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Abstract

Nowadays, privacy issue has become a top priority when
training AI algorithms. Machine learning algorithms are
expected to benefit our daily life, while personal informa-
tion must also be carefully protected from exposure. Fa-
cial information is particularly sensitive in this regard.
Multiple datasets containing facial information have been
taken offline, and the community is actively seeking solu-
tions to remedy the privacy issues. Existing methods for
privacy preservation can be divided into blur-based and
face replacement-based methods. Owing to the advantages
of review convenience and good accessibility, blur-based
based methods have become a dominant choice in prac-
tice. However, blur-based methods would inevitably intro-
duce training artifacts harmful to the performance of down-
stream tasks. In this paper, we propose a novel De-artifact
Blurring (DartBlur) privacy-preserving method, which cap-
italizes on a DNN architecture to generate blurred faces.
DartBlur can effectively hide facial privacy information
while detection artifacts are simultaneously suppressed. We
have designed four training objectives that particularly
aim to improve review convenience and maximize detec-
tion artifact suppression. We associate the algorithm with
an adversarial training strategy with a second-order opti-
mization pipeline. Experimental results demonstrate that
DartBlur outperforms the existing face-replacement method
from both perspectives of review convenience and accessi-
bility, and also shows an exclusive advantage in suppress-
ing the training artifact compared to traditional blur-based
methods. Our implementation is available at https:
//github.com/JaNg2333/DartBlur.

1. Introduction
Computer vision (CV) technology has been influencing

our daily life in many ways. However, successful CV mod-
els often have to rely on large-scale datasets collected from
real-world scenes, which raises concerning privacy issues.
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Figure 1. Example faces and anonymized versions by existing
methods and DartBlur. As presented, blur-based methods facil-
itate review convenience, and face replacement-based methods
may fail when the keypoint detector does not work as expected.
Best viewed in color.

The CV community has started to take privacy issues
seriously. Existing privacy-preserving methods can be di-
vided into blur-based methods (e.g., Block, Gaussian blur,
Pixelation) and face replacement-based methods (e.g., CIA-
GAN [24], DeepPrivacy [13], DeIdGAN [18]). Blur-based
methods are simple to implement but inevitably introduce
additional noise and artifacts into the actual CV task [37].
For example, Gaussian blur patterns are easier to recog-
nize. Therefore, face detectors trained on Gaussian blurred
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Figure 2. Illustration of detection artifact suppression. We encour-
age the blur model to maintain all the operation fidelity, post-hoc
fidelity, and cycle fidelity.

datasets will take the shortcut to identify the blur patterns
instead of the actual faces. In contrast, face replacement-
based methods attempt to generate synthesized faces in or-
der to replace the original faces through generative models
such as generative adversarial networks (GANs) [7]. Such
replacements tend to preserve the critical human face fea-
tures that can effectively trigger the face detector to work,
whereas discriminative individual identification character-
istics are mostly erased.

Despite the advantages of face replacement-based meth-
ods, blur-based methods are usually still preferred in prac-
tice [1, 6, 9, 11, 26, 35, 37, 39]. In fact, blur-based methods
usually make it easier to determine whether human iden-
tification is removed, while face replacement-based meth-
ods require careful face-face comparisons during an ethi-
cal review. Face replacement-based methods also hinge on
the quality of landmark detection [13, 24] or semantic seg-
mentation [18] techniques, and the generative training itself,
which often requires additional face data, would also raise
potential privacy issues.

The above concerns motivate us to rethink and design a
novel blur-based privacy protection paradigm with the fol-
lowing goals: (1) Accessibility. The method should work
well without relying on the quality of other pretrained mod-
els, such as landmark detection. (2) Review convenience.
One can quickly determine whether or not identifiable hu-
man information is successfully concealed during an ethical
review. (3) Detection artifact suppression. The blur func-
tion should avoid introducing much training artifacts to the
detector, and specifically, we desire the following properties
for detection artifact suppression, as illustrated in Figure 2.

• Operation Fidelity. Open-source models trained on
clean data should produce similar results between
clean and blurred data for model utility flexibility.

• Post-hoc Fidelity. The recognition performance should
be maximally invariant to the images’ features before

and after blurring. In other words, the distance be-
tween hard cases (in terms of recognition) and easy
cases on clean data should be maintained in the feature
space after blurring.

• Cycle Fidelity: Models trained on blurred data should
produce good recognition results on clean testing data.

Given the above considerations, we propose a novel
privacy-preserving model called De-artifact Blurring (Dart-
Blur). DartBlur is a learnable U-Net model [28] that is fed
with Gaussian blurred images and face bounding boxes as
input, and outputs detection artifact-suppressed blurred im-
ages without relying on other pretrained models like land-
mark detection. We propose four training objectives, each
specifically addressing the mentioned concerns above, and
the implementation resorts to an adversarial training strat-
egy with a second-order optimization pipeline. Example
images anonymized by existing methods and DartBlur are
presented in Figure 1.

The main contributions of this paper can be summarized
as follows.

• We propose a new blur-based privacy preservation
model DartBlur by taking into account the actual ac-
cessibility of the model, review convenience, and de-
tection artifact suppression simultaneously.

• DartBlur model is associated with four novel train-
ing objectives that each directly addresses the desired
properties. We also design an adversarial training strat-
egy with a second-order optimization for model train-
ing.

• We demonstrate that DartBlur can effectively protect
personal privacy while suppressing detection artifacts
on various benchmarks.

2. Related Work
We review two fields of related work, including face

anonymization and adversarial attacks on machine learning
models.
Face Anonymization Conventional face anonymization is
achieved by heuristics such as Gaussian blur and pixela-
tion [27]. These methods are easy and robust to deploy, and
human reviewers can quickly determine whether privacy is
protected. However, these heuristic blur-based methods de-
stroy the features required for face detectors to work and in-
troduce significant artifacts into the datasets. For example,
Klomp et al. [17] find that face detectors trained on blurred
faces perform poorly on clean data. Besides, there are also
explorations for deblurring images [19,25], as the functions
of these heuristic methods are simple and fixed.

Recently, anonymization methods based on face replace-
ment have emerged, including CIAGAN [24], DeepPri-
vacy [13], DeIdGAN [18], IdentityDP [36], FICGAN [16],
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CFA-GAN [22], etc. These GAN-based methods usually
first extract keypoints or conduct semantic segmentation on
clean faces, then generate new faces based on the infor-
mation and context, and finally, judge whether the forged
face’s quality meets a classification discriminator’s require-
ments. Nevertheless, keypoint detection models are prone
to errors and may break the whole pipeline. It’s cumber-
some to check whether face replacement-based methods
anonymize the original person’s identity, especially if the
generated faces are highly qualified. Furthermore, training
these GAN-based methods often relies on additional real
face data, which raises further concerns about privacy pro-
tection.

In this paper, we propose a novel face anonymization
method that inherits the merits of both blur-based and face
replacement-based methods. With the proposed DartBlur,
we can simultaneously achieve review convenience and ef-
fective detection artifact suppression.
Adversarial Attacks Existing machine learning methods,
including but not limited to deep neural networks, have
been shown to be vulnerable to adversarial attack [31],
and adversarial attacks are found to be transferable [34].
Several models explain the existence of adversarial sam-
ples [5,8,14,23,29]. For example, Ilyas et al. [14] proposes
that adversarial examples can be attributed to the presence
of features that are highly predictive, yet brittle and incom-
prehensible to humans.

From the point of view of Ilyas et al. [14], in this paper,
we preserve privacy by finding a set of predictive, transfer-
able, and incomprehensible features that are only related to
face presence instead of personal identity.

3. Methodology
In this section, we introduce the detailed methodology

of DartBlur. We first present the overview framework, then
give the training strategy in detail. The overview methodol-
ogy of DartBlur is presented in Figure 3.

3.1. Overview framework

In this section, we present the notations and the specific
training objectives to achieve the review convenience and
detection artifact suppression.
Notations The notations used in this paper are defined as
follows.

Let x ∈ R3×h×w represent the h × w-resolution orig-
inal image with 3 channels (RGB), and let b ∈ B3×h×w

represent the binary mask computed based on ground-truth
bounding boxes, where the elements of b within a bounding
box are 1, and 0 otherwise. Let g represent the blur func-
tion, and g(x, b) represent the blurred image. Note that we
only blur the regions within bounding boxes, so

g(x, b) = x⊙ (1− b) + g̃(G(x, b))⊙ b, (1)

where g̃ is the deep neural network to be learned during
training. We adopt U-Net-style fully convolutional neu-
ral networks [28] to practically implement g̃. Symbol ⊙
computes element-wise product between two tensors. Here,
G(·) is the conventional Gaussian blur function, which is ap-
plied on each image and used to blur the faces within each
bounding box to hide personal identification-related signals.

Let f represent the fixed face detector pretrained on
clean data, and fg represent the face detector trained
with blurred images g(x, b) and the ground-truth bounding
boxes. In addition, we use θ to represent the parameters of
neural network models. For example, θg is the parameters
of model g, and θfg is the parameters of model fg .

Objective for review convenience Human reviewers can
judge whether personal identification details have been re-
moved by blur-based methods at a glance. In compari-
son, when face replacement-based methods are adopted, it
is usually more demanding to check if the original person
identification information has been successfully replaced.
In this regard, we expect the output to be as close as Gaus-
sian blurred image in the pixel space, in order to ease the
ethical review process. This motivation is achieved with the
following loss function:

Lrev =Lrev

(
g,x, b, ϵrev

)
=max(∥g(x, b)− G(x, b)∥1 − ϵrev, 0),

(2)

where ∥ · ∥1 computes the ℓ1 norm, and ϵrev is a threshold
hyper-parameter. We use ℓ1 norm rather than other metrics
(e.g., ℓ2 norm) to encourage the sparsity of pixel modifica-
tion [2]. Note that ℓ1 norm is calculated only within the
bounding boxes.

When G(x, b) and g(x, b) are drastically different, Lrev

forces them to become similar, and when the similarity is
below ϵrev, Lrev does not take effects. ϵrev can be consid-
ered as a budget for DartBlur to be different from Gaussian
blur. We find that Lrev is beneficial for avoiding training
collapse at the early training stage and encouraging the blur-
like effect.

Objective for detection artifact suppression Open-
source pretrained face detectors usually would fail to detect
testing data with blurred faces. This is because conventional
heuristic blur-based methods would incur a domain gap be-
tween training and testing data and therefore inevitably in-
troduce detection artifacts. Even if we train face detectors
on the blurred images, the model will take a shortcut in de-
tecting the Gaussian blur or the pixelation pattern during
the training, rather than detecting the actual facial features.
This leads to inflated benchmark scores and sub-optimal de-
tection performance when tested on practically useful clean
face images. We therefore aim to suppress such detection
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Figure 3. DartBlur takes the Gaussian blurred image and bounding boxes information as input and optimizes four objectives for re-
view convenience and detection artifact suppression. For DartBlur image generation, we first use Gaussian blur to erase the personal
identification-related signals, then use a neural network model g̃ to process the regions within bounding boxes. Lrev is applied to maintain
review convenience. Detection artifact suppression is achieved by Loper, Lpost, and Lcycl. Best viewed in color.

artifacts through the following objectives:

Loper = Ldet

(
f
(
g(x, b)

)
, f(x)

)
, (3)

Lpost = Ldet

(
fg
(
g(x, b)

)
, f(x)

)
, (4)

Lcycl = Ldet

(
fg
(
x
)
, f(x)

)
, (5)

where Ldet(·, ·) is the loss function for face detection.
In this paper, we use the MultiBoxLoss [21] to compute
Ldet(·, ·), and consider both the localization and classifica-
tion loss1.

Here, Loper is the loss for operation fidelity which en-
courage open-source pretrained face detectors to produce
similar results on both the clean and the blurred images.
Lpost is the loss for post-hoc fidelity which encourage the
difficulty of faces to be unchanged before and after blurring
processing. Lcycl is the loss for cycle fidelity which en-
courage the face detector trained on blurred faces capable
of detecting real-world clean faces. An illustrative explana-
tion of the fidelity metrics can be found in Figure 2. Ideally,
if f

(
g(x, b)

)
, fg

(
g(x, b)

)
, and fg

(
x
)

are all exactly the
same as f

(
x
)
, the blur functions becomes “insenible” to

detectors. So by forcing them to be close to f
(
x
)
, we can

suppress the detection artifacts.
Overall training objective We aim to optimize the blur
function g so that we can achieve both review convenience
and detection artifact suppression simultaneously. To reach

1Since we use f(x) as the target, the loss for landmark detection is
abandoned.

this goal, we formalize the overall training objective as the
optimization problem:

θ∗
g = argmin

θg

Loverall

= argmin
θg

(Lrev + Loper + Lpost + Lcycl),
(6)

where θg parameterizes the blurring function g and is to be
learnt during training. Note that specific weighting hyper-
parameters can be further associated with each of the ob-
jective terms above. We nevertheless find equally weighted
objectives (i.e., weighted by constant 1 as in Equation (6))
empirically provides satisfactory results. We also empiri-
cally ablate the effect of each term in Section 4.3.

3.2. Adversarial training strategy with second-
order optimization

As discussed in Section 3.1, we aim to find the optimal
θ∗
g for Loverall. However, optimizing these objectives is not

straightforward. Especially, g does not appear explicitly in
Lcycl in Equation (5).

To overcome the difficulties, we develop an adversarial
training strategy with a second-order optimization pipeline
through unrolled first-order optimization loops [10]. The
intuition is that model fg is trained with the blurred image
g(x, b) and the ground-truth bounding box b, so we can
track the high-order influence from g to fg to Lcycl, and
thus backward gradient from Lcycl to g.

Formally, when training the detector fg based on given
input g(x, b) and target b, the model’s parameters θfg be-
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Algorithm 1: Training Algorithm for DartBlur
Input: Dataset D, pretrained face detector f
Hyper-parameter: Step size α and β, threshold ϵrev
Output: Optimized parameters θ∗

g

1 Randomly initialize θg and θfg ;
2 while not converge do
3 Sample a batch of data x, b ∼ D;

// Optimize g with fg fixed

4 Update θg ← θg − β∇θgLrev
(
g,x, b, ϵrev

)
;

5 Update θg ← θg − β∇θgLdet
(
f
(
g(x, b)

)
, f(x)

)
;

6 Update θg ← θg − β∇θgLdet
(
fg

(
g(x, b)

)
, f(x)

)
;

// Optimize g considering second-order
effects

7 Compute adapted parameters with gradient descent:

θ′
fg

= θfg − α∇θfg
Ldet

(
fg

(
g(x, b)

)
, b

)
;

8 Update θg ← θg − β∇θgLdet
(
fg(x;θ′

fg
), f(x)

)
;

// Optimize fg with g fixed

9 Update θfg ← θfg − β∇θfg
Ldet

(
fg

(
g(x, b)

)
, b

)
;

10 end

come θ′
fg

. For example, when using one gradient update,

θ′
fg = θfg − α∇θfg

Ldet

(
fg
(
g(x, b);θfg

)
, b
)
, (7)

where α is the step size.
Equation (7) links the adapted parameters of fg , i.e., θ′

fg
and model g. Then, we can derive the gradient of Lcycl w.r.t
θg , i.e.,

∇θgLcycl

=∇θgLdet

(
fg
(
x;θ′

fg

)
, f

(
x
))

=∇θgLdet

(
fg
(
x;θfg − α∇θfg

Ldet

(
fg
(
g(x, b);θfg

)
, b
))

, f(x)
)
.

(8)

Equipped with the above analyses, we propose the adver-
sarial training strategy with a second-order optimization for
DartBlur. The full algorithm, in the general case, is outlined
in Algorithm 1. Note that model f is pretrained and keeps
fixed, while model fg is trained on the fly. When training
fg , we use the ground-truth bounding boxes b as the tar-
get, while when training model g, we use the output of the
pretrained detector, i.e., f(x). Thus the training procedure
follows an adversarial style.

3.3. Model training details

In practice, we first run only Line 4, Line 5, and Line 9
for warming up and then use the checkpoints to initialize
model g and fg . This trick is beneficial for speeding up
convergence. Besides, we insert two epochs optimizing fg
by running only Line 9 between epochs optimizing both

model g and fg . This is essential for the backward of up-to-
date gradient from fg , as, during our experiments, fg can-
not catch up with g only with on-the-fly training. Further-
more, we employ label smoothing on the classification loss
when training fg to prevent overconfidence and avoid gra-
dient vanishing.

For the weights of objectives in eq:overall, i.e., Lrev,
Loper, Lpost, and Lcycl, we find that equal weights worked
fine. We did not deliberately adjust the weights. Advanced
multi-task learning methods like GradNorm [3] and Pareto
multi-task learning [20] may further improve the results.
We leave it as future work.

The model architecture information and other details are
put in the appendix.

4. Experiments

In this section, we report the experimental results in de-
tails. We first introduce the experimental settings, then
show that DartBlur achieved privacy protection and state-
of-the-art fidelity among blur-based methods. Moreover,
DartBlur also reserved the property of review convenience,
and the learned blur function was transferable between dif-
ferent datasets and face detector architectures. We also
present the ablation study results to demonstrate the com-
ponents’ effectiveness.

4.1. Experimental settings

We first introduce the experimental settings, including
the used dataset, the baseline methods, the evaluation pro-
tocol and metrics, and other implementation details.

Dataset We performed experiments on the following pub-
lic datasets:

• WIDER FACE [38]. The dataset provides 16k im-
ages and 199k faces with bounding boxes. As the an-
notations for the testing set are not released, we used
the given validation set for testing. WIDER FACE has
a wide range of variation in scale, pose, illumination,
expression, and occlusion.

• FDDB [15]. The dataset contains 2845 images with
5171 faces in different poses, resolutions, rotations,
and shading.

• Crowd Human [30]. The dataset contains 15k images
for the training set and 4,370 for the validation set, and
each image includes 23 people on average. Due to the
same reason with WIDER FACE, we used the valida-
tion set for testing.

Baselines We considered the following blur-based base-
lines for quantitative comparisons.

• Block. We averaged the pixels of each channel within
the given bounding boxes.
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Figure 4. Illustration of our evaluation protocol. DartBlur was
trained only with the training set of WIDER FACE and the
RetinaFace detector while evaluated with multiple face detection
datasets and model architectures.

• Blur (Gaussian blur). We used a flexible Gaussian
kernel to blur the face, and the shape of the Gaussian
kernel was 1/2 of the face bounding box. This Gaus-
sian blur function was also used in DartBlur, as de-
scribed in Section 3.1.

• Pixel. (Pixelation). Similar to Gaussian blur, we re-
sized the image to 1/16 of the original shape and then
resized it back to the original image size by nearest
neighbor interpolation.

We did not include face replacement-based methods due
to the following reasons. We found that CIAGAN and
DeepPrivacy failed to replace many faces in the datasets.
For example, DeepPrivacy failed to anonymize 36.7%
of faces in the training set of WIDER FACE. Besides,
face replacement-based methods require careful face-to-
face comparison for a privacy protection review, while blur-
based methods can be more review-friendly. We made an
empirical study on the face replacement-based methods in
Section 4.5.

Evaluation protocol and metrics For DartBlur training,
we first trained a face detector (i.e., model f ) with the clean
training set of WIDER FACE, then we obtained the trained
DartBlur following Algorithm 1.

For evaluation, we used the following protocol to sim-
ulate how DartBlur would be applied in the real world.
Given a dataset for face detection, we trained a new detec-
tor on the clean training set, anonymized the dataset with
DartBlur, and then trained an anonymized detector on the
blurred training set. Then we evaluated the detection arti-
fact suppression on the clean and anonymized testing set.
Specifically, we used the predicted bounding boxes by the
clean detector on the clean testing set as proxy ground truth
and used the commonly-used metric mean average preci-
sion (mAP) to evaluate the predictions corresponding to
operation fidelity, post-hoc fidelity, and cycle fidelity re-
spectively. We use the official split of WIDER FACE and
Crowd Human. For FDDB which did not provide an official
training-testing split, we randomly selected 10% images for
testing. Figure 4 illustrates our evaluation protocol.

To comprehensively evaluate the performance of Dart-

Dataset Fidelity Block Blur Pixel. DartBlur

WIDER
FACE

Oper. Fid. 19.20 83.10 46.35 96.76
Post-hoc Fid. 77.77 84.04 80.08 84.70

Cycle Fid. 0.10 1.97 7.64 47.22

FDDB
Oper. Fid. 4.63 89.00 4.82 98.06

Post-hoc Fid. 85.49 93.41 88.34 94.64
Cycle Fid. 0.00 0.05 0.02 41.93

CrowdHuman
Oper. Fid. 16.69 75.74 45.26 81.64

Post-hoc Fid. 58.23 57.51 59.60 62.52
Cycle Fid. 0.83 36.72 28.75 45.11

Table 1. Evaluation results of detection artifact suppression and
cross-dataset transferability. “%” is omitted. DartBlur trained
with WIDER FACE successfully suppressed detection artifacts,
and was generalizable across different datasets.

Blur, we used multiple datasets for cross-dataset general-
ization evaluation and multiple structures of face detectors
for cross-architecture generalization evaluation.
Implementation details For the training stage, we used
RetinaFace [4] with backbone MobileNet0.25 [12] as the
detector (model f ). The model was trained with the clean
WIDER FACE training set by an SGD optimizer with a
learning rate starting at 1e−2, and cosine decay. When
training DartBlur, as discussed in Section 3.1, we used the
output bounding boxes of model f on the clean dataset as
the adversarial target, where the IoU threshold was set to
0.45, and the confidence threshold was set to 0.5. The
weights for the objectives in Equation (6) were set to 1, and
hyperparameter ϵrev in Equation (2) was set to 20. We used
AdaM optimizer for training DartBlur. The learning rate
started at 2e−4 and decayed at 0.925 every epoch. For the
training of on-the-fly detector fg , the learning rate started
at 5e−4 and decayed at 0.925 every epoch, and we used a
label smoothing of 0.2 on the classification loss of fg . We
trained DartBlur for 60 epochs in total.

For the evaluation stage, apart from RetinaFace, we con-
sidered PyramidBox [32] and YOLOv52 to test the cross-
architecture generalization performance. All the detectors
and hyperparameters were used out of the box. When train-
ing PyramidBox, we used an SGD optimizer with momen-
tum 0.9 and a learning rate starting at 5e−4. For YOLOv5,
we used an SGD optimizer with learning rate starting at
1e−2 and cosine decay. For training RetinaFace, we used
the same hyperparameters as in the training stage.

During our experiments, all the images were resized to
768× 768 for processing.

4.2. Performance evaluation

In this section, we report the quantitative experimental
results w.r.t DartBlur. We first show that DartBlur success-
fully protected privacy and suppressed the detection arti-
facts. Then we report the results of cross-dataset and cross-

2https://github.com/ultralytics/yolov5
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Figure 5. Example faces anonymized with DartBlur. (A) Examples of front faces. (B) Examples of side faces. (C) Examples of minority
cases. Best viewed in color.

(A) Original Image (C) DartBlur Image(B) Gaussian Blur Image

Figure 6. Example image anonymized with Gaussian blur and DartBlur. On top of Gaussian blur, DartBlur tends to adjust the contrast of
the image and add special textures in key areas. Besides, DartBlur only uses Gaussian blur as the preprocessing tool so that accessibility
can be guaranteed. Best viewed in color.

Architecture Fidelity Block Blur Pixel. DartBlur

PyramidBox
Oper. Fid. 21.34 84.60 30.55 95.18

Post-hoc Fid. 75.04 70.59 65.18 75.16
Cycle Fid. 0.01 1.70 10.98 24.68

YOLOv5
Oper. Fid. 35.93 84.84 35.22 96.17

Post-hoc Fid. 85.68 87.44 86.01 91.72
Cycle Fid. 0.21 10.00 0.36 37.15

Table 2. Cross-architecture transferability evaluation on WIDER
FACE. “%” is omitted. DartBlur beat baselines significantly w.r.t
detection artifact suppression metrics.

architecture generalization to show that DartBlur trained
with RetinaFace on the WIDER FACE dataset was well
generalizable. We put the experiment to reconstruct orig-
inal images from DartBlur in the appendix.

Privacy protection We first evaluated the effectiveness of
privacy protection, by collecting human evaluation results
from 95 individuals who checked 20 randomly selected im-
ages and their DartBlur versions. The results demonstrate
that 98.48% of participants agreed with the notion that pri-
vate information has been effectively protected. Please refer
to more detailed information in the appendix.

Detection artifact suppression We also evaluated the ef-
fectiveness of detection artifact suppression, and the results

are reported in the first row-block of Table 1. From the ta-
ble, we can find that Block performed the worst, which is
not surprising as Block wiped out nearly all the information
within bounding boxes, thus bringing significant artifacts
into the dataset. Detectors trained with Block will detect
regions without any texture, thus completely failing at de-
tecting real-world faces. Blur and Pixel. maintain some of
the necessary textual. Therefore face detector trained on a
clean dataset can work on the data to some extent. However,
when training new detectors with the processed data, detec-
tors still tend to capture the artifacts and perform poorly on
clean data. On the other hand, DartBlur obtained the best
results on all three fidelity metrics, indicating that detection
artifacts have been suppressed.

Cross-dataset transferability To test whether the Dart-
Blur model trained on WIDER FACE could generalize to
other datasets, we involved the FDDB and CrowdHuman
datasets. Experimental results are reported in the last two
row blocks of Table 1. The conclusion remained the same
with WIDER FACE, i.e., DartBlur obtained the best results
among all baseline methods, indicating that the model could
be well generalized across different datasets for detection.

Cross-architecture transferability During our experi-
ments, we used RetinaFace to train DartBlur. We employed
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Ablation Oper. Fid. Post-hoc Fid. Cycle Fid.

DartBlur (complete version) 96.76 84.70 47.22

w/o Loper 81.65 84.08 25.87
w/o Lpost 97.23 79.34 8.95
w/o Lcycl 96.63 84.78 35.13

Table 3. Ablation study on WIDER FACE. “%” is omitted.

PyramidBox and YOLOv5 to study the cross-architecture
transferability, and the results are reported in Table 2.

From the table, we find that different architectures mildly
impacted the results. Compared with the results with Reti-
naFace on WIDER FACE in Table 1, the results slightly
decreased but can still beat the heuristical blur-based meth-
ods regarding operation fidelity, post-hoc fidelity, and cy-
cle fidelity. A straightforward extension to improve cross-
architecture transferability is to use an ensemble of face de-
tectors with different architectures during DartBlur’s train-
ing [33]. We leave it as future work for exploration.

4.3. Ablation study

DartBlur jointly optimizes 4 loss functions during train-
ing. Apart from Lrev which encourages review conve-
nience, we conducted the ablation study on all of the other
three components and report the results in Table 3. Experi-
mental results demonstrate the effectiveness of each objec-
tive component. Intriguingly, we observe that cycle fidelity
slumps if any of the proposed objectives are absent, justify-
ing the benefit of the jointly optimized model as a whole.

4.4. Case study

To intuitively demonstrate the effectiveness of DartBlur,
we conducted a case study, and present the example faces
anonymized with DartBlur in Figure 5, as well as the exam-
ple image annonymized with both Gaussian blur and Dart-
Blur in Figure 6. From the figures, we can find that Dart-
Blur tends to darken the eye area, and add special textures
around the eye and mouth area. The textures erase the par-
ticular shape of eyes and mouths but retain the necessary
feature for detectors to work.

4.5. Analyses on face replacement-based methods

We conducted an empirical study on two face
replacement-based methods that official implementations
with trained models are publicly available, i.e., CIAGAN
and DeepPrivacy. Our experiments showed that CIAGAN
and DeepPrivacy could not successfully replace many faces
in the WIDER FACE dataset. For example, DeepPri-
vacy failed to anonymize about 36.7% faces (56,898 out
of 159,420) in the training set of WIDER FACE. And we
found that DeepPrivacy’s failure cases basically stumped
CIAGAN too, since DeepPrivacy needs 7 keypoints to
work, while CIAGAN requires 27 keypoints. Besides, it has
been reported that the minimum face resolution required for

Stylization

Complex
Pose

Others

Distortion

Figure 7. Example faces that neither CIAGAN nor DeepPrivacy
could replace in. The failure cases can be divided into four cate-
gories, i.e., stylization, complex pose, distortion, and others.

anonymization to be applicable is around 14 pixels wide for
DeepPrivacy and about 50 pixels wide for CIAGAN [17].

We summarize some of the failure cases in Figure 7. The
failure cases can be divided into four categories: stylization,
complex pose, distortion, and others (mainly occluded by
other objects or cropped at the edges of images). In contrast,
DartBlur only uses Gaussian blur as the preprocessing tool
and thus does not struggle with these cases.

5. Conclusion and Future Work
The privacy issue has already become a concern of

the CV community. For privacy preservation, blur-based
and face replacement-based methods have been devel-
oped. However, traditional heuristic blur-based and face
replacement-based methods both have their shortcomings.
We find that accessibility and review convenience are con-
sidered more important in practice, so blur-based meth-
ods are more widely adopted. This paper proposes Dart-
Blur, a novel blur-based approach that balances accessi-
bility, review convenience, and detection artifact suppres-
sion. Experiments show that DartBlur successfully achieves
the design goals and has good generalization ability across
datasets and architectures. In the future, we plan to explore
more effective optimization methods to improve DartBlur
further. We hope this work inspires researchers to develop
more accessible and efficient solutions to minimize the neg-
ative impact on CV models while preserving privacy.
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