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Abstract

Cell instance segmentation in cytology images has sig-
nificant importance for biology analysis and cancer screen-
ing, while remains challenging due to 1) the extensive over-
lapping translucent cell clusters that cause the ambigu-
ous boundaries, and 2) the confusion of mimics and de-
bris as nuclei. In this work, we proposed a De-overlapping
Network (DoNet) in a decompose-and-recombined strat-
egy. A Dual-path Region Segmentation Module (DRM) ex-
plicitly decomposes the cell clusters into intersection and
complement regions, followed by a Semantic Consistency-
guided Recombination Module (CRM) for integration. To
further introduce the containment relationship of the nu-
cleus in the cytoplasm, we design a Mask-guided Region
Proposal Strategy (MRP) that integrates the cell attention
maps for inner-cell instance prediction. We validate the
proposed approach on ISBI2014 and CPS datasets. Ex-
periments show that our proposed DoNet significantly out-
performs other state-of-the-art (SOTA) cell instance seg-
mentation methods. The code is available at https:
//github.com/DeepDoNet/DoNet.

1. Introduction

Cytology image has been essential for cancer screen-
ing and earlier diagnosis, such as qualitative and quan-
titative identification of cellular morphology, nuclei size,
nuclear-cytoplasmic ratio, and other cytological features
[12, 15, 25]. However, examining tens of thousands of cells
under the microscope visually is inherently tedious and suf-
fers from inter-/intra-observer variability. Computational
techniques enable efficient and accurate characterization of
cells from cytology images [12, 16]. Among all computa-
tional techniques, cell segmentation has been a fundamental
and widely-studied task, since the acquisition of cell-level
identification is a pre-requisition for further assessment and
analysis [3, 23].
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Figure 1. The schematic illustration of proposed DoNet with
decompose-and-recombined strategy, which maps each overlap-
ping cell into the intersection, complement, and instance layers to
address the overlapping issue in cytology instance segmentation.

Deep Learning (DL) methods show promising results
for cell-nuclei segmentation in the histopathology image
[5,6,14,17]. However, cytology segmentation remains chal-
lenging for the following two reasons. Firstly, cells in a cy-
tology image are prone to cluster with each other, leading to
the overlapping issue. In the cytology images, the translu-
cent cytoplasm of the cell (seen in Figure 1) tends to oc-
clude each other with low contrast staining, leading to am-
biguous cellular boundary predictions. This phenomenon
is particularly evident in cervical cell images. Secondly,
hard mimics, are widespread in the background, along with
other technical artefacts such as bubbles, which could mis-
lead the instance segmentation models [4]. Take the cervical
cell image as an example, the widespread white blood cells
and mucus stains lead to false predictions for nuclei. To ad-
dress these challenges, several works [24, 33] propose the
segment-then-refine paradigm, while others [39, 40] utilize
the detection-based framework, e.g., Mask R-CNN [11].
However, they fail to model the interaction between inter-
section and complement sub-regions within the translucent
cell cluster explicitly, resulting in a limited understanding
of cross-region relationships.

Amodal instance segmentation tackles the occlusion
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problem by inferring the integral object based on the par-
tially visible region [22]. Based on the fact that humans
can infer the occluded region of an object despite the am-
biguity, these methods attempt to learn the integrated ob-
ject mask (amodal mask) for better occlusion reasoning ca-
pability [9, 37] via synthesizing occluded data label pairs
and aggregating global information to enhance perceptual
ability. Compared to natural scenes, cell instances in cy-
tology images are mostly semi-transparent. Therefore, an
occlusion (overlapping) region exits in both the occluding
and occluded instances. However, treating semi-transparent
overlapping regions as general occlusion regions is not op-
timal, since they have different appearances compared to
non-overlapping regions, and could in fact provides richer
shape information than general occlusion regions.

Motivated by the amodal perception, we propose a
decompose-and-recombine strategy for translucent cell
instance segmentation, named De-overlapping Network
(DoNet). Figure 1 provides the schematic diagram. For
each cell cluster with more than one cellular sub-region,
DoNet starts from implicitly learning the hidden interaction
of sub-regions by predicting instance masks from clusters.
Then, it explicitly models the components and their rela-
tionships via the intersection layer, complement layer, and
instance layer, to enhance its perceptual capability.

Initially, we adopt Mask R-CNN to get the coarse predic-
tions, followed by a novel Dual-path Region segmentation
Module (DRM) that combines features and coarse masks
from the first stage to decompose cell clusters into inter-
section and complement sub-regions. Then, the semantic
Consistency-guided Recombination Module (CRM) is de-
signed to encourage consistency between the refined in-
stances and integral sub-region predictions. Furthermore,
to impose the morphological constraint that nuclei stay in-
side the cellular regions, we propose a Mask-guided Region
Proposal Module (MRP) to encourage the model to focus
on the intra-cellular area during nuclei segmentation.

The overall contributions are summarized as follows:

• A novel de-overlapping network for cell instance seg-
mentation with a decompose-and-recombined strategy,
decomposing the cell regions with the DRM, as well
as implicitly and explicitly modeling the semantic re-
lationship between intersection, complement, and in-
stance (cell) components via the CRM. These designs
equip the network with enhanced perceptual capability
in overlapping cellular sub-regions.

• A mask-guided region proposal module (MRP) that
leverages the cytoplasm attention map for the intra-
cellular nuclei refinement, which imposes the biology
prior of cellular instances into the module, effectively
mitigating the influence of mimickers widespread in
the background.

• Extensive experiments on two overlapping cytology
image segmentation datasets, namely ISBI2014 [24]
and CPS [39], demonstrating that our proposed DoNet
outperforms other state-of-the-art (SOTA) methods by
a large margin.

2. Related Work
Cytology Instance Segmentation: Challenges such as cell
clustering, hard mimics, and semi-transparent overlapping
cytoplasm regions pose in the segmentation of cellular in-
stance (e.g., cell, nuclei, cytoplasm) from cytology im-
ages. These challenges inspired numerous insightful works,
especially after the publication of ISBI2014 [33]. Two
mainstream approaches are proposed to tackle the overlap-
ping cell segmentation challenge: the segment-then-refine
stream and the end-to-end training stream.

Early approaches tackling this challenge are primarily
the combination of pixel-level segmentation models and ad-
ditional post-processing techniques, such as seeded water-
shed algorithm [19], random walk [38], conditional ran-
dom field algorithms [35], and star-convex parameterization
[34]. To further improve the segmentation performance,
some other methods introduce morphological prior. Song
et al. design a dynamic multi-template deformation model,
which leverages case-specific shape constraints to guide the
inference of overlapping cell boundaries [30]. Tareef et al.
propose to refine cytoplasm boundary via a learnable shape
prior, which is dynamically modeled as the fusion of shape
templates [32].

Escaping from the complex post-processing procedure,
many later works turn to end-to-end training. These ap-
proaches typically adopt Mask R-CNN as their baseline.
The first attempt following this approach was [29], a model
for nuclear instance segmentation from liquid-based cytol-
ogy smears. Based on the appearance similarity between
different cells, Zhou et al. propose the IRNet to explore
instance relation during overlapping cervical cell segmen-
tation [40]. To leverage information from unlabeled data,
Zhou et al. provide a mean-teacher-based semi-supervised
learning scheme, MMT-PSM [39].

The above two methods have achieved notable perfor-
mance improvements, yet still lack the necessary perceptual
capability for overlapping regions, leading to sub-optimal
results, i.e., ambiguous cell boundaries. In this study, we
propose a de-overlapping network, named DoNet, to im-
plicitly and explicitly model the interaction between the in-
tegral instance and its sub-regions.
Occluded Instance Segmentation: Instance segmentation,
a typical task in computer vision, refers to the inference of
bounding boxes and instance segmentation masks. Most no-
table approaches follow the detect-then-segment paradigm,
such as Mask R-CNN [11] and its following variants [2,13].
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Figure 2. The flowchart of the proposed DoNet. It consists of four main parts: (1) baseline for coarse mask segmentation; (2) DRM to
simultaneously regress intersection and complement regions which provides cues for final mask refinement; (3) CRM to explicitly refine
the final mask and encourage the semantic consistency; (4) MRP to mitigate the effect of background noise.

However, these approaches could not handle the occlu-
sion problem, common in visual application scenarios like
robotic manipulations, scene parsing, and autonomous driv-
ing [1, 10]. Due to the inconsistencies within a Regions of
Interest (RoI), these models suffer from the limited percep-
tual capability, leading to ambiguous segmentation bound-
aries. To tackle this issue, a specific task, occluded instance
segmentation aims at leveraging visible regions to perceive
the entirety of the occluded instance accurately. This capa-
bility of inferring and reasoning occluded objects is defined
as amodal perception [9], thus occluded instance segmenta-
tion is also called amodal instance segmentation.

Research on amodal instance segmentation starts from
[22], which poses this challenging task and gives a
synthesis-based solution. In this work, the first amodal in-
stance segmentation dataset, the COCOA dataset, is estab-
lished based on the COCO dataset. Afterward, some no-
table solutions accomplish this task and achieve state-of-
the-art performance. Previous approaches tackle this chal-
lenge by leveraging information from visible instance seg-
mentation, then inferring the amodal mask [1,9]. For exam-
ple, Occlusion R-CNN (ORCNN) is built on R-CNN with
two mask heads, the visible mask head, and the amodal
mask head, which directly predict the amodal mask and the
visible mask, inferring the visible mask through the subtrac-
tion of these two masks [9]. Qi et al. [28] perform amodal
instance segmentation with multi-level coding and establish

a large-scale amodal instance segmentation dataset. Xiao
et al. [37] leverage shape prior knowledge to infer amodal
mask using memory codebook. Some other models, like
BCNet [18] abandon the visible instance prediction based
manner and directly models the relationship between the
occluder and the occludee. To address the lack of amodal
mask ground truth, ASBU [26] introduces a weakly super-
vised amodal segmenter, which generates pseudo-ground
truth by boundary uncertainty estimation.

Essentially, the above occluded instance segmentation
methods aim to enhance the amodal perception and rea-
soning capability, inspiring us to explore the interaction be-
tween instance sub-regions and the integral instance. Com-
pared to amodal segmentation, whose focus on inferring the
invisible region from the partially visible regions, our focus
is to resolve the inconsistency between the intersection and
complement regions.

3. Methodology
3.1. Overview

Problem formulation: Following the setting of cell in-
stance segmentation, we are provided with a dataset
with K images and the corresponding annotations D =
{(Xk,Yk)}Kk=1, each of which contains annotations of
bounding boxes Bk = {bk,i}Nk

i=1, object categories Ck =

{ck,i}Nk

i=1, and instance masks Ek = {ek,i}Nk

i=1, where Nk
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denotes the number of instances in the k-th image. Here,
we focus on segmenting the nucleus and cytoplasm for
cell instance ck,i ∈ {nuclei, cytoplasm}. For each cell
cluster, based on the localization relationship among the
cells, we decompose the instance mask into the intersec-
tion region Ok = {ok,i}Nk

i=1 and the complement region
Mk = {mk,i}Nk

i=1 via the logical operation (see in Figure
1), which is used to model their relationship in the DoNet.
Workflow: The flowchart of the proposed DoNet is pro-
vided in Figure 2. It takes Mask R-CNN [11] as the base
model, followed by a Dual-path Region segmentation Mod-
ule (DRM) which takes the instance features as input to pre-
dict intersection regions ôk,i and complement regions m̂k,i

of cytoplasm via the intersection and complement layers
(Section 3.2). After decomposing cell clusters according to
the position relationship, a Consistency-guided Recombina-
tion Module (CRM) takes instance features from DRM and
RoIAlign layer to generate the recombined masks êrk,i for
consistency regularization (Section 3.2). Then, the recom-
bined cytoplasm prediction is utilized as prior knowledge
for intra-cellular object prediction throughout the Mask-
guided Region Proposal (MRP) (Section 3.3). We will
present the details of our framework in the following sec-
tions.
Coarse Mask Segmentation: Previous research works on
Mask R-CNN has shown competitive performance in in-
stance segmentation [9, 11, 13], adopted into the proposed
DoNet for coarse mask segmentation. Mask R-CNN con-
sists of two stages. The first stage utilizes Feature Pyramid
Network (FPN) for feature extraction and a Region Pro-
posal Network (RPN) for candidate object bounding boxes
generation. The second stage generates Region-of-Interest
(RoI) features froi

k,i via the RoIAlign layer and predicts ob-
ject classes ĉk,i and bounding boxes b̂k,i from the detec-
tion head, and semantic masks êck,i from the Instance Mask
Head (Hi), respectively. Due to limited perception capa-
bility in overlapping regions, êck,i may contain ambiguous
boundaries. Thus, we denote êck,i as the coarse mask, which
provides information for sub-region decomposition in DRM
and suppresses the interference from background mimics.
Following standard losses in [11], a multi-task loss Lcoarse

for coarse mask segmentation is formed as,

Lcoarse = Lreg + Lcls + Lcmask, (1)

where Lreg denotes the smooth-L1 loss for bounding box
regression, Lcls denotes cross-entropy (CE) loss for clas-
sification, and Lcmask denotes pixel-wise CE loss for seg-
mentation.

3.2. Decompose-and-recombined Strategy

Previous solutions for amodal perception infer the inte-
gral structure of occluded instances using visible regions

[9, 37]. However, they ignore information from overlap-
ping regions, which tend to be sub-optimal in the case of
complex superposition of translucent objects. To empower
the perception capability of model for overlapping translu-
cent regions, we specifically design the decompose-and-
recombined strategy.
Dual-path Region Segmentation Module (DRM): As
shown in Figure 2, DRM consists of an Intersection Mask
Head Ho and a Complement Mask Head Hm with the same
architecture. Let f c

k,i denotes the rich semantic feature be-
fore the coarse mask prediction in the Instance Mask Head.
Both Ho and Hm take the concatenation of froi

k,i and f c
k,i

as input to predict the intersection and complement regions
ôk,i, m̂k,i in clusters. See the supplementary material for
details of the Concatenation Unit. Specifically, each head
consists of 4 convolutional layers to generate features in
14 × 14 × 256, followed by one deconvolutional layer to
get the semantic mask with a resolution of 28 × 28 × 1.
Here, we add the pixel-wise CE loss to both heads as the
explicit constraint for decomposition,

Ldec =
1

K

K∑
k=1

1

Nk

Nk∑
i=1

(Lce(ôk,i, ok,i) + Lce(m̂k,i,mk,i)) .

(2)
Semantic Consistency-guided Recombination Module
(CRM): To further enhance the perception capability for
overlapping instances, CRM is designed to encourage
DoNet to perceive integral instances. Specifically, let fo

k,i

and fm
k,i denote the features before the last layer in the inter-

section mask head and the complement mask head. The rich
semantic feature for the overlapping and non-overlapping
region is considered as the residual information for the com-
plex areas which is fused with froi

k,i and then fed into the
recombined mask head. See the supplementary material for
details of the Fusion Unit. Noted that we reuse the Instance
Mask Head (Hi) here to predict the integral instance. This
combination facilitates CRM to leverage contextual infor-
mation of overlapping instances, leading to the improve-
ment of perception capability. The refined mask êrk,i from
CRM is optimized by segmentation loss Lrmask,

Lrmask =
1

K

K∑
k=1

1

Nk

Nk∑
i=1

Lce(ê
r
k,i, ek,i). (3)

To further enhance the feature representation capacity
for the relationship of components, we add semantic con-
sistency regularization between the recombination êrk,i and
merged predictions of ôk,i and m̂k,i,

Lcons =
1

K

K∑
k=1

1

Nk

Nk∑
i=1

Lce

(
êrk,i,Fmerge (ôk,i, m̂k,i)

)
,

(4)
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where Fmerge(·) represents the merging operation for the
intersection region and the complement region in Mergence
Unit, which is xor(), two sub-region masks are passed
through Sigmoid function for normalization. Then, we cal-
culate the Mask Exclusive-OR of two mask logits for merg-
ing them and suppressing redundant predicted pixels.

3.3. Mask-guided Region Proposal

It is inevitable for cytology images to exist abundant cel-
lular debris and non-target objects, e.g., white blood cells
and mucus. These objects often have a similar appearance
as the nuclei, with small round surfaces stained in dark pur-
ple, which increases the model identification difficulty. To
avoid the interference it brings, we further propose a Mask-
guided Region Proposal module (MRP) to encourage the
model to generate nuclei proposals in intra-cellular regions.

For each image, we can aggregate all the recombined
instance predictions êrk,i in CRM together into a semantic
mask M̂k. The raw predictions are first mapped back and
then summed up according to their bounding boxes predic-
tions b̂k,i in the detection head, followed by a Sigmoid func-
tion to normalize them into probabilities. M̂k is considered
as the attention score to re-weight features fk in origin FPN
via element-wise multiplication:

fw
k = M̂k ◦ fk, (5)

where fw
k denotes the re-weighted features for nuclei pro-

posal predictions in MRP. Thus, extracellular pixels with
a lower probability to be cytoplasm are suppressed, which
reduces the false positives for background instances (i.e.,
blood, mucus, and others). In addition, MRP also builds in-
formation interaction between different stages, which natu-
rally encourages feature representation ability.

3.4. End-to-end Learning

Extended dataset with synthetic clusters: The semi-
transparency characteristic of cytoplasm alleviates the ef-
fect of high overlap, allowing cytologists to delineate the
contour of cellular instances based on expert knowledge.
However, extremely challenging labeling and unavoidable
label noise limit the availability of large-scale annotated
datasets. To tackle this problem, we propose an instance-
level data augmentor for overlapping cell data augmenta-
tion, which can generate large-scale synthetic cell clusters
with controllable overlapping ratios and transparency based
on the annotated cellular instances. This synthetic dataset
further facilitates the generalization ability, by providing
more diverse data to implicitly learn the concept of instance
and its components. See the supplementary material for de-
tails of the synthetic pipeline. Unless otherwise specified,
we do not use this synthetic dataset in the following com-
parison.

Overall Loss Function: The proposed cell instance seg-
mentation framework can be trained in a supervised manner.
The overall objective L is as follows,

L = Lcoarse + λdecLdec + λrmaskLrmask + λconsLcons,
(6)

where Lcoarse denotes losses for RoI extraction and coarse
mask prediction, Ldec denotes the decomposition loss for
intersection and complement regions segmentation, Lrmask

is the segmentation loss for refined masks, Lcons supervises
the semantic consistency between integral instance and sub-
regions. λdec, λrmask, and λcons are trade-off parameters
controlling the importance of each component.

4. Experiments

4.1. Experimental Setup

We evaluate our proposed DoNet in two cytology image
datasets for overlapping cell instance segmentation:
ISBI2014 [24]: This is a widely-used dataset from Over-
lapping Cervical Cytology Image Segmentation Challenge1,
which consists of 8 extended depth-of-focus (EDF) real cer-
vical cytology images and corresponding synthetic images.
It contains high-quality pixel-level annotations for both nu-
clei and cytoplasm with a resolution of 512× 512. We fol-
low the setting in this challenge [24] to use 45, 90 and 810
images for training, validation and testing to evaluate our
proposed DoNet in a supervised setting.
CPS [39]: This liquid-based cytology dataset contains 137
labeled images with a resolution of 1000× 1000. In total, it
contains 4439 cytoplasm and 4789 nuclei annotations. We
conduct 3-fold cross-validation on this dataset.
Evaluation metrics: To measure the overall performance
of the proposed DoNet, we utilize four commonly-used
evaluation metrics in instance segmentation: aggregated
Jaccard index (AJI), average Dice coefficient (Dice), F1-
score (F1) [20], mean of Average Precision (mAP) [11].
In order to compare our result on the ISBI2014 with pre-
vious studies [24], we further adopt evaluation metrics in-
cluding Dice, object-based false negative rate (FNo), and
pixel-based true positive rate (TPp).
Implementation details: We utilize the Mask R-CNN [11]
in Detectron2 [36] as the baseline model. We use the
ResNet-50-based FPN network in all experiments. During
training, we adopt SGD with 0.9 momentum as the opti-
mizer. We set the initial learning rate to 0.001 and add the
linear warm-up in the first 1k iterations. We train the net-
work for 60k iterations, decreasing the learning rate by a
factor of 0.1 after 50k and 55k iterations.

1 https://cs.adelaide.edu.au/˜carneiro/isbi14_
challenge/index.html
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Table 1. Quantitative segmentation results of DoNet and other state-of-the-art methods on CPS and ISBI2014.

Methods
ISBI2014 CPS

mAP↑ Dice↑ F1↑ AJI↑ mAP↑ Dice↑ F1↑ AJI↑
Mask R-CNN [11] 59.09 91.15 92.54 77.07 48.28 ± 3.10 89.32 ± 0.50 85.07 ± 2.01 69.20 ± 2.27

Cascade R-CNN [2] 62.45 91.29 92.51 77.91 47.87 ± 3.27 89.24 ± 0.44 83.33 ± 1.65 68.86 ± 3.55
Mask Scoring R-CNN [13] 63.56 91.28 91.87 75.14 48.38 ± 3.13 89.39 ± 0.24 82.98 ± 1.86 67.45 ± 2.45

HTC [8] 59.62 91.39 88.08 75.00 47.60 ± 3.56 89.08 ± 0.51 81.30 ± 2.56 66.35 ± 2.84
Occlusion R-CNN [9] 62.35 91.75 93.18 78.64 48.14 ± 2.84 89.08 ± 0.28 85.69 ± 2.28 69.51 ± 2.45

Xiao et al. [37] 57.34 91.70 92.75 78.29 48.53 ± 2.85 89.29 ± 0.24 85.46 ± 2.60 69.37 ± 2.88
DoNet 64.02 92.13 93.23 79.05 49.43 ± 3.83 89.54 ± 0.25 85.51 ± 2.33 70.08 ± 2.84

DoNet w/ Aug. - - - - 49.65 ± 3.52 89.50 ± 0.38 86.30 ± 2.01 70.56 ± 2.34

4.2. Results

We quantitatively compare the cell instance segmenta-
tion results from the ISBI2014 and CPS in Table 1 with
state-of-the-art methods in the field of general instance seg-
mentation (Mask R-CNN [11], Cascade R-CNN [2], Mask
Scoring R-CNN [13], HTC [8]) and amodal instance seg-
mentation (Occlusion R-CNN [9], Xiao et al. [37]). Noted
that the amodal instance segmentation methods and gen-
eral instance segmentation methods perform differently on
two datasets due to the varying degrees of overlapping.
Our method achieves the highest scores among all metrics.
Specifically, it gains 2.68% and 0.52% improvements for
mAP and AJI compared with the best of others [9] on the
ISBI2014 dataset, as well as 1.85% and 1.02% improve-
ments compared with the best [37] on the CPS dataset. We
also evaluate TPp and FNo for DoNet to compare results
against winners of the ISBI2014 challenge [27,33] and their
following works [21, 31], which are mostly the segment-
then-refine manners (Seen in Table 2).

Furthermore, by introducing the synthetic clusters as
instance-level augmentation, DoNet further has 0.45% and
0.68% improvements for mAP and AJI on the CPS dataset.
This is mainly because the synthetic overlapping cells can
further enhance the model’s occlusion reasoning capability,
which is consistent with the conclusions in [22].

Table 2. Comparison with other methods on ISBI2014.

Methods ISBI2014
Dice↑ TPp↑ FNo↓

Ushizima et al. [33] 0.872 0.841 0.265
Nosrati et al. [27] 0.871 0.875 0.110
Walter et al. [34] 0.860 0.830 0.310

Lu et al. [24] 0.893 0.905 0.315
Lee et al. [21] 0.897 0.882 0.137

Tareef et al. [31] 0.898 0.946 0.161
Chen et al. [7] 0.920 0.900 0.020

DoNet 0.921 0.948 0.162

4.3. Ablation Study

Effects of Network Components: We perform ablation
studies to investigate the effects of the different components
of our proposed pipeline for DoNet. The comparison re-
sults can be seen in Table 3. By adding DRM for explicit
decomposing integral instances into intersection and com-
plement sub-regions, we observe a 3.25% increase in the
average mAP of cytoplasm and nuclei on ISBI2014. How-
ever, directly adding DRM without the fusion of structural
and morphological information, may mislead the model.
This issue is observed in the more complex CPS dataset.
To alleviate this problem, DoNet takes advantage of the
decompose-and-recombined strategy by adding CRM af-
ter DRM. This strategy brings a total of 7.34% and 1.74%
mAP improvements on two datasets by strengthening the
model’s perception of overlapping regions while preserving
morphological information.

(a) (b) (c) (d)

Figure 3. Illustration of background noise suppression in MRP: (a)
the original image, (b) the origin feature map for region proposal,
(c) the attention map from cytoplasm prediction, and (d) the re-
weighted feature map for nuclei proposal generation.

Applying MRP for mitigating the side effects from back-
ground mimics yields a further improvement of 0.59% mAP
and 0.31% mAP on ISBI2014 and CPS datasets. Figure 3
provides the visualization of MRP operation, where back-
ground instances (e.g., mucus, karyoclasis, pointed by red
arrow) are suppressed with strong responses in the feature
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Table 3. Effect of each proposed module on CPS and ISBI2014 datasets. ✓denotes adding the corresponding module.

Base DRM CRM MRP ISBI2014 CPS
mAP↑ Dice↑ F1↑ AJI↑ mAP↑ Dice↑ F1↑ AJI↑

✓ 59.09 91.15 92.54 77.07 48.28 ± 3.10 89.32 ± 0.50 85.07 ± 2.01 69.20 ± 2.27
✓ ✓ 61.01 91.61 92.86 78.06 48.03 ± 3.48 89.13 ± 0.30 84.63 ± 2.57 68.56 ± 2.57
✓ ✓ ✓ 63.43 91.87 94.16 79.88 49.12 ± 3.26 89.47 ± 0.31 84.82 ± 2.73 69.26 ± 2.63
✓ ✓ ✓ ✓ 64.02 92.13 93.23 79.05 49.43 ± 3.83 89.54 ± 0.25 85.51 ± 2.33 70.08 ± 2.84

Table 4. Ablation study of DRM and CRM on the ISBI2014 dataset.✓denotes adding the corresponding component or strategy.

Hi Ho Hm FU Lcons
mAP↑ Dice↑ F1↑ AJI↑

Cyt. Nuc. Avg. Cyt. Nuc. Avg. Cyt. Nuc. Avg. Cyt. Nuc. Avg.
✓ 50.71 67.46 59.09 90.72 91.59 91.15 86.96 98.13 92.54 70.55 83.60 77.07
✓ ✓ 54.84 65.94 60.39 91.56 91.54 91.55 87.00 97.68 92.34 72.07 82.67 77.37
✓ ✓ ✓ 57.41 66.49 61.95 91.79 91.53 91.66 88.67 97.98 93.32 74.00 83.27 78.63
✓ ✓ ✓ ✓ 58.40 67.82 63.11 92.22 91.74 91.98 89.21 98.07 93.64 74.94 83.70 79.32
✓ ✓ ✓ ✓ ✓ 59.31 67.56 63.43 92.03 91.71 91.87 90.13 98.18 94.16 75.86 83.91 79.88

map, encouraging the RPN to concentrate on cellular in-
stance during nuclei region proposal.

Design Choice for DRM: We provide detailed comparisons
on the ISBI2014 dataset to demonstrate the effectiveness of
different components in DRM: 1) Hi: instance mask head
for coarse segmentation only; 2) Ho: intersection mask
head for overlapping region segmentation; 3) Hm: comple-
ment mask head for non-overlapping region segmentation;

As seen in Table 4, adding Ho yields an improvement
of 2.20% in average mAP, with a further 2.64% gains from
the additional Hm. We notice that cytoplasm results have
a more significant improvement of 13.2% in mAP, which is
indeed in line with our design intent.

Design Choice for CRM: The goal of semantic consistency
regularization is to enhance the model’s overlapping rea-
soning capability by learning the concept of recombined
instances from sub-regions. We provide comparisons to
demonstrate the design choice (Table 4): 1) CU + FU: in-
tegration of rich semantic features as inputs via Concate-
nation Unit and Fusion Unit. 2) Lcons: consistency regu-
larization between the recombined prediction êrk,i and the
fusion of sub-regions ôk,i, m̂k,i. As seen in Table 4, by ag-
gregating the rich semantic feature for overlapping and non-
overlapping region via Fusion Unit, we observe an increase
of 1.52% average mAP on the ISBI2014 dataset. Adding
consistency regularization further improves 0.91% mAP for
cytoplasm.

Figure 4 visualizes the results of the DoNet and other
typical instance segmentation methods, including stan-
dard (Mask R-CNN), multi-task (DoNet w/o CRM), and
amodal (Occlusion R-CNN) instance segmentation model.
It demonstrates the importance of adding interaction among
sub-regions via CRM and the strong perceptual capability
of DoNet in overlapping regions.

(a) (b)

(c) (d)

Figure 4. Qualitative results from (a) standard [11], (b) multi-
task (DoNet w/o CRM), (c) amodal [9], and (d) proposed de-
overlapping instance segmentation method.

4.4. Qualitative Analysis and Discussion

We visualize the heatmap of the intersection region, the
complement region, and the integral instance in Figure 6.
The proposed method successfully identifies sub-regions
based on the overlapping concept, even in low-resolution
areas with high transparency.

Furthermore, we provide qualitative comparisons on
CPS (top) and ISBI2014 (bottom) datasets in Figure 5. Our
proposed DoNet outperforms other instance segmentation
methods. Specifically, red rectangles provide details and
highlight the main difference among these results. In the
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(a) GT (b) MRCNN (c) ORCNN (d) SSP (e) CMRCNN (f) HTC (g) MSRCNN (h) DoNet (our)

Figure 5. Qualitative results of our DoNet and other SOTA methods on CPS (top) and ISBI2014 (bottom) datasets. (a) Ground Truth; (b)
Mask R-CNN [11]; (c) Occlusion R-CNN [9]; (d) Xiao et al. [37]; (e) Cascade R-CNN [2]; (f) Hybrid Task Cascade [8]; (g) Mask Scoring
R-CNN [13]; (h) Our proposed DoNet.

(a) (b) (c) (d)
Figure 6. Heatmaps of the intersection region, the complement
region, and the integral instance on CPS (top) and ISBI2014 (bot-
tom) datasets, including (a) the original instance, the prediction
heatmap of (b) intersection regions, (c) complement regions, and
(d) the integral instance.

segmentation results of the CPS data, it can be seen that
overlapped cells with different staining (e.g., dark red and
blue) show significant appearance inconsistency between
cellular sub-regions. Previous works (e.g., Mask R-CNN

[11] and Occlusion R-CNN [9]) with limited perceptual ca-
pability have difficulty capturing the relationship between
pixels in the intersection and complement sub-regions, lead-
ing to ambiguous segmentation contours. In contrast, our
DoNet can effectively distinguish different instance bound-
aries and can better perceive the integrality of cells. This
generalized superiority is also observed in the ISBI2014
dataset with low-contrast cellular instances.

5. Conclusion
In this paper, we propose a de-overlapping network

(DoNet) to address the overlapping challenges in cytology
instance segmentation. The proposed DoNet enhances the
model’s perception of overlapping regions by implicitly and
explicitly modeling the interaction between cellular regions
and the integral instance. Extensive experiments reveal the
superiorities of the proposed DoNet, which not only pro-
vides immense potential for overlapping object perception
in the medical domain but also occluded instance segmen-
tation in general vision application scenarios.
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