as an example.

With effective universal multimodal representations, they

can achieve good performance by fine-tuning on relatively

small labeled datasets of VL downstream tasks. The key chal-

lenge of VLP is to design suitable pre-training objectives.

Recently, mainstream strategies include Masked Language

Modeling (MLM) [15, 16, 20, 23, 26], Image-Text Matching

(ITM) [15,16,23,26] and Vision-Language Contrastive learn-

ing (VLC) [18, 20, 26, 36]. MLM in VLP requires the model

to predict the masked language context tokens by the rest of

the language context tokens and vision context tokens. To

understand alignment information of language context and

vision context, ITM requires the model to judge whether the

input of different modalities matches or not. VLC learns the

similarity from inter-modal information and aligns point rep-

resentations of different modalities. However, those methods

only are designed in the point representation space without

considering multimodal uncertainty. Therefore, we propose

the D-VLC, D-MLM and D-ITM to pre-train our model

in the distribution representation space. The details will be

explained in Sec. 3.2.

3. Approaches

In this section, we introduce our proposed PDE and the

architecture of MAP (Sec. 3.1), and the overall structure is

described in Fig. 2. The details of our proposed distribution-

based pre-training tasks are presented in Sec. 3.2. In addition,

we further discuss the ethical considerations in Appendix C.

3.1. Model Overview

3.1.1 Probability Distribution Encoder (PDE).

The input features of PDE are from the point representation

space of different modalities. To model the multimodal un-

certainty, we further frame the input features as multivariate

Gaussian distributions. Specifically, PDE predicts a mean

vector (µ) and a variance vector (σ2) for each input feature.

The mean vector represents the center position of distribu-

tions in probabilistic space, and the variance vector expresses

the scope of distributions in each dimension.

As shown in Fig. 3, we propose a probability distribution

encoder (PDE) while considering that modeling the mean

and variance vectors takes feature-level and sequence-level

interactions. Specifically, Feed Forward layer is used for

feature-level interactions and Multi-Head (MH) operation

is responsible for sequence-level interactions. By applying

the MH operation, the input hidden states H ∈ R
T×D are

split into k heads, where T is sequence length and D is

hidden size. In each head, we split the features and send

them to two paths (µ, σ2). In each path, the input hidden

states H(i) ∈ R
T×D/2k are projected to Q(i), K(i), V (i) in

i-th head. As an example, the operation in the µ path is:

[Q(i)
µ ,K(i)

µ , V (i)
µ ] = H(i)

µ Wqkv ,

Head(i)µ = Act
(

Q(i)
µ K(i)

µ

⊤

/
√

dk
)

V (i)
µ ,

MHµ = concati∈[k]

[

Head(i)µ

]

WO ,

(1)

where dk is set to D/(2k). The weight Wqkv ∈ R
dk×3dk

is to project the inputs in the subspace of each head. The

weight WO ∈ R
kdk×D projects the concatenation of k head

results to the output space. The ªActº includes an activa-

tion function and a normalization function for considering

sequence-level interaction. The σ2 path is similar to the µ
path. Since the input point representation correlates with the

mean vector, an add operation is employed to learn the mean

vector. The motivations of design choices are in Sec. 4.3.2.

After PDE, each vision or language token is represented as a
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Figure 3. The architecture of Probability Distribution Encoder

(PDE) block.

gaussian distribution in high-dimension probabilistic space.

3.1.2 Feature Extraction.

To extract features, we utilize an image encoder and a lan-

guage encoder. In detail, we employ CLIP-ViT [36] as the

image encoder and RoBERTa-Base [31] as the language en-

coder. An image is encoded as an patch feature sequence

{v[CLS], v1, . . . , vN} , where v[CLS] is the overall feature.

Moreover, the input text is embedded into a sequence of

tokens {w[CLS], w1, . . . , wM}.

3.1.3 Cross-modal Transformer.

Recently, there are two main types of the multimodel trans-

former to fuse the different modalities: single-stream [6, 39,

56] and dual-stream [26, 32, 43] models.

In our method, the image patch sequences are much

longer than text sequences, making the weights of vision

features too large to compute the attention scores together.

To address this issue, we choose the dual-stream module

with two transformer branches, where self-attention scores

are calculated separately.

As shown in Fig. 2, the main structure has NL layers

of cross-modal encoders. Each encoder mainly consists of

two Self-Attention (SA) blocks and two Cross-Attention

(CA) blocks. In the SA block of each modality, query, key

and value vectors are all linearly projected from vision or

language features. In the vision-to-language cross-attention

block of i-th layer, query vectors represent language fea-

ture T ′

i after the self-attention block, and key/value vectors

denote vision feature I ′i . By employing the Multi-Head At-

tention (MHA) operation, the CA block enables language

features to learn visual information across modalities. The

language-to-vision CA block is similar to the vision-to-

language one. The workflow of i-th layer encoder with SA

and CA is as follows:

SAvision : I ′i = MHA(Ii−1, Ii−1, Ii−1),

SAlanguage : T
′

i = MHA(Ti−1, Ti−1, Ti−1),

CAvision : Ii = MHA(I ′i, T
′

i , T
′

i ),

CAlanguage : Ti = MHA(T ′

i , I
′

i, I
′

i).

(2)

For the overall structure design of MAP, we apply PDEs

after feature extractors and cross-modal transformer, respec-

tively. PDE after the feature extractor learns unimodal dis-

tribution representations to conduct the D-VLC pre-training

task. PDE at the end of MAP is responsible for D-MLM,

D-ITM and downstream tasks.

3.2. Distribution-based Pre-Training Tasks

In order to learn the multimodal uncertainty in common

sense, we pre-train our model with distribution-based pre-

training tasks on large-scale datasets.

3.2.1 Coarse-grained Pre-training.

We propose Distribution-based Vision-Language Contrastive

Learning, called D-VLC, to realize coarse-grained seman-

tic alignment of overall unimodal distributional represen-

tations before fusion. We compute the 2-Wasserstein dis-

tance [21, 22, 33] to measure the distance between multivari-

ate Gaussian distributions. For two Gaussian distributions

N (µ1,Σ1) and N (µ2,Σ2), their 2-Wasserstein distance is

defined as:

D2W = ||µ1 −µ2||
2
2 +Tr(Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2). (3)

In our modeled distributions, Σ1 and Σ2 are both diagonal

matrices, which indicates Σ
1/2
1 Σ2Σ

1/2
1 = Σ1Σ2. The above

formula can be rewritten as:

D2W = ||µ1 − µ2||
2
2 +Tr((Σ

1/2
1 − Σ

1/2
2 )2)

= ||µ1 − µ2||
2
2 + ||σ1 − σ2||

2
2 ,

(4)

where σ refers to a standard deviation vector. The overall

unimodal features denote the distribution representations of

[CLS] from the PDEs following single-modal feature extrac-

tors. The similarity between an image and text is given by:

s(I, T ) = a ·D2W (v[CLS], w[CLS]) + b , (5)

where a is a negative scale factor since similarity is inversely

proportional to the distance, and b is a shift value. For N
image-text pairs in a batch, there are N positive matched

samples and N(N − 1) negative samples. We use InfoNCE

loss as follows:

LI2T
NCE(i) = − log

exp(s(Ii, Ti)/τ)
∑N

n=1 exp(s(Ii, Tn)/τ)
,

LT2I
NCE(i) = − log

exp(s(Ti, Ii)/τ)
∑N

n=1 exp(s(Ti, In)/τ)
,

(6)

where τ is a learned temperature parameter. The above are

summed as D-VLC loss LD-V LC .
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3.2.2 Fine-grained Pre-training.

After the cross-modal transformer with fine-grained inter-

action on each token of different modalities, our proposed

Distribution-based Masked Language Modeling (D-MLM)

and Distribution-based Image Text Matching (D-ITM) can

assist the model in learning fine-grained cross-modal align-

ment.

D-MLM requires the model to predict the masked words

by understanding the text with an image. Specifically, the

input text tokens are replaced by [MASK] with a probability of

15% (Details in Appendix A.3). For conducting classification

in the word list to predict the original words, we sample

the point vectors from distribution representations. D-MLM

minimizes a Cross-Entropy (CE) loss for µ point and other

sample point vectors:

LD-MLM =
1

K + 1
(CE(ϕ(µ), y) +

K
∑

i=1

CE(ϕ(z(i)), y)), (7)

where K is the sample number from gaussian distributions

and y serves as a masked word label. µ is a mean vector and

z(i) refers to stochastic sample point vectors; then, they are

fed to MLM classifier ϕ. During the inference process, the

final output is the mean pooling of all samples’ prediction

results:

P =
1

K + 1
(ϕ(µ) +

K
∑

i=1

ϕ(z(i))). (8)

D-ITM provides a binary classification that predicts

whether a pair of image-text is matched or not. Specifically,

we sample the point vectors from wCLS distributions of vision

and language features and concatenate them as the fusion

features to generate the prediction.

LD-ITM =
1

K + 1
(CE(ϕ(concat[vµ, wµ]), y)

+
K
∑

i=1

CE(ϕ(concat[v(i), w(i)]), y)),

(9)

where vµ, tµ are mean vectors of vision and language [CLS]
distributions. v(i), w(i) are sample points and ϕ is the D-

ITM classifier. The image-text pairs in the datasets serve as

positive examples, and negative examples are constructed by

randomly replacing images or text descriptions.

However, random sampling increases training difficulty.

When the model is trained only with the aforementioned

losses, it will lead to variance collapse. Since all sample

point vectors will converge to the optimal position, the dis-

tribution representations eventually degenerate into point

representations, resulting in losing the ability to learn mul-

timodal uncertainty. Therefore, we append a regularization

loss to prevent the uncertainty level of distributions is lower

than a certain threshold:

Lreg = max(0, γ − h(N (µ, σ2))), (10)

where γ is a set threshold, which affects the uncertainty level

of distributions. h(N (µ, σ2)) is the entropy of a multivariate

Gaussian distribution, which should be defined as:

h(N (µ,Σ)) =
1

2
log(det(2πeΣ)), (11)

where Σ is the covariance matrix, which is a diagonal matrix

in our method. Therefore, the diagonal vector of Σ is σ2 and

the Eq. (11) can be transformed to:

h(N (µ, σ2)) =
1

2

d
∑

i=1

log(2πe · σ2
i )

=
d

2
(log(2π) + 1) +

d
∑

i=1

log σi ,

(12)

where d is the feature dimension.

Note that the sampling operation for N (µ, σ2) causes the

problem of preventing gradients from propagating back. By

applying the reparameterization trick [24], we first sample a

random noise ϵ from standard normal distributions, instead

of directly sampling from N (µ, σ2):

z = µ+ σϵ, ϵ ∼ N (0, I). (13)

After Eq. (13), the output z obeys the predicted distributions

from the PDE. Therefore, we can separate the calculations of

the mean and standard deviation from the sampling operation

and they are trainable.

3.2.3 Training Objectives.

During pre-training phase, the model will propagate forward

three times at one step with conducting D-MLM, D-ITM

and D-VLC tasks separately. Therefore, the full pre-training

objective is given by:

Lpre = LD-MLM + LD-ITM + LD-V LC + αLreg , (14)

where α is its weight.

4. Experiments

4.1. Experimental settings

By following a popular setting [9], we set all hidden

feature sizes as 768, and the head number as 12 in MHA.

Unless otherwise specified, the layer number (NL) of the

cross-modal transformer is set to 6. As for data processing,

we resize and crop each image into the size of 384×384. The

size P of the image patch is 16. And the maximum length

of input text dealt is set to 50. In PDE, the head number k is

set to 6 and the default ªActº function in Eq. (1) is Softmax.

For pre-training, we pre-train our model with D-MLM,

D-ITM and D-VLC. The pre-training datasets include

MSCOCO [30], Visual Genome (VG) [25], SBU [34] and

Conceptual Captions (CC-3M) [38]. Specifically, we resize
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MSCOCO (5K test set) Flickr30K (1K test set)
Model

IR@1 IR@5 IR@10 TR@1 TR@5 TR@10 IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Group 2: Pre-training datasets include > 10M images

ALBEF (14M) [26] 60.7 84.3 90.5 77.6 94.3 97.2 85.6 97.5 98.9 95.9 99.8 100.0

Group 1: Pre-training datasets include < 10M images

UNITER-Large [6] 52.9 79.9 88.0 65.7 88.6 93.8 75.6 94.1 96.8 87.3 98.0 99.2

VILLA-Large [10] - - - - - - 76.3 94.2 96.8 87.9 97.5 98.8

UNIMO-Large [27] - - - - - - 78.0 94.2 97.1 89.4 98.9 99.8

VinVL-Large [56] 58.8 83.5 90.3 75.4 92.9 96.2 - - - - - -

ViLT [23] 42.7 72.9 83.1 61.5 86.3 92.7 64.4 88.7 93.8 83.5 96.7 98.6

UNITER-Base [6] 50.3 78.5 87.2 64.4 87.4 93.1 72.5 92.4 96.8 85.9 97.1 98.8

ALBEF (4M) [26] 56.8 81.5 89.2 73.1 91.4 96.0 82.8 96.7 98.4 94.3 99.4 99.8

TCL [53] 59.0 83.2 89.9 75.6 92.8 96.7 84.0 96.7 98.5 94.9 99.5 99.8

METER [9] 57.1 82.7 90.1 76.2 93.2 96.8 82.2 96.3 98.4 94.3 99.6 99.9

MAP (ours) 60.9 86.2 93.1 79.3 94.8 97.6 83.8 97.2 98.7 94.9 99.5 99.8

Table 1. An overall comparison with SoTA models on fine-tuned image-text retrieval tasks. The best scores are in bold and the second best

scores are underlined.

and crop each image into the size of 288× 288. Please find

more pre-training and fine-tuning details in Appendix B.1.

In all experiments, we employ the randomized Tukey

HSD p-values and effect sizes based on one-way

ANOVA [37] to support the statistical significance of all

results (Please refer to Appendix B.7 for more details).

4.2. Results of VL Downstream Tasks

In this section, we apply our pre-trained MAP on the fol-

lowing 4 VL downstream tasks with 5 widely-used datasets.

Image retrieval task (MSCOCO [30] and Flickr30K [35])

aims to understand the multimodal uncertainty which results

from the multiplicity of concepts in images and text. This is

similar to the objective of our uncertainty modeling in na-

ture. Meanwhile, visual question answering (VQA2.0 [12]),

visual reasoning (NLVR2 [41]) and visual entailment (SNLI-

VE [49]) implicitly perform ambiguous semantics in uni-

modal and cross-modal items. Therefore, we further evaluate

our MAP on the aforementioned tasks to varying the effec-

tiveness and generalization ability of uncertainty modeling.

For fair experimental environments, we group previous mod-

els with different sizes of pre-training datasets. Please find

more details of the datasets, model descriptions and addi-

tional experiments in Appendix B.

4.2.1 Evaluation on Image-Text Retrieval

As shown in Table 1, our MAP achieves the best performance

on MSCOCO and gains either the best or the second-best

scores on Flickr30K. Specially, while ALBEF has specially-

designed objectives for retrieval, the MAP also outperforms

ALBEF (14M pre-training images) in all metrics on the

MSCOCO retrieval task. The results show the effectiveness

and advantages of uncertainty modeling. For the Flickr30K

Model
VQA2.0 NLVR2 SNLI-VE

test-dev dev test-p val test

Group 2: Pre-training datasets include >10M images (Base size)

ALBEF (14M) [26] 75.84 81.72 81.77 84.20 84.15

SimVLM-Base [48] 77.87 82.55 83.14 80.80 80.91

Group 1: Pre-training datasets include <10M images (Base size)

ViLT [23] 71.26 75.70 76.13 - -

UNITER-Base [6] 72.70 77.18 77.85 78.59 78.28

OSCAR-Base [29] 73.16 78.07 78.36 - -

UNIMO-Base [27] 73.79 - - 80.00 79.10

ALBEF (4M) [26] 74.54 80.24 80.50 80.14 80.30

VinVL-Base [56] 75.95 82.05 83.08 - -

VLMo-Base [47] 76.64 82.77 83.34 - -

METER [9] 77.68 82.33 83.05 80.86 81.19

MAP (ours) 78.03 83.30 83.48 81.40 81.39

Table 2. An overall comparison with SoTA models on visual ques-

tion answering, visual reasoning, visual entailment tasks. The best

scores are in bold and the second best scores are underlined.

dataset, our MAP achieves the best performance or only

about 0.1 point behind the best score. PCME also utilizes

probabilistic distribution representations to conduct retrieval

task, and we show the comparison in Appendix B.6.

4.2.2 Evaluation on VQA2.0, NVLR2, and SNLI-VE

As shown in Table 2, our MAP outperforms the previous

SoTA models in Group 1. Compared to VLMo-Base, the

MAP improves 0.53 points on NLVR2 dev. Our model

brings the +0.35 points improvement on VQA2.0 test-dev

and +0.54 points performance gains on SNLI-VE val over

METER. Notably, MAP outperforms SimVLM-Base (1.8B

pre-training images) in all tasks, which further demonstrates
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VQA2.0 SNLI-VE NLVR2

test-dev val test dev test-p

Random initialization

MAP w/o PDE 72.09 75.91 76.28 50.86 51.07

MAP 73.35 76.67 76.86 51.12 51.07

Pretained on MSCOCO

MAP w/o PDE 74.57 79.42 79.84 77.72 79.31

MAP 75.01 80.05 80.31 78.96 79.64

Table 3. The effectiveness of probability distribution representa-

tions on VL downstream tasks. For ªMAP w/o PDEº, we train a

new model without PDE to conduct the experiments. Pre-trained

methods for MAP: D-MLM, D-ITM. Pre-trained methods for MAP

w/o PDE: MLM, ITM.

the effectiveness of uncertainty modeling.

4.3. Ablation Studies

4.3.1 How do the probability distribution representa-

tions affect VL downstream task?

As shown in Table 3, applying PDE helps the model to

achieve a better performance, which matters significantly

in VL downstream tasks. In both random and pre-trained

weights initialization cases, distribution representations gain

a better capability of VL understanding than the point repre-

sentations, which is because the distribution representations

can express richer semantics by learning multimodal uncer-

tainty.

4.3.2 How does the structure of PDE behave?

We remove the sequence-level interaction in PDE and call it

ªMLP onlyº (MultiLayer Perceptron), which is the common

method in the previous works [7, 51, 54]. Table 4 shows that

PDE (Softmax) outperforms ªMLP onlyº in VQA2.0, which

benefits from the sequence-level information. Moreover, we

design several candidate activation functions: ReLU, ReLU2,

Sigmoid, and Softmax. Notably, ªMLP onlyº outperforms

ªReLUº and ªReLU2º, which demonstrates that it is impor-

tant to consider how to design the sequence-level interaction.

The function Sigmoid projects the input values between 0 to

1, which smoothly assigns weights between different tokens.

The function Softmax outperforms the others in VQA2.0,

which implies that Softmax is suitable to express the cor-

relation between tokens. Therefore, we set Softmax as the

default activation function in sequence-level interaction.

4.3.3 What is the performance of different pre-training

objectives?

Table 5 presents that different choices of pre-training tasks

affect the VL downstream tasks performance. According

Structure VQA2.0 (test-dev)

MLP only 72.01

PDE

ReLU+Normal 69.70

ReLU2+Normal 70.53

Sigmoid+Normal 73.34

Softmax 73.35

Table 4. Effect of different structures of PDE. We explore the

different designs of ªActº in Equation 1. Normal denotes the nor-

malization operation.

Training strategies
VQA2.0 SNLI-VE NLVR2

test-dev test-p test

Random Initialization 73.35 76.86 51.07

D-MLM, D-ITM 75.01 80.31 79.64

D-MLM, D-VLC 75.06 80.12 77.90

D-ITM, D-VLC 71.02 78.54 73.64

D-MLM, D-ITM, D-VLC 75.16 80.39 79.47

Table 5. The effect of distribution-based pre-training tasks. We

pre-train the model on the MSCOCO dataset.

Layer Number Random Initializing Pre-training

2 72.71 73.78

4 73.32 74.73

6 73.35 75.16

8 73.31 75.26

Table 6. The effect of different layer numbers in the cross-modal

transformer on VQA2.0.

to the chart, results without D-MLM pre-training are the

worst in all pre-training strategies, which means D-MLM

plays the most important role in pre-training. Both D-VLC

and D-ITM assist the model in learning semantic similarity

between vision and language modality. In VQA2.0, D-VLC

makes a larger improvement than D-ITM, whereas D-ITM

is more effective than D-VLC in SNLI-VE and NLVR2.

4.3.4 Does the number of layers of cross-modal trans-

former matter?

As shown in Table 6, we explore the effect of layer number

on VQA2.0 by random initializing or pre-training with D-

MLM, D-ITM, D-VLC on the MSCOCO dataset. By random

initializing, the model with six layers achieves the best per-

formance, which encounters a bottleneck. After pre-training,

the model with eight layers makes little progress from six

layers, which implies that pre-training helps the model break

the aforementioned bottleneck of parameters. The reason

perhaps is that pre-training with large-scale data alleviates

the problem of over-fitting by more parameters. Moreover,

as the layer number decreases, the effect of pre-training will
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1 | A young man holding an 

umbrella next to a herd of cattle

2 | a young boy barefoot holding 

an umbrella touching the horn of 

a cow

3 | A young boy with an 

umbrella who is touching the 

horn of a cow

5 | a little boy wearing 

headphones and 

looking at a computer 

monitor

6 | He is listening 

intently to the computer 

at school

7 | A young boy stares 

up at the computer 

monitor.

13 | A kitchen area with 

toilet and various cleaning 

appliances.

14 | A commercial dish 

washing station with a 

toilet in it.

15 | A toilet and mop 

bucket in a kitchen.

9 | A little boy with 

earphones on listening 

to something.

10 | A group of people 

sitting at desk using 

computers.

11 | Children sitting at 

computer stations on a 

long table.

4

8

012

Figure 4. Visualization of the distribution representations from pre-

trained MAP2. Each 2D Gaussian distribution is represented as

an ellipse with 95% confidence. The labels of images and related

captions are in the legend.

reduce due to the model’s limited learning capacity.

4.4. Uncertainty Modeling Analysis

Visualization. To perform visualization analysis for distri-

bution representations from pre-trained MAP, we conduct

2D toy experiments for the images and related descriptions.

Fig. 4 shows the behaviors of the distribution representations,

which present that distributions with similar semantics are

clustered together. The shapes of images and related descrip-

tions are similar, and the ellipses are closed, showing that the

images and text cover similar meanings. For example, since

image ª4º is a part of image ª8º, ellipse ª8º almost includes

all regions of ellipse ª4º. The intersection of ellipses (im-

ages ª0º, ª4º, ª8º and their corresponding captions) might

indicate ªa young boyº in images and text. Similar behaviors

of our MAP can be found in more visualizations in Ap-

pendix B.8. Intuitively, as shown in visualization results,

uncertainty modeling facilitates the model to express rich

semantic information and complex relationships.

Cases for diverse predictions. Semantic uncertainty is ubiq-

uitous in multimodal tasks. For multimodal understanding

tasks such as VQA, an advantage of uncertainty modeling is

that multiple predictions can be sampled from distribution

representations, which provides diversity. Consider case 3
in Fig. 5, MAP can learn multiple plausible answers (field,

park and grass) from the distribution representations, which

is close to our real world. In contrast, the point representa-

tions from MAP without PDE always generate one answer

ignoring other possible expressions. Moreover, distribution

representations can also help other multimodal tasks, such

1The images and related captions come from MSCOCO dataset [30].

Case 1

Question: What is this food?

MAP w/o PDE: Cake

MAP:

Dessert

Cake

Muffin

Case 2

Question: What is in the man's ear?

MAP w/o PDE: Headphones

MAP:

Headphones

Headset

Earbuds

Case 3

Question: Where are the people flying 

kites?

MAP w/o PDE: Field

MAP:

Field

Park

Grass

Figure 5. Predictions sampled from the distribution representa-

tions3.

as image captioning, to generate several suitable captions,

which benefit from diverse correspondences caused by un-

certainty modeling.

5. Conclusions

In this work, we focus on the multimodal uncertainty in

real-world objects by modeling this onto probability distri-

butions. By considering sequence-level and feature-level

interactions, we proposed a Probability Distribution En-

coder (PDE) to gain distribution representations for dif-

ferent modalities. Our experiments showed that distribu-

tion representations are beneficial for the VL downstream

tasks. In addition, uncertainty modeling facilitates diverse

predictions. To learn multimodal uncertainty in large-scale

data, we designed three new pre-training tasks (D-MLM, D-

ITM and D-VLC). Furthermore, we propose an end-to-end

Multimodal uncertainty-Aware vision-language Pre-training

model (MAP) to obtain generic distribution representations.

We demonstrate the effectiveness of the proposed MAP on

several VL downstream tasks empirically. In the future, we

will explore more distribution subspaces and experiments on

larger datasets.
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