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Abstract

3D interacting hand pose estimation from a single RGB
image is a challenging task, due to serious self-occlusion
and inter-occlusion towards hands, confusing similar ap-
pearance patterns between 2 hands, ill-posed joint posi-
tion mapping from 2D to 3D, etc.. To address these, we
propose to extend A2J-the state-of-the-art depth-based 3D
single hand pose estimation method-to RGB domain under
interacting hand condition. Our key idea is to equip A2J
with strong local-global aware ability to well capture in-
teracting hands’ local fine details and global articulated
clues among joints jointly. To this end, A2J is evolved un-
der Transformer’s non-local encoding-decoding framework
to build A2J-Transformer. It holds 3 main advantages over
A2J. First, self-attention across local anchor points is built
to make them global spatial context aware to better cap-
ture joints’ articulation clues for resisting occlusion. Sec-
ondly, each anchor point is regarded as learnable query
with adaptive feature learning for facilitating pattern fitting
capacity, instead of having the same local representation
with the others. Last but not least, anchor point locates
in 3D space instead of 2D as in A2J, to leverage 3D pose
prediction. Experiments on challenging InterHand 2.6M
demonstrate that, A2J-Transformer can achieve state-of-
the-art model-free performance (3.38mm MPJPE advance-
ment in 2-hand case) and can also be applied to depth
domain with strong generalization. The code is avaliable
at https://github.com/ChanglongJiangGit/
A2J-Transformer.

†Yang Xiao is corresponding author(Yang Xiao@hust.edu.cn).
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Figure 1. The main idea of A2J-Transformer. 3D anchors are
uniformly set and act as local regressors to predict each hand
joint. Meanwhile, they are also used as queries, and the interaction
among them is established to acquire global context.

1. Introduction

3D interacting hand pose estimation from a single RGB
image can be widely applied to the fields of virtual reality,
augmented reality, human-computer interaction, etc.. [32,
34, 37]. Although the paid efforts, it still remains as a
challenging research task due to the main issues of serious
self-occlusion and inter-occlusion towards hands [7, 12, 16,
22, 27], confusing similar appearance patterns between 2
hands [12, 19, 27], and the ill-posed characteristics of esti-
mating 3D hand pose via monocular RGB image [7,16,28].

The existing methods can be generally categorized into
model-based [1,2,21,29,30,35,39,41,48] and model-free [5,
7,12,17,19,22,26,27,29,43] groups. Due to model’s strong
prior knowledge on hands, the former paradigm is over-
all of more promising performance. However, model-based
methods generally require complex personalized model cal-
ibration, which is sensitive to initialization and susceptible
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to trap in local minima [11, 12]. This is actually not pre-
ferred by the practical applications. Accordingly, we focus
on model-free manner in regression way. The key idea is
that, for effective 3D interacting hand pose estimation the
predictor should be well aware of joints’ local fine details
and global articulated context simultaneously to resist oc-
clusion and confusing appearance pattern issues. To this
end, we propose to extend the SOTA depth-based single
hand 3D pose estimation method A2J [43] to 3D interact-
ing hand pose estimation task from a single RGB image.

Although A2J’s superiority with ensemble local regres-
sion, intuitively applying it to our task cannot ensure
promising performance, since it generally suffers from 3
main defects as below. First, the local anchor points for
predicting offsets between them and joints lack interaction
among each other. This leads to the fact that, joints’ global
articulated clues cannot be well captured to resist occlusion.
Secondly, the anchor points within the certain spatial range
share the same single-scale local convolution feature, which
essentially limits the discrimination capacity on confusing
visual patterns towards the interacting hands. Last, anchor
points locate within 2D plane, which is not optimal for al-
leviating the ill-posed 2D to 3D lifting problem with single
RGB image. To address these, we propose to extend A2J un-
der Transformer’s non-local encoding-decoding framework
to build A2J-Transformer, with anchor point-wise adaptive
multi-scale feature learning and 3D anchor point setup.

Particularly, the anchor point within A2J is evolved as
the learnable query under Transformer framework. Each
query will predict its position offsets to all the joints of
the 2 hands. Joint’s position is finally estimated via fusing
the prediction results from all queries in a linear weight-
ing way. That is to say, joint’s position is determined by
all the queries located over the whole image of global spa-
tial perspective. Meanwhile, the setting query number is
flexible, which is not strictly constrained by joint number
as in [12]. Thanks to Transformer’s non-local self-attention
mechanism [40], during feature encoding stage the queries
can interact with each other to capture joints’ global ar-
ticulated clues, which is essentially beneficial for resisting
self-occlusion and inter-occlusion. Concerning the specific
query, adaptive local feature learning will be conducted to
extract query-wise multi-scale convolutional feature based
Resnet-50 [14]. Compared with A2J’s feature sharing strat-
egy among the neighboring anchor points, our proposition
can essentially facilitate query’s pattern fitting capacity both
for accurate joint localization and joint’s hand identity ver-
ification. In summary, each query will be of strong local-
global spatial awareness ability to better fit interacting hand
appearance pattern. Meanwhile to facilitate RGB-based
2D to 3D hand pose lifting problem, the queries will be
set within the 3D space instead of 2D counterpart as in
A2J [43]. In this way, each query can directly predict its

3D position offset between the joints, which cannot be ac-
quired by A2J. Overall, A2J-Transformer’s main research
idea is shown in Fig. 1.

Compared with the most recently proposed model-free
method [12] that also addresses 3D interacting hand pose
estimation using Transformer, our proposition still takes
some essential advantages. First, joint-like keypoint detec-
tion is not required. Secondly, query number is not strictly
constrained to be equal to joint number to facilitate pattern
fitting capacity. Thirdly, our query locates within 3D space
instead of 2D counterpart.

The experiments on the challenging Interhand 2.6M [29]
dataset verify that, our approach can achieve the state-of-
the-art model-free performance (3.38mm MPJPE advance-
ment in 2-hand case) for 3D interacting hand pose estima-
tion from a single RGB image. And, it significantly outper-
forms A2J by large margins (i.e., over 5mm on MPJPE). In
addition, experiments on HANDS2017 dataset [46] demon-
strate that A2J-Transformer can also be applied to depth do-
main with promising performance.

Overall, the main contributions of this paper include:
• For the first time, we extend A2J from depth domain

to RGB domain to address 3D interacting hand pose estima-
tion from a single RGB image with promising performance;

• A2J’s anchor point is evolved with Transformer’s non-
local self-attention mechanism with adaptive local feature
learning, to make it be aware of joints’ local fine details and
global articulated context simultaneously;

• Anchor point is proposed to locate within 3D space
to facilitate ill-posed 2D to 3D hand pose lifting problem
based on monocular RGB information.

2. Related Works
Many methods have been proposed for 3D hand pose es-

timation from either RGB images or depth maps. At the
same time, these methods can also be divided into single
hand pose estimation and interacting hand pose estimation
methods based on the number of input hands. Here we cat-
egorize all these methods into model-based and model-free
groups, and mainly analysis works that estimate interacting
3D hand pose from RGB images. Besides, we discuss the
usage of Transformer architectures in 3D hand pose estima-
tion field as they are highly relevant to our work.

Model-based approach. Considering that model-based
methods [1, 21, 29, 30, 33, 35, 39, 41, 48] can provide strong
prior knowledge, model-based 3D hand pose estimation
methods could achieve relatively better results by fitting
hand models. Early methods [1, 30, 39] for model-based
3D hand pose estimation used complex optimization meth-
ods to fit their proposed parameter models. However,
due to the lack of a unified model paradigm, the devel-
opment of model-based methods was somewhat limited at
that time. After the introduction of the compatible 3D
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Figure 2. The main technical pipeline of A2J-Transformer. A2J-Transformer consists of 3 main models: pyramid feature extractor, anchor
refinement model (containing feature enhancement module and anchor interaction module) and anchor offset-weight estimation model.
The anchor interaction module aims to establish the connection (orange line) between anchors (orange dots).

hand model MANO [33], subsequent model-based meth-
ods [21, 35, 41, 48] are mostly based on it while using
CNN or GCN modules. Due to the presence of a suffi-
ciently strong prior model, model-based methods generally
have good performance and are more stable than model-free
methods. However, these approaches usually lose tracking
when there are strong hand interactions and occlusions. At
the same time, modeling the hands of different people is
needed [13] in practical usage, which to a certain extent re-
duces the generalization ability of the model. Therefore, we
turn our attention to the model-free approach, which needs
no prior information and has more flexibility.

Model-free approach. Model-free approaches [2, 5, 7,
17, 19, 22, 27–29, 43] have been developed for a long time.
In particular, the task of single hand pose estimation based
on depth maps have been available for very mature meth-
ods [2, 17, 28, 43]. However, their extensions to two hands
and RGB domain are non-trivial due to the severe occlusion
and similar appearance between hand joints. After Moon
et al. [29] propose the InterHand2.6M dataset, model-free
approaches [5–7, 19, 22, 27] for interacting hand pose esti-
mation has made great progress. For be better resistant to
occlusion, some research [7, 22, 27] tend to separate the in-
teracting hands and estimate the two hands separately, some
methods [5,6] perform dense modeling by using point cloud
networks. However, the prediction of details of interact-
ing hands by these methods depend heavily on the quality
of the segmentation results or the point cloud generations.
Some methods [12, 29] obtain the coordinate of hand joints
by directly regressing the heatmap, which could be intu-
itive and flexible. However, the current methods are not
ideal for local detail feature extraction and still have per-
formance shortcomings for 3D interacting hand pose es-
timation. The proposed method of Hampali et al. [12] is

similar to ours, which directly regress the keypoints of two
hands, but there is still a problem of poor prediction effect
when having strong occlusions. In contrast, by regarding
densely distributed anchor points as local regressioners and
establishing interactions between them, our proposed A2J-
Transformer can not only extract local detailed hand poses,
but also obtain global articulated hand joints’ information.

Transformer in hand pose estimation. With the rise of
the self-attention mechanism and the proposal of the trans-
former model [40], more and more visual fields promote
their development by introducing the transformer model,
like image classification, object detection, 3D mesh recon-
struction and so on [18]. Since the Transformer model has a
strong ability in capturing non-local features which is surely
helpful for the hand pose estimation field, there has been
many works [15, 23, 24] to introduce Transformer into this
area. However, these architectures are all designed for sin-
gle hand pose estimation. Recent methods for interacting
hand pose estimation have achieved good results, but still
suffer from performance shortcomings [12] or model limi-
tations in flexibility [21].

Accordingly, our A2J-Transformer belongs to model-
free region and introduced the Transformer module. Dif-
ferent from previous works, we integrates A2J and Trans-
former into an uniform model (i.e., A2J-Transformer) with
end-to-end learning capacity, to reveal our key theoretical
insight on addressing 3D interacting hand pose estimation
(IHPE) task via concerning local and global visual con-
text jointly. Meanwhile, 2D anchor point within A2J is
evolved to 3D version adaptive to A2J-Transformer, to al-
leviate ill-posed 2D to 3D hand pose lifting problem us-
ing monocular RGB image. These propositions technically
sound with promising performance and concern 3D IHPE’s
specific characteristics deeply.
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Figure 3. The first encoder layer of feature enhancement module.

3. A2J-Transformer: Anchor-to-Joint Trans-
former Network

As shown in Fig. 2, A2J-Transformer consists of 3
main models: pyramid feature extractor, anchor refinement
model and anchor offset-weight estimation model.

3.1. Pyramid feature extractor

Since multi-scale features can obtain both global infor-
mation of the input image and retain enough detailed infor-
mation, feature pyramids are well suitable for the task of in-
teracting hand pose estimation. Therefore, ResNet-50 [14]
is used as backbone network to extract the pyramid features
from input RGB images. In particular, we get the pyramid
features by using the output layer 2-4 with 8,16,32× down
sample rates on in-plane size. Meanwhile, 3 convolution
layers are used for generating inputs of transformer model
of each feature, and 1 convolution layer is used additionally
for extracting the last feature layer to maintain more spatial
information. Finally, these 4 feature maps are sent to the
next anchor refinement model.

3.2. Anchor refinement model

Anchor refinement model aims to simultaneously focus
on the non-local articulated and the local fine-grained fea-
tures. It contains feature enhancement module and anchor
interaction module, which can enhance image features and
establish the interactions between anchors respectively.
3.2.1 Feature enhancement module

Since multi-scale features are useful for capturing global
clues and recovering local details, we integrated the self-
attention module [25] to enhance multi-scale features. So
we refer to this module as feature enhancement module,
which consists of six encoder layers. The first encoder layer
of this module is shown in Fig. 3, and the input features of
the rest encoder layers are the outputs of the previous layers.
All dimensions of input and output features are 256.

Technically, for the input feature pyramid, convolution
layer and group normalization layer [42] are firstly used to
process them to a same in-plane size. After flatten and con-
catenation, the generated features F are added to the posi-
tional encodings Pxy :

Pxy = PE(x, y), (1)

Encoder Output

Deformable Multi-
Head Cross-Attention

V Q K

Decoder Layer

Decoder Embeddings Anchor Queries

Multi-Head Self-
Attention

V Q K

Decoder Output

Figure 4. One decoder layer of anchor interaction module.

where PE means positional encoding to generate sinusoidal
embeddings from float numbers [25], and x,y represent the
in-plane positions of the feature F . Besides, we replace the
self-attention module with multi-scale deformable attention
module (MSDAM) [49] to mitigate issues of slow conver-
gence and limited feature resolution.

For self-attention module, the queries Q, keys K and val-
ues V have the same content item F , and the queries con-
tains an extra position item Pxy:

Q = F + Pxy, K = ref(F ), V = F, (2)

where ref(·) means sample reference keys following [49].
Then, Q,K, V are sent to the MSDAM to get the enhanced
features for next encoder layers.

Finally, global-aware features are generated after 6 en-
coder layers and sent to the anchor interaction module.

3.2.2 Anchor interaction module

In A2J-Transformer, a uniform distribution of 3D anchor
points are densely set up to perform direct estimation of
hand joints through these 3D anchor points. In other words,
these 3D anchor points play the role of local coordinate re-
gressors. More details on the implementation of 3D anchor
settings are described in Sec. 3.3. Estimating hand pose
through local anchor points has two advantages. First, the
setting of dense local 3D anchor points can effectively cap-
ture the refined local details from images, which has a good
effect for estimating the detail information of strong inter-
acting hands. Second,cross-attention module can establish
interaction between local anchor points to capture global
clues, which is beneficial for handling occlusion.

Based on this, anchor interaction module containing 6
decoder layers are designed to link individual anchor points,
making global information available for each anchor point.
One decoder layer is shown in Fig. 4 and for the first de-
coder layer, the Decoder Embeddings will be replaced by
the Encoder Output. All dimensions of input and output
features are 256.
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Symbol Definition

J & j Joint set and joint.j ∈ J .
A & a Anchor point set and anchor point.a ∈ A.
T i
j In-plane coordinate of joint j.

Td
j Depth coordinate of joint j.

Ci(a) In-plane coordinate of anchor point a.
Cd(a) Depth coordinate of anchor point a.
Wj(a) Weight of anchor a towards joint j.
Oi

j(a) Predicted in-plane offset towards joint j from anchor point a.
Od

j (a) Predicted depth offset towards joint j from anchor point a.

Table 1. Symbol definition within A2J-Transformer.

The symbols within A2J-Transformer are defined in
Table 1 for better explaining. Different from previous
Transformer-based works, we take the understanding of
DAB-DETR [25] and explicitly set the coordinates of each
anchor a to the queries, which we call Anchor Queries. We
denote aq = (xq, yq, dq) as the q-th anchor query, while
xq, yq, dq ∈ R denotes the coordinate of a in in-plane and
depth. For aq , the spatial encodings Pq is generated by:

Pq = MLP(PE(aq)), (3)

where parameters of MLP are shared across all layers.
For self-attention module, settings of queries, keys and

values of decoder layers are similar to the setting in feature
enhancement module:

Q = D + Pq, K = D + Pq, V = D, (4)

where D denotes the decoder embeddings.
In cross-attention module, we add the positional query

embeddings Pq to the output of self-attention module D to
get the context aware anchor informative queries Q. Be-
sides, anchor queries are directly set to the reference points
K, and V is the encoder output E:

Q = D + Pq, K = aq, V = E, (5)

and MSDAM is applied for calculating cross-attention.

3.3. Anchor offset-weight estimation model

As described in Section 3.2, when each anchor point
is linked to each other through the Transformer module,
they have both the ability to recover local details and per-
ceive global information. To get final output, anchor offset-
weight estimation model is used to estimate the 3D offsets
and weights of each anchor with respect to each hand joints.
That is, each anchor acts as a local estimator. The offsets
and weights are estimated separately for all hand joints.
Finally, we fuse the estimation results of all anchors in a
weighted summation way to get the final result of joints.

The 3D anchor structure is shown in Fig. 5. The in-plane
coordinates of 3D anchors are densely distributed on the in-
put RGB image with an in-plane stride St = 16. This could
ensure that for each pixel in the extracted feature maps,

3D Anchor Points

Predicted Joint

Predicted Offset

In-plain Stride=16

Figure 5. 3D anchors in A2J-Transformer. Joints will be estimated
from anchors and offsets.

there can be at least one anchor point corresponding to it
while reducing the model size. On this basis, we extend the
depth value number of the anchor points. In addition to the
original 0 depth value, two depth values are set at the posi-
tion of ±100 mm under the world coordinate, centered on
the root joint of each hand. This is due to the data process-
ing procedure within baseline. That is, hand joints outside
the range of ±200mm from the root of the hand are consid-
ered as invalid joints. Therefore, for the input image size
256×256, there are 16×16×3 total anchors. This setting
method extends the anchor point to the 3D space, so as to
better fit the depth coordinates of the predicted joints.

Essentially, anchor points are local regressors used to es-
timate each joint relative to itself. As shown in Fig. 2, each
anchor point returns a 3D coordinate offset from itself to all
joints in offset estimation branch. Since different anchor
points focus on different feature ranges, the contribution to
each anchor point will also be different. So we predict the
weight of each anchor point by weight estimation branch.
Therefore, by these two branches, the coordinates of each
joint can be calculated as the weighted sum of the predic-
tion results of all anchor points’ coordinates.

Technically, to get the offsets Oi
j(a) , Od

j (a) and the an-
chor weights Wj(a), 2 MLP layers are added on the outputs
of anchor interaction model. 3D offsets from each anchor
point to each joint Oj(a) are regressed by 1 MLP layer and
then divided into Oi

j(a) , Od
j (a). Another MLP layer re-

gresses each anchor weight Wj(a) for each joint. Finally,
the 3D coordinates of predicted joint j can be expressed as:

T̂ i
j =

∑
a∈A

W̃j (a)
(
Ci (a) +Oi

j (a)
)

T̂ d
j =

∑
a∈A

W̃j (a)
(
Cd (a) +Od

j (a)
) , (6)

where T̂ i
j and T̂ d

j indicate the estimated in-plane and depth
coordinate of target joint j, Ci

a and Cd
a denote the in-plane

and depth coordinates of an anchor point a. W̃j(a) is the
normalized weight from anchor point a towards joint j,
which could be calculated by soft-max:

W̃j(a) =
eWj(a)∑

a∈A

eWj(a)
. (7)
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In this way, the estimated hand joints will adaptively se-
lect those anchor points with greater contributions to itself
and give them large weights. Finally, the joint coordinates
and the anchor weights are supervised through joint estima-
tion loss and anchor point surrounding loss.

3.4. Loss functions

For training our performed A2J-Transformer model, we
utilize two loss functions: (1) joint estimation loss, (2) an-
chor surrounding loss following [43].

Joint estimation loss. After getting the estimated 3D
joint coordinates, we use the joint estimation loss to super-
vise the final output, which is formulated as:

loss1 = α
∑
j∈J

Lτ1(T̂
i
j − T i

j ) +
∑
j∈J

Lτ2(T̂
d
j − T d

j ), (8)

where T̂ i
j and T̂ d

j denotes the estimated in-plane coordi-
nate and depth coordinate of joint j from Eq.6, and T i

j

and T d
j are the given in-plane and depth GT coordinates

of joint j; parameter α defaults to 0.5 to balance the loss
between in-plane and depth offset estimation task. Lτ (·) is
the smoothL1 like loss function [31] given by:

Lτ (x) =

{
1
2τ x

2, for |x| < τ,

|x| − τ
2 , otherwise.

(9)

τ1, τ2 are set to 1, 3 for better smoothing the depth value.
Anchor surrounding loss. To lead the informative an-

chor points locate around the hand joints, thus facilitating
the generalization ability of our model, we define the an-
chor surrounding loss by:

loss2 =
∑
j∈J

Lτ1(
∑
a∈A

W̃j(a)C
i(a)− T i

j )

+
∑
j∈J

Lτ2(
∑
a∈A

W̃j(a)C
d(a)− T d

j ),
(10)

where τ1 and τ2 are also set to 1 and 3.
Finally, the total loss function is formulated as:

loss = λ1loss1 + λ2loss2. (11)

where λ1 and λ2 are set to 3 and 1 to balance two losses.

4. Experiments
4.1. Experimental setting

4.1.1 Datasets
InterHand2.6M dataset [29]. InterHand2.6M is a rep-
resentative two-hand RGB image dataset with challenging
hand interacting scenarios. It contains 1.36M train images
and 849K test images. The ground-truth contains semi-
automatically annotated 3D coordinates of 42 hand joints.
For fair comparison, we choose all test frames for result
evaluation following InterNet [29].

RHP dataset [50]. RHP is a synthesized dataset contains
two isolated hand data. 41K training and 2.7K testing sam-
ples are contained. Since the background of this dataset is
an outdoor scene, we use this dataset to approximate the
generalization ability of our model on in-the-wild condi-
tions. We also follow InterNet for fair comparison.
NYU dataset [38]. NYU is a single-hand depth image
dataset which has 72K training images and 8.2K testing
images with 3D annotation on 36 hand joints. Follow-
ing [4,10,28,43], we pick 14 of the 36 joints for evaluation.
HANDS 2017 dataset [46]. HANDS 2017 is a single-hand
depth image dataset which has 957K training images and
295K testing images combined from BigHand2.2M [47]
and First-Person Hand Action [46]. The ground-truth con-
tains 3D coordinate of 21 hand joints.

4.1.2 Evaluation metrics
The Mean Per Join Position Error (MPJPE) is used

for evaluation on InterHand2.6M [29]. It is defined as a Eu-
clidean distance (mm) between predicted and ground-truth
3D joint locations. Following [29], this metric is used af-
ter root joint alignment for each left and right hand sepa-
rately. For RHP dataset, end point error (EPE) is used,
which is defined as a mean Euclidean distance (mm) be-
tween the predicted and ground-truth 3D hand pose after
root joint alignment. For the two depth image dataset, the
average 3D distance error is used following [28, 43]. Be-
sides, FPS is used to evaluate the inference speed, and all
models are tested on single NVIDIA RTX 2080ti GPU dur-
ing inference.

4.1.3 Implementation details
A2J-Transformer is implemented using PyTorch. For

InterHand2.6M and RHP dataset, we directly crop the RGB
images and resize them to 256×256 resolution. The data
augmentations are exactly the same as InterNet [29]. For
NYU and HANDS 2017 dataset, we follow [28] to crop and
resize the depth image to 176×176. We train our model
using the Adam optimizer [20]. The learning rate is set to
1 × 10−4 with a weight decay of 1 × 10−4 in all cases.
There are totally 42 epochs for InterHand2.6M, RHP and
NYU dataset and 17 epochs for HANDS 2017 dataset.

4.2. Results

InterHand2.6M dataset: Comparison with the state-of-
the-art methods on InterHand2.6M is listed in Table 2. It
can be observed that:

• In general, A2J-Transformer outperforms other model-
free methods by a large margin testing under all scenar-
ios. This proves that our method has a significant ad-
vancement in extracting effective information from inter-
acting hands. Compared with model-based methods, A2J-
Transformer has a comparable result with the state-of-the-
art method without using any hand prior information. Be-
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Methods
MPJPE (mm) FPS Model

Single Two All (s) Size(M)

Model-based

Zhang et al. [48] - 13.48 - 17.02 143
Meng et al. [27] 8.51 13.12 10.97 15.47 55
Li et al. [21] - 8.79 - 18.05 39

Model-free

Moon et al. [29] 12.16 16.02 14.22 107.08 47
Kim et al. [19] - - 12.08 - -
Fan et al. [7] 11.32 15.57 - - -
Hampali et al. [12] 10.99 14.34 12.78 19.66 48
Ours 8.10 10.96 9.63 25.65 42

Table 2. Comparison with state-of-the-art model-based and
model-free methods on InterHand2.6M [29]. MPJPE, FPS and
model size are reported.

Methods GT S GT H EPE

Zimm. et al. [50] ✓ ✓ 30.42
chen et al. [3] ✓ ✓ 24.20
Yang et al. [44] ✓ ✓ 19.95
Spurr et al. [36] ✓ ✓ 19.73
Spurr et al. [36] % % 19.73
Moon et al. [29] % % 20.89
A2J-Transformer(Ours) % % 17.75

Table 3. EPE comparison with previous state-of-the-art methods
on RHP. Following [29], the checkmark denotes a method use
ground-truth information during inference time. S and H denote
scale and handness, respectively.

sides, A2J-Transformer has fairly fast inference speed just
behind baseline [29] and the smallest model size. In con-
clusion, our model achieves the best overall performance in
terms of performance, running speed and model size.

• Specifically, compared with baseline [29], A2J-
Transformer could get an improvement of 4.06, 5.06 and
4.59mm under three scenarios. Compared with the SOTA
model-free method [12], the improvement of our method is
2.89, 3.38 and 3.15mm. Compared with the SOTA model-
based method [21], our method could receive a compara-
ble performance under two hands scenario without requir-
ing any hand prior, which makes our model more flexible.

• For the running speed, A2J-Transformer has a fast in-
ference speed with 25 FPS, surpassing all methods except
baseline. Besides, A2J-Transformer also has the smallest
model size with only 42M parameters. These characteristics
brings our model great convenience for the future expansion
and real-time 3D hand pose estimation.

RHP dataset: Comparison on RHP dataset is shown in
Table 3. It shows that A2J-Transformer outperforms pre-
vious methods without relying on ground-truth information
during inference time. The experiments demonstrate the ef-
fectiveness on in-the-wild images and shows the good gen-
eralization ability of A2J-Transformer.

NYU and HANDS 2017 dataset: Comparison with
state-of-the-art depth based single hand estimation methods

Methods Mean Error (mm) FPS(s)

Moon et al. [28] 9.22 35
Xiong et al. [43] 8.61 105.06
Fang et al. [8] 8.29 111.20
Ours 8.43 24.81

Table 4. Performance comparison on NYU dataset [38]. Our pro-
posed A2J-Transformer can guarantee a competitive performance
for the depth image input.

Methods Mean Error (mm) FPS(s)

Ge et al. [9] 11.30 48
Yuan et al. [45] 9.97 -
Moon et al. [28] 9.95 3.5
Xiong et al. [43] 8.57 105.06
Ours 8.32 24.81

Table 5. Performance comparison on HANDS 2017 dataset [46].
Our method can get state-of-the-art performance on this dataset.

on NYU and HANDS 2017 dataset are given in Table 4 and
Table 5. Since A2J-Transformer is not specifically designed
for single hand estimation on depth image, we just changed
the input channel to verify the generalization ability of our
model through this experiment. We can summarize that:

• Although A2J-Transformer is based on the RGB im-
age of interacting hands, it still achieves state-of-the-art
performance on HANDS 2017 dataset and gets compara-
ble result on NYU dataset. This relys on the strong abil-
ity of A2J-Transformer to grasp the articulated hand infor-
mation and the fitting ability of 3D anchor points. Com-
pared with A2J [43], certain performance improvement
can be achieved on two datasets, which proves that A2J-
Transformer has a strong generalization ability.

4.3. Ablation study

4.3.1 Component effectiveness analysis
The component effectiveness analysis within A2J-

Transfomrer is executed on Interhand2.6M dataset. We ex-
plore the effectiveness of four parts: (1) Transformer-based
model (anchor refinement model), (2) A2J (anchor-to-joint)
module, (3) 3D anchor weights, (4) MSDAM. The specific
implementation details are respectively set as: (1) replacing
the anchor refinement model with the convolution modules
in A2J, (2) directly regressing the hand joints without us-
ing anchor-to-joint module, (3) setting the weights of all
anchors to all the same values and normalize them, (4) re-
placing the MSDAM with the origin attention module. The
results are listed in Table 6. It can be observed that:

• After removing the Transformer-based model and A2J
module, the performance of A2J-Transformer drops by 5
mm and 6 mm respectively, proving the effectiveness of ad-
dressing 3D interacting hand pose estimation task via con-
cerning local and global visual context jointly.

• After removing the 3D anchor weights, the perfor-
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Figure 6. Qualitative results of A2J-Transformer. We show the input, output and weights of anchors on different depth value layers. Red
dots in the three depth maps indicate the anchors set at depth positions +100mm, 0mm, and -100mm from the root joint respectively. The
shade of red dots represent the weights assigned to these anchors as described in Sec. 3.3.

Trans. A2J Weights MSDAM MPJPE (mm)

% ✓ ✓ ✓ 14.44
✓ % ✓ ✓ 15.36
✓ ✓ % ✓ 14.04
✓ ✓ ✓ % 10.69
✓ ✓ ✓ ✓ 9.63

Table 6. Component effectiveness analysis of A2J-Transformer.
‘Trans.’ means Transformer-based model (anchor refinement
model) and ‘Weights’ means 3D anchor weights.

mance of A2J-Transformer drops by 4.4 mm. This proves
that there is a performance difference in the regression re-
sults of each 3D anchor point, so the weights predicted by
the model are crucial for the prediction of hand joints.

• After replacing the MADAM with the origin atten-
tion module, the performance of A2J-Transformer drops by
1mm, which proves the MSDAM is useful to our model.

4.3.2 Anchor setting analysis

In order to explore the impact on model performance,
more in-plane and depth values are set for comparative ex-
periments. The specific setting methods and their perfor-
mance results are shown in Table. 7. All depth values are
uniformly selected near the hand joints, just like the selec-
tion of 3 depth values as described in Sec. 3.3. It can be
noticed that, when more anchor in-plane and depth values
are set, the performance of A2J-Transformer will improve
while the inference speed will decrease in general. In or-
der to strike a balance between accuracy and efficiency, the
value of 256 and 3 are finally choosen.

4.4. Qualitative evaluation and limitation

We show the qualitative evaluation results in Fig. 6. We
can see that, A2J-Transformer could automatically enlarge
the informative anchors’ weights when different joint coor-
dinates need to be predicted. The model achieves accurate
results even with severe occlusions in the interacting hands.
The major limitation of our method is when there is a large
area of occlusion or missing in the hand area, the results

In-plane Depth MPJPE (mm) FPS (s)

256 7 9.50 19.33
256 5 9.61 21.21
256 3 9.63 25.65
256 1 9.75 26.06
64 3 12.28 25.25
16 3 14.07 27.39
4 3 15.48 27.63

Table 7. Anchor setting analysis of A2J-Transformer. ‘In-plane’
and ‘Depth’ denotes the number of selected anchor number values
for in-plane and depth direction, respectively.

predicted by our model will have deviations.

5. Conclusion

In this paper, an 3D monocular RGB interacting hand
pose estimation approach termed A2J-Transformer is pro-
posed. Equipped with Transformer’s non-local encoding-
decoding framework, A2J is evolved to capture interact-
ing hands’ local fine details and global articulated clues
among joints simultaneously. Besides, 3D anchors are used
to better fit the depth information and estimation of accu-
rate 3D coordinates. Experiments on InterHand2.6M and
RHP dataset demonstrate the effectiveness and superiority
of A2J-Transformer and extensions on NYU and HANDS
2017 dataset show the generalization ability. In future work,
we will try to represent the movement of anchor points and
extend our method to model-based region.
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