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Abstract

Convolutional neural networks (CNNs) have shown re-
markable performance on various tasks. Despite its
widespread adoption, the decision procedure of the network
still lacks transparency and interpretability, making it diffi-
cult to enhance the performance further. Hence, there has
been considerable interest in providing explanation and in-
terpretability for CNNs over the last few years. Explain-
able artificial intelligence (XAI) investigates the relation-
ship between input images or videos and output predic-
tions. Recent studies have achieved outstanding success
in explaining 2D image classification ConvNets. On the
other hand, due to the high computation cost and complex-
ity of video data, the explanation of 3D video recognition
ConvNets is relatively less studied. And none of them are
able to produce a high-level explanation. In this paper, we
propose a STCE (Spatial-temporal Concept-based Expla-
nation) framework for interpreting 3D ConvNets. In our
approach: (1) videos are represented with high-level su-
pervoxels, similar supervoxels are clustered as a concept,
which is straightforward for human to understand; and (2)
the interpreting framework calculates a score for each con-
cept, which reflects its significance in the ConvNet decision
procedure. Experiments on diverse 3D ConvNets demon-
strate that our method can identify global concepts with dif-
ferent importance levels, allowing us to investigate the im-
pact of the concepts on a target task, such as action recog-
nition, in-depth. The source codes are publicly available at
https://github.com/yingji425/STCE.

1. Introduction
With the rapid development of large-scale datasets and

powerful computational devices, convolutional neural net-
works (CNNs) have been widely used in various computer
vision tasks, such as image classification [16, 17, 37], se-
mantic segmentation [24, 42], object detection [22, 27] and
so on. Despite the fact that CNN models show competi-
tive performance in these tasks, current neural networks are
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still regarded as black boxes. Due to the large number of
parameters and high nonlinearity [25], the underlying pre-
diction mechanism is opaque. This reduces the reliability of
neural networks in high-stakes real-world applications such
as autonomous driving and medical image analysis [18,29].
In recent years, explainable artificial intelligence (XAI) has
become a popular topic to help comprehend model predic-
tions and increase the credibility of CNNs.

In general, the explanation methods can be divided into
local methods and global methods. Local methods con-
centrate on understanding predictions on individual data in-
stances, while global methods attempt to explain the overall
logic of the target ConvNets at the class or dataset level. In
this paper, we focus on the global explanation, which is cru-
cial to comprehend the overall behavior of the black boxes.

There are already some methods that provide explana-
tions for 2D image classification ConvNets [6,14,26,28,36],
and most of them are local techniques. Zhou et al. [43]
generated a Class Activation Map (CAM) using global av-
erage pooling for each image to highlight the discriminate
regions that are used for the 2D ConvNet to predict class.
Ribeiro et al. proposed Local Interpretable Model-agnostic
Explanations (LIME) [28] to interpret the model by approx-
imating the predictions in a local similarity neighborhood
of a target image. However, these methods are not only
limited to a single prediction, but they are also difficult for
humans to comprehend. The highlighted regions are pixel-
level, devoid of human-understandable semantic interpreta-
tion. More recently, interpretation with high-level concepts
has attracted considerable attention. Kim et al. [19] intro-
duced concept activation vectors (CAVs) which use the di-
rectional derivatives to quantify the importance of the net-
work prediction to user-defined concepts. Based on [19],
Ghorbani et al. [12] proposed ACE (Automatic Concept-
based) to discover the relationship between image segments
and image classification prediction.

Despite solid achievements in 2D image classification
interpretation, only a few studies have attempted to inter-
pret 3D action recognition ConvNets, primarily due to the
huge computational cost and rich spatial-temporal content
of video data. Existing 3D explanation methods are mainly
extended from 2D local explanation methods. Stergiou et
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al. [33] proposed Saliency Tubes, which applied Grad-
CAM [31] to 3D ConvNets. The activation maps of the 3D
ConvNet’s final convolutional layer are combined to pro-
duce heatmaps of input videos. Li et al. [21] adopt ex-
tremal perturbations (EP) [8] to the video case by adding
a spatial-temporal smoothness constraint. However, these
methods have two major drawbacks: (1) the discriminative
3D regions are based on a single frame and lack spatial-
temporal consistency; and (2) the regions are pixel-level and
lack high-level semantic information.

To address these issues, we extend 2D ACE [12] to 3D
and propose a high-level global interpretation. For each
class, videos are segmented into multiple spatial-temporal
supervoxels. Similar supervoxels are grouped to form a
meaningful concept. Our method can assign a score for
each concept according to its contribution when network
predicting. When interpreting the decision procedure of 3D
action recognition ConvNets, instead of highlighting essen-
tial pixels for a single video, our method can answer two
fundamental questions at the class level: which objects or
motions in the video are significant for a particular action
recognition class and which object or motion is the most
crucial clue in this class.

Our main contributions can be summarized as follows:

1. We propose a novel Spatial-temporal Concept-based Ex-
planation (STCE) for 3D ConvNets. The discrimina-
tive regions are spatial-temporal continuous and human-
understandable. To the best of our knowledge, STCE is
among the first to achieve action recognition interpreta-
tion based on high-level video supervoxels.

2. We validate our method using various 3D ConvNets
on the Kinetics and KTH datasets. Both qualitative
and quantitative results demonstrate that our method can
explain the 3D action recognition ConvNets consistent
with human cognition.

2. Related work

In this section, we introduce existing attribution expla-
nation literature for 2D image classification ConvNets and
3D action recognition ConvNets.

2.1. Interpretation for 2D ConvNets

Given an input image and a trained 2D ConvNet, the ob-
jective of the attribution method is to quantify the contri-
bution of each element in the input. On the basis of which
attribute the explanation model evaluates, there are mainly
two types of techniques: input and concept attribution. The
input attribution explains the ConvNet prediction outcomes
in terms of the significance of the input image pixels. Con-
cept attribution, on the other hand, identifies the contri-
bution of human-understandable concepts to the predicted
class of an image.

Input attribution The input attribution method is the
most commonly used in recent literature. Activation-
based methods, such as CAM [43], Grad-CAM [31], Grad-
CAM++ [5], and Score-CAM [38], generate weights by uti-
lizing the activations or gradients from intermediate layers
of the neural network, then project back the feature maps to
the input size in order to produce a heatmap. Perturbation-
based methods [7–9, 26, 44] focus on perturbing the input
image pixels using occlusion, mask, or generative algo-
rithms. The importance of each pixel is quantified accord-
ing to the output changes. Since the semantic meanings of
pixels are diverse and highly dependent upon one another,
explanation methods based on input attribution may result
in contradictory explanations for different data instances in
the same class [19].

Concept attribution To address this issue, recent re-
search employs human-friendly concepts to interpret 2D
ConvNet predictions. The concepts are generated from
training data or user-interested data. In [19], every con-
cept is represented by a concept activation vector (CAV).
The importance of the concept is evaluated based on the
changes in target images toward the direction of the con-
cept. Ghorbani et al. [12] defined the concept as super-
pixel segmentation extracted from input images in order to
compute CAVs without human supervision. Based on [19],
Goyal et al. [13] utilized a conditional VAE model to mea-
sure the causal effect of different concepts. Ge et al. [11]
discussed the structural relationships between concepts with
a GNN-based graph reasoning network, so that both visual
and structural clues can be used for explanation.

2.2. Interpretation for 3D ConvNets

The goal of interpretation for 3D ConvNets is to inves-
tigate the essential regions in both spatial and temporal di-
mensions of video data. Only a few methods visualize the
prediction process of 3D ConvNets. Several methods un-
derstand videos using 2D local input attribution techniques
initially designed for images by introducing a temporal do-
main. Srinivasan et al. [32] utilized the Layer-wise Rele-
vance Propagation (LRP) [2] to interpret the action recogni-
tion based on handcrafted features and Fisher vector. Hart-
ley et al. [15] improved the 2D Superpixels Weighted by
Average Gradient (SWAG) [14] to the video version by
averaging and smoothing a saliency map at the superpixel
level. Li et al. [21] introduced a smoothness loss func-
tion to smooth the perturbation results in both spatial and
temporal dimensions.

However, these methods are only able to provide coarse
video regions that lack exact semantic meaning. To our
knowledge, no research has yet been proposed on the con-
cept attribution for 3D action recognition ConvNets. Hence,
the fundamental idea of this paper is to provide a concept-
based high-level interpretation for video understanding.
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Figure 1. Illustration of the proposed Spatial-temporal Concept-based Explanation (STCE) framework. The input is videos from
the same class. The video shown here is from “cooking sausages” class in the Kinetics-700 dataset. The procedure consists of two steps:
(1) raw videos are first segmented into multi-resolution spatial-temporal volumes. The green, blue, and orange color shown in “multi-
resolution segmentation” step indicates that videos are segmented into 15, 50, and 80 supervoxels, respectively. A 3D ConvNet trained on
the dataset is then used to extract the feature vector of each supervoxel; (2) the supervoxels are grouped into different clusters. Each cluster
is a meaningful concept, such as “hand” or “sausages” or “grass”. Such high-level concepts are friendly for humans to comprehend. STCE
then calculates the importance score for each concept. The higher score represents that the concept is more important for the ConvNet.

3. Proposed method

Overview In this section, we introduce the details of
the proposed Spatial-temporal Concept-based Explanation
(STCE) method. The pipeline is shown in Figure 1. Given a
video classification dataset and a 3D ConvNet that has been
trained using the dataset, we interpret the network by inves-
tigating the most important spatial-temporal volumes from
the training videos. Videos are first segmented into super-
voxels. Similar supervoxels with each class are then clus-
tered and lead to a set of spatial-temporal concepts. STCE
finally evaluates the importance score of each concept with
respect to the class it belongs. Within the prediction-making
procedure, the network pays more attention to the concepts
with high scores.

3.1. Supervoxel representation

Let V = {(vn, y)}Nn=1 be an action recognition dataset
which contains N videos. vn is the nth video and y ∈
(1, Y ) is the label. Each video is first segmented into su-
pervoxels. In contrast to previous research [40, 41], which

simply divided videos into segments with equal time in-
tervals, we use a 3D SLIC [1] to divide videos due to
its superior performance in video segmentation [39]. In
this case, videos are segmented into meaningful spatial-
temporal volumes, such as a wheel of a moving car or a
swinging arm. Since a video contains information ranging
from fine-grained still texture to coarse-grained continuous
action motion, each video is segmented 3 times with differ-
ent levels of resolution to preserve the hierarchical informa-
tion. For each video vn, [ssmall

n , smiddle
n , slargen ] contains

different size of segments. To avoid calculational cost for
redundant supervoxels, we calculate the similarity between
every two supervoxels. When the Jaccard index score [10]
between two supervoxels is larger than a threshold (we used
0.5 in the experiments), these two segments are recognized
as similar pairs. Duplicate segments will be removed, and
only the most distinguishable supervoxels will remain.

We train a 3D ConvNet from scratch on V and use it as a
feature extractor. Each supervoxel is resized to the standard
input size of the network. The empty regions in each frame
are filled with average image value, as depicted in grey in
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Figure 2. Pipeline to generate a concept activation vector. The
inputs are concept supervoxels and the same number of random
videos. The direction of the red arrow is orthogonal to the decision
boundary of the classifier. The vector vlc is used to represent the
concept.

Figure 1. The feature vectors are extracted from the top
layer l for each supervoxel.

3.2. Concept-based explanation

After extracting the deep features, supervoxels of class
y are categorized into distinct concepts. By calculating the
Euclidean distance between every pair of supervoxels, simi-
lar supervoxels are grouped as a single concept. To preserve
the distinctiveness between different clusters, we retain only
a small number of segments (40 in our experiment) that are
close to the center of each concept. The remaining seg-
ments are discarded. Videos in class y can be represented
as C concepts, where C = [c1, c2, ..., cC ], and each con-
cept c contains 40 supervoxels. syc denotes all the segments
belonging to the cth concept.

To determine which concept the network pays more at-
tention to when making the prediction, we continue to eval-
uate the importance rating for each concept. To this end,
we first calculate a concept activation vector (CAV) [19] to
characterize the concept. The pipeline to generate the vector
vlc is illustrated in Figure 2. syc are put into the trained Con-
vNet as positive samples, while a group of random videos
from irrelevant datasets is used as negative samples. Using
the 3D ConvNet, features are extracted from both concept
supervoxels and random videos. Then a linear classifier is
learned to separate the positive and negative samples. The
vector vlc that is orthogonal to the decision boundary is used
to represent the cth concept.

In order to figure out the impact of the concept c given
to a video vn from class y, we follow the idea from [19] to
calculate the gradient of logit with respect to the activations
of vn in layer l. Thus the importance score of a particular
concept can be computed as Ic,y,l(vn):

Ic,y,l(vn) = lim
ϵ→0

pl,y(fl(vn) + ϵvlc)− pl,y(fl(vn))

ϵ

= ∇pl,y(fl(vn)) · vlc (1)

where fl(vn) is the feature vector of the input video, pl,y is
the logit for the video vn from class y, and vlc is the concept
vector.

When Ic,y,l(vn) is greater than zero, it indicates that
this concept positively affects the ConvNet’s prediction for
video vn. If Ic,y,l(vn) is less than zero, the concept has a
negative impact.

For one class with K input videos, we compute the di-
rectional derivatives for each video. The total importance
score for one concept is defined as:

Sc,y,l =
|vn ∈ V : Ic,y,l(vn) > 0|

K
∈ [0, 1] (2)

For each concept c, the score Sc,y,l computes the pro-
portion of input videos that are positively influenced by the
concept. And the higher S indicates the most concerning
part for a 3D ConvNet to recognize the video. By sorting
the scores, we can at last determine the importance rank of
each concept for class y. Unlike previous research, which
assessed the importance score of each pixel, our method in-
terprets the ConvNet using concepts with videos from the
entire class.

4. Experiment
In this section, we present empirical evaluations of our

proposed STCE interpretation method for the 3D ConvNet.
Section 4.1 describes the dataset and system set-up. In Sec-
tion 4.2, the evaluation metric for the experiments is in-
troduced. Section 4.3 presents the quantitative results of
adding and removing concepts. Section 4.4 interprets the
ConvNet by visualizing the concept frames compared to
raw videos. Finally, Section 4.5 discusses the influence of
different parameters.

4.1. Implementation details

Datasets We evaluate our method on two popular
datasets: Kinetics-700 human action recognition dataset [3]
and KTH Action dataset [30].

The Kinetics dataset contains 700 action classes. Our
STCE interprets the performance of ConvNet at the class
level. Thus, we randomly select 10 classes from the raw
dataset to conduct the interpretability experiment. As train-
ing data, a total of 6, 846 videos are utilized, while as test
data, 480 videos are utilized. The video clips have variable
high resolutions.

The current KTH dataset includes six types of human ac-
tions: walking, jogging, running, boxing, hand waving, and
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hand clapping. In total, the dataset contains 2, 391 video
sequences. Each video has a low resolution of 160 × 120.
We follow the experiment setup of [23], 80% of the dataset
(1528 videos) are used as training data, and the remaining
20% (863 videos) are used as validation.

3D ConvNet Experiments are conducted on three stan-
dard 3D ConvNet architectures: C3D [34], R3D-18 [35]
and Inflated 3D (I3D) network [4]. Each of the networks
is trained from scratch. Following [34], video frames in
the Kinetics dataset are resized into 128 × 171 pixels. Due
to the low resolution, videos in the KTH dataset are re-
sized to 120×120. Random horizontal flipping and random
cropping are used in data augmentation. The training video
frames are randomly cropped to the standard input size of
112 × 112, while the test video frames are center cropped.
In the training stage, 16 continuous frames are randomly
chosen as input. In the test stage, the middle 16 contin-
uous frames are fed into the network. All the ConvNets
are optimized using stochastic gradient descent (SGD) with
momentum set to 0.9. The total number of iterations is 150
epochs. The batch size is 64. The learning rate starts from
0.01 for the first 50 epochs and decreases by a factor of 10
for every 50 epoch. The accuracy derived from the end-to-
end ConvNet is the baseline in our experiments.

STCE configuration After training a 3D ConvNet, the
next step is to interpret the prediction procedure. We ran-
domly select 200 videos from the training set to generate
concepts per class. We employ three different resolution
levels to segment videos. Each video is segmented into
15, 50, and 80 supervoxels separately. Similar supervoxels
within a single video are eliminated. The number of clus-
ters for each class is set to 25. Each cluster is a concept. We
only retain 40 supervoxels in each concept. The activation
for each supervoxel is extracted from the top layer l. For
C3D, the features from the last fully connected layer (fc7)
are extracted. The global average pooling layer is used to
extract features for R3D and I3D. Furthermore, we also gen-
erate 50 groups of random videos from the HMDB database
[20]. The random videos are used to differentiate the con-
cept voxels and calculate concept activation vectors, as de-
scribed in Figure 2. All experiments are implemented in
TensorFlow framework with two 24G NVIDIA RTX 3090
GPUs.

4.2. Evaluation overview

This section introduces the evaluation procedure for
STCE. We validate the concepts calculated in Section 3.2
on the test data. After calculating the importance score Ic,y,l
with training data, the cth concept for class y can be repre-
sented as (ryc , f

y
c ), where ryc represents the importance rank

of the concept, and fy
c is the feature vector of the clustering

center that has the same dimension as the supervoxel’s acti-
vation. To quantitatively evaluate the influence of each con-

Figure 3. Example of adding concepts from a blank video. The
sample frame is extracted from the “checking watch” class. In
each step, supervoxels belonging to a specific concept are added to
the existing video. For example, the first video represents adding
supervoxels belonging to the “watch” concept. The second video
represents adding supervoxels that belong to the “left hand” con-
cept to the first video.

Figure 4. Example of removing concepts from test video. The
sample frame is extracted from “delivering mail” class. In each
step, all supervoxels from one concept are removed from the raw
video.

cept, we compute the recognition accuracy by adding and
removing video concepts one by one from the test video.

For each test video tx, the video is also segmented into
P supervoxels. The pth segment sxp can be represented as
tx masked with a mask mx

p :

sxp = mx
p ⊙ tx (3)

As demonstrated by Equation 4, each supervoxel is as-
signed to the closest concept c by calculating the distance
between it and each clustering center.

c = argmin
c

D(fx
p , f

y
c ) (4)

where fx
p is the feature vector of sxp .

Assume that we have a blank video volume of the same
size as the test video tx. When supervoxels from different
concepts are added to the blank video, the visible regions of
the video can be generated as a spatial-temporal volume:

Rq
x =

q∑
j=1

Mx
j ⊙ tx (5)

where Mx
j is the sum of supervoxel masks that belongs to

concept j. q is the number of concepts that will be set in the
following experiments.

As shown in Figure 3, we add supervoxels to a blank
video one by one. The intermediate examples are Rq

x with
different values of q. When adding all the supervoxel seg-
ments from tx, the blank video will be the same as the test
video tx.
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(a) Importance score = 0.94 (b) Importance score = 0.89

(c) Importance score = 0.26 (d) Importance score = 0.25

Figure 5. Visualization of 4 concepts from the “bending back” class using C3D network. The first row of each subfigure is highlighted
supervoxels frames. The second row is video frames from raw videos. Figures 5a and 5b are the most two important concepts for ConvNet
prediction. The importance scores are 0.94 and 0.89. Figures 5d and 5c are two concepts with the least significance. The importance
scores are 0.25 and 0.26.

Table 1. The recognition accuracies of adding concepts using the
Kinetics dataset. The baseline is the end-to-end accuracy (%) by
3D ConvNets.

Model Concepts 1 2 3 4 5 Baseline

C3D
Top 22.29 34.79 43.33 50.83 58.54

79.58Random 21.88 33.33 39.79 49.17 55.83
Least 23.33 30.63 37.29 45.83 52.29

R3D
Top 11.67 23.96 32.92 39.38 46.67

75.62Random 10.63 21.25 32.50 37.71 41.25
Least 9.79 16.04 26.04 33.13 41.46

I3D
Top 23.33 37.92 46.88 54.38 61.88

85.63Random 25.83 37.50 46.04 52.71 56.67
Least 25.42 37.50 47.29 51.46 55.83

Table 2. The recognition accuracies of removing concepts in Ki-
netics Dataset. The accuracy decreases the most when the most
significant concepts are removed.

Model Concepts 1 2 3 4 5 Baseline

C3D
Top 74.38 60.21 55.42 47.50 43.54

79.58Random 74.38 64.38 59.38 51.88 45.00
Least 75.21 66.04 60.21 53.75 47.71

R3D
Top 69.79 66.25 50.83 39.58 24.38

75.62Random 72.29 64.38 51.04 39.79 28.13
Least 73.33 64.38 51.67 42.29 28.13

I3D
Top 74.58 65.63 58.96 49.79 41.88

85.63Random 78.33 70.83 60.42 53.75 43.96
Least 80.21 71.25 65.00 57.92 46.25

In contrast, when supervoxels are removed from raw
video tx, the visible regions are represented as (1−Mx

j )⊙
tx. Figure 4 demonstrates the procedure of removing differ-
ent concepts.

4.3. Quantitative analysis

In our experiments, q in Equation 5 is set to 5, which in-
dicates at most 5 different concepts will be removed from
the raw video. For each test video, when adding and re-
moving the concept, we feed the spatial-temporal volume
Rq

x into the ConvNet and make a prediction. We then com-

pare the action recognition accuracy with the baseline.

Table 1 represents the experimental results of adding
concepts using the Kinetics dataset. For each model, the
first row represents the accuracy of adding concepts with
the highest scores. The second raw is adding concepts with
random scores. The third row is adding concepts with the
lowest scores. It can be seen that adding the most impor-
tant concepts can lead to higher recognition accuracy for
the ConvNets, whereas the concepts with the lowest impor-
tance score can offer very little information. In addition, we
observe that after adding 5 important concepts, the accuracy
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Table 3. Recognition accuracy of adding concepts on the KTH
dataset with Standard setting.

Model Concepts 1 2 3 4 5 baseline

C3D
Top 21.21 23.52 29.43 39.17 46.23

91.31Random 19.35 23.52 25.26 28.27 32.91
Least 17.27 18.77 20.97 25.26 31.87

Table 4. Recognition accuracy of removing concepts on the KTH
dataset with Standard setting.

Model Concepts 1 2 3 4 5 Baseline

C3D
Top 89.92 84.94 81.11 76.83 70.45

91.31Random 90.50 89.80 86.67 82.04 74.74
Least 90.50 89.80 89.46 86.44 81.23

Table 5. Recognition accuracy of adding concepts on the KTH
dataset with Small setting.

Model Concepts 1 2 3 4 5 baseline

C3D
Top 35.46 54.35 66.63 69.52 73.81

91.31Random 27.69 43.92 59.68 67.44 71.84
Least 22.94 34.07 48.44 65.82 68.37

Table 6. Recognition accuracy of removing concepts on the KTH
dataset with Small setting.

Model Concepts 1 2 3 4 5 Baseline

C3D
Top 89.69 86.10 78.10 66.86 59.68

91.31Random 90.50 88.88 78.68 73.93 69.18
Least 91.43 89.92 85.75 78.91 71.73

can exceed 70% of the baseline for C3D and I3D, and 60%
of the baseline for R3D.

Table 2 demonstrates the influence of removing con-
cepts. It is evident that removing the essential concepts will
result in a reduction in accuracy. Especially for R3D, the
accuracy is only 30% of the baseline after only removing
five concepts. These experimental results indicate that our
STCE is capable of revealing which concept the ConvNets
focus on and how much role it plays during the prediction.

4.4. Qualitative analysis

In order to qualitatively evaluate our proposed model, we
visualize video frames of the detected concepts in Figure 5.
In particular, we illustrate the most and the least significant
concept examples from the “bending back” class in Kinet-
ics dataset. Figure 5a and 5b present the supervoxel frames
belongs to the top 2 important concepts. The highest impor-
tance score is close to 1, indicating that this concept posi-
tively influenced nearly all of the test videos in this class.
The first row of each figure shows the highlighted regions,
while the second row displays the corresponding raw video
frames. It is evident that the dominant actions are body parts
and bending actions for predicting the “bending back” class.

Similarly, we also visualize two groups of supervoxels
from the least important concepts in Figure 5c and 5d. In
contrast, these highlighted regions are primarily located in
the background and lack significance. The visualization re-
sults interpret what the 3D ConvNet focuses on when rec-
ognizing actions. It is obvious that the concepts are intuitive
and consistent with human understanding. The remarkable
consistency of both quantitative and qualitative results con-
firms that our proposed STCE is effective for interpreting
3D ConvNets.

4.5. Discussion

In this section, the influence of various parameter set-
tings is examined. We mainly explore the number of con-

(a) KTH standard setting (b) KTH small setting

Figure 6. The performance of adding concepts using standard and
small settings in the “jogging” class from the KTH dataset. The
horizontal axis is the number of concepts. The vertical axis is the
recognition accuracy. The left Figure 6a is the accuracy with the
standard setting. The right Figure 6b indicates the results with the
small setting.

(a) KTH standard setting (b) KTH small setting

Figure 7. The recognition accuracy of removing different concepts
using standard and small settings in the “jogging” class from the
KTH dataset.

cepts and supervoxels, through comparative experiments on
the KTH dataset. In particular, we establish two types of
parameter settings for extracting important concepts.

Standard setting This setting is the same as experiments
on the Kinetics dataset in Section 4.3. Each video is divided
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(a) Raw video frames

(b) Concept supervoxel frames excrated using the standard setting

(c) Concept supervoxel frames extracted using the small setting

Figure 8. The concept frames from the “boxing” class in the KTH
dataset with standard and small settings.

into 15, 50, and 80 segments separately. The number of
concept clusters is set to 25 .

Small setting We also conduct STCE with small param-
eters because the KTH dataset has a relatively low resolu-
tion. In this instance, each video is segmented into 15, 30
and 60 segments, respectively. All the supervoxels in the
same class are clustered into 15 concepts.

Table 3 and Table 4 illustrate the accuracy of action
recognition with the standard setting, while Table 5 and Ta-
ble 6 show the accuracy with small setting. It can be seen
that both settings are consistent with the tendency demon-
strated in Section 4.3. However, we also observe that, de-
spite the fact that adding concepts will undoubtedly improve
accuracy, the accuracy can only reach 50% of the baseline
in the standard setting. The phenomenon is the same when
concepts are removed from the test video. On the other
hand, using small parameters and clusters can improve the
effectiveness of concepts more then standard setting, which
can reach 80% of the baseline. We take the “jogging” class
as an example and display the statistical chart in Figure 6
and Figure 7. From the statistical chart, we can conclude
that for low-resolution datasets, the ConvNets obtain more
information from large-scale concepts.

To more intuitively visualize the difference between
these two settings, Figure 8 shows the concept results with
both settings extracted from the “boxing” class from the
same raw video. Figure 8b represents the supervoxel frames
from the most important concepts with standard setting.
Figure 8c is also the most essential concept but uses a small
setting. Due to the low resolution and large blank back-
ground, it is evident that most of the essential regions for the

(a) Raw video frames

(b) Concept supervoxel frames using standard setting

Figure 9. The concept frames from the “checking watch” class in
the Kinetics dataset with standard settings.

KTH dataset are located on human body parts. This means
that using a standard setting will result in quite a number
of backgrounds, which can not improve the recognition ac-
curacy. When using a small setting, the clustered concepts
are easier to recognize. For comparison, we also visualize
the concept from the “checking watch” class in the Kinet-
ics dataset in Figure 9, the high-resolution datasets contain
abundant information such as watch bands, hands, desks,
and watches. Even small concepts are sufficient to provide
enough information.

5. Conclusion

In this paper, we proposed a Spatial-temporal Concept-
based Explanation (STCE) framework for interpreting 3D
ConvNet. In contrast to the prior pixel-level strategy, which
focuses on a single instance, our research is the first attempt
to offer a human-understandable high-level explanation. In
our method, videos from an entire class are segmented and
clustered into concepts. Each concept comprises similar
meaningful supervoxels, such as arms or watches. We then
compute the importance scores for each concept. Exten-
sive experiments on three different 3D ConvNets demon-
strate the efficiency of STCE. Later, we visualize the de-
tected concepts according to the scores, here we discover
that the most and the least essential concepts are consistent
with human perception. Finally, we investigate the choice
of various parameters for the low-resolution dataset. The
number of concepts and clusters does not affect the ten-
dency reported in the experiments. We believe our method
successfully discloses the prediction mechanism under the
3D ConvNet. However, because the concepts are calculated
from the class level, our method will be time-consuming for
large datasets. In the future, we will concentrate on reduc-
ing time costs and enhancing ConvNet performance with
important concepts.
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