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Abstract

Learning high-quality, self-supervised, visual represen-
tations is essential to advance the role of computer vision
in biomedical microscopy and clinical medicine. Previous
work has focused on self-supervised representation learn-
ing (SSL) methods developed for instance discrimination
and applied them directly to image patches, or fields-of-
view, sampled from gigapixel whole-slide images (WSIs)
used for cancer diagnosis. However, this strategy is lim-
ited because it (1) assumes patches from the same patient
are independent, (2) neglects the patient-slide-patch hier-
archy of clinical biomedical microscopy, and (3) requires
strong data augmentations that can degrade downstream
performance. Importantly, sampled patches from WSIs of
a patient’s tumor are a diverse set of image examples that
capture the same underlying cancer diagnosis. This moti-
vated HiDisc, a data-driven method that leverages the in-
herent patient-slide-patch hierarchy of clinical biomedical
microscopy to define a hierarchical discriminative learning
task that implicitly learns features of the underlying diag-
nosis. HiDisc uses a self-supervised contrastive learning
framework in which positive patch pairs are defined based
on a common ancestry in the data hierarchy, and a unified
patch, slide, and patient discriminative learning objective is
used for visual SSL. We benchmark HiDisc visual represen-
tations on two vision tasks using two biomedical microscopy
datasets, and demonstrate that (1) HiDisc pretraining out-
performs current state-of-the-art self-supervised pretrain-
ing methods for cancer diagnosis and genetic mutation pre-
diction, and (2) HiDisc learns high-quality visual repre-
sentations using natural patch diversity without strong data
augmentations.
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Figure 1. Hierarchical self-supervised discriminative learn-
ing for visual representations. Clinical biomedical microscopy
has a hierarchical patch-slide-patient data structure. HiDisc com-
bines patch, slide, and patient discrimination into a unified self-
supervised learning task.

1. Introduction

Biomedical microscopy is an essential imaging method
and diagnostic modality in biomedical research and clini-
cal medicine. The rise of digital pathology and whole-slide
images (WSIs) has increased the role of computer vision
and machine learning-based approaches for analyzing mi-
croscopy data [51]. Improving the quality of visual repre-
sentation learning of biomedical microscopy is critical to

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

19798



introducing decision support systems and automated diag-
nostic tools into clinical and laboratory medicine.

Biomedical microscopy and WSIs present several unique
computer vision challenges, including that image resolu-
tions can be large (10K⇥10K pixels) and annotations are of-
ten limited to weak slide-level or patient-level labels. More-
over, even weak annotations are challenging to obtain in or-
der to protect patient health information and ensure patient
privacy [54]. Additionally, data that predates newly devel-
oped or future clinical testing methods, such as genomic
or methylation assays, also lack associated weak annota-
tions. Because of large WSI sizes and weak annotations,
the majority of computer vision research in biomedical mi-
croscopy has focused on WSI classification using a weakly
supervised, patch-based, multiple instance learning (MIL)
framework [2, 7, 20, 37, 38, 48]. Patches are arbitrarily de-
fined fields-of-view (e.g., 256⇥256 pixels) that can be used
for model input. The classification tasks include identify-
ing the presence of cancerous tissue, such as breast can-
cer metastases in lymph node biopsies [13], differentiating
specific cancer types [7, 11, 18], predicting genetic muta-
tions [11, 26, 32], and patient prognostication [8, 29]. A
limitation of end-to-end MIL frameworks for WSI classi-
fication is the reliance on weak annotations to train a patch
feature extractor and achieve high-quality patch-level repre-
sentation learning. This limitation, combined with the chal-
lenge of obtaining fully annotated, high-quality WSIs, ne-
cessitates better methods for self-supervised representation
learning (SSL) of biomedical microscopy.

To date, research into improving the quality and effi-
ciency of patch-level representation learning without an-
notations has been limited. Previous studies have focused
on using known SSL methods, such as contrastive learn-
ing [35, 47, 50], and applying them directly to WSI patches
for visual pretraining. These SSL methods are not optimal
because the majority use instance (i.e., patch) discrimina-
tion as the pretext learning task [5, 9, 10, 15, 55]. Patches
belonging to the same slide or patient are correlated, which
can decrease the learning efficiency. Instance discrimina-
tion alone does not account for patches from a common
slide or patient being different and diverse views of the same
underlying pathology. Moreover, previous SSL methods ne-
glect the inherent patient-slide-patch data hierarchy of clin-
ical biomedical microscopy as shown in Figure 1. This hi-
erarchical data structure is not used to improve representa-
tion learning when training via a standard SSL objective.
Lastly, most SSL methods require strong data augmenta-
tions for instance discrimination tasks [9]. However, strong
and domain-agnostic augmentations can worsen representa-
tion learning in microscopy images by corrupting semanti-
cally important and discriminative features [21, 50].

Here, we introduce a method that leverages the in-
herent patient-slide-patch hierarchy of clinical biomedi-

cal microscopy to define a self-supervised hierarchical
discriminative learning task, called HiDisc. HiDisc uses
a self-supervised contrastive learning framework such that
positive patch pairs are defined based on a common ances-
try in the data hierarchy, and a combined patch, slide, and
patient discriminative learning objective is used for visual
SSL. By sampling patches across the data hierarchy, we in-
troduce increased diversity between the positive examples,
allowing for better visual representation learning and by-
passing the need for strong, out-of-domain data augmenta-
tions. While we examine the HiDisc learning objective in
the context of contrastive learning, it can be generalized to
any siamese representation learning method [10].

We benchmark HiDisc self-supervised pretraining on
two computer vision tasks using two diverse biomedical mi-
croscopy datasets: (1) multiclass histopathologic cancer di-
agnosis using stimulated Raman scattering microscopy [41]
and (2) molecular genetic mutation prediction using light
microscopy of hematoxylin and eosin (H&E)-stained can-
cer specimens [30]. These tasks are selected because of
their clinical importance and they represent examples of
how deep learning-based computer vision methods can push
the limits of what is achievable through biomedical mi-
croscopy [18, 24, 26, 31]. We benchmark HiDisc in com-
parison to several state-of-the-art SSL methods, including
SimCLR [9], BYOL [15], and VICReg [1]. We demon-
strate that HiDisc has superior performance compared to
other SSL methods across both datasets and computer vi-
sion tasks. Our results demonstrate how hierarchical dis-
criminative learning can improve self-supervised visual rep-
resentations of biomedical microscopy.

2. Related Work
Biomedical microscopy and computational pathology
Biomedical microscopy refers to a diverse set of mi-
croscopy methods used in both clinical medicine and
biomedical research. The most common clinical use of
biomedical microscopy is light microscopy combined with
H&E staining of clinical tissue specimens, such as tissue
biopsies for cancer diagnosis [34]. The introduction of fast
and efficient whole-slide digitization resulted in a rapid in-
crease in the availability of WSIs and accelerated the field
of computational pathology [42,51]. Computational pathol-
ogy aims to discover and characterize histopathologic fea-
tures within biomedical microscopy data for cancer diagno-
sis, prognostication, and to estimate response to treatment.

The introduction of deep learning to WSI has resulted in
clinical-grade computational pathology with diagnostic per-
formance on par with board-certified pathologists [2,18,20].
See [43] for a comprehensive survey of deep learning-based
methods in computational pathology. Ilse et al. presented
MIL framework using an attention-based global pooling op-
eration for slide-level inference [22]. Campanella et al.
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Figure 2. HiDisc Overview. Motivated by the patient-slide-patch data hierarchy of clinical biomedical microscopy, HiDisc defines a pa-
tient, slide, and patch discriminative learning objective to improve visual representations. Because WSI and microscopy data are inherently
hierarchical, defining a unified hierarchical loss function does not require additional annotations or supervision. Positive patch pairs are
defined based on a common ancestry in the data hierarchy. A major advantage of HiDisc is the ability to define positive pairs without
the need to sample from or learn a set of strong image augmentations, such as random erasing, shears, color inversion, etc. Because each
field-of-view in a WSI is a different view of a patient’s underlying cancer diagnosis, HiDisc implicitly learns image features that predict
that diagnosis.

extended the strategy of a trainable aggregation operation
using a recurrent neural network for gigapixel WSI clas-
sification tasks [2]. Lu et al. updated the attention-based
MIL method to allow for better interpretability and efficient
weakly supervised training using transformers [38]. HiDisc
is complementary to any MIL framework and can be used
as an effective self-supervised pretraining strategy.

Other biomedical microscopy methods have an increas-
ing role in clinical medicine. Electron [39], fluorescence
[44, 46, 53], and stimulated Raman scattering microscopy
[14, 41] are a few examples of imaging methods that gener-
ate microscopy images used for patient diagnosis. Several
studies have applied deep learning-based methods to these
modalities for image analysis [18, 19, 23, 24, 44, 53].

Self-supervised pretraining in biomedical microscopy
Self-supervised pretraining has been used in computational
pathology to improve patch-level representation learning
[7, 28, 43, 45, 57]. Generally, a two-stage approach is used
where first an SSL method is applied for patch-level feature
learning using instance discrimination, and then the patch-
level features are aggregated for slide- or patient-level diag-
nosis. SSL patch pretraining can reduce the amount of data
needed compared to end-to-end MIL training [43]. Con-
trastive predictive coding [36], SimCLR [28], MoCo [45],

VQ-VAE [6], and VAE-GAN [57] are examples of deep
self-supervised visual representation learning methods ap-
plied to biomedical microscopy images [43].

Chen et al. presented a study using vision transform-
ers and self-supervised pretraining at different image scales
within individual WSIs [7]. They aim to represent the hi-
erarchical structure of visual histopathologic tokens (e.g.,
cellular features, supracellular structures, etc.) at varying
image resolutions using a transformer pyramid, resulting in
a single slide-level representation. Knowledge distillation
was used for SSL at each image resolution [5]. HiDisc is
complementary to their method and can be used for SSL at
any image resolution or, more generally, field-of-view pre-
training for any MIL method for slide-level representations.

3. Methods
3.1. The Patient-Slide-Patch Hierarchy

The motivation for HiDisc is that fields-of-view from
clinical WSIs, sampled from within a patient’s tumor, are
a diverse set of image examples that capture the same un-
derlying cancer diagnosis. Our approach focuses on how to
use these diverse fields-of-view in the context of the known
clinical patient-slide-patch hierarchical structure to improve
visual representation learning. Most patients included in
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public cancer histopathology datasets, including The Can-
cer Genome Atlas (TCGA) [4] and OpenSRH [24], con-
tain multiple WSIs as part of their clinical cancer diagno-
sis. These WSIs may be sampled from different locations
in the patient’s tumor, or different regions within the same
tumor specimen. Both histopathologic and molecular het-
erogeneity has been well described within human cancers,
encouraging clinicians to obtain multiple specimens/sam-
ples/views of the patient’s tumor [49]. To leverage the hi-
erarchy shown in Figure 1, we create positive pairs at the
patch-, slide-, and patient-level to define different discrimi-
native learning tasks with a corresponding increase in visual
feature diversity:

• Patch discrimination: Positive pairs are created from
different random augmentations of the same patch.
This strategy is similar to existing work on SSL via
instance discrimination [1, 9, 10].

• Slide discrimination: Positive pairs are created from
different augmented patches sampled from the same
WSI. These pairs capture local feature diversity within
the same specimen. Regional differences in cytologic
and histoarchitectural features can be captured at this
hierarchical level.

• Patient discrimination: Positive pairs are created
from different WSIs from the same patient. Patches
from different WSIs have the same underlying cancer
diagnosis, but can have the greatest degree of feature
diversity due to spatially separated tumor specimens.
Additionally, diversity in specimen quality, process-
ing, and staining, etc., is captured at this level.

An overview of the hierarchical discrimination tasks is
shown in Figure 2.

3.2. Hierarchical Discrimination (HiDisc)
The formulation of the HiDisc loss function is based on

NT-Xent [9] and inspired by [27, 56] for the purpose of
multiple positive pairs. The fundamental difference is that
no class labels are used during training with a HiDisc loss.

Discrimination
level

Number of samples
treated as independent

Number of
Positive pairs

Patch n · ns · np na

Slide n · ns np · na

Patient n ns · np · na

Table 1. Batch composition at all discrimination levels. The
number of samples in the batch treated as independent and the
number of positive pairs at each discrimination level. n, number
of patients in the batch, ns, number of slides sampled per patient,
np, number of patches sampled per slide, na, number of augmen-
tations performed on each patch.

Algorithm 1 HiDisc Pseudocode in PyTorch style

# f: backbone + projection mlp

# n: number of patients, batch size

# ns: number of slides sampled per patient

# np: number of patches sampled per slide

# na: number of augmentations per patch

# w: width of each patch

# h: height of each patch

# L: self supervised loss function

# lambdas: weight coefficients for each loss term

for x in loader:

# Load minibatch x with n patients

# x.shape is (n, ns, np, na, w, h)

# Forward pass, z.shape is (n * ns * np * na, d)

z = f(x.reshape(n * ns * np * na, w, h))

# Compute HiDisc loss for patch,

# slide and patient level discrimination

loss_patch = L(z.reshape(n * ns * np, na, d))

loss_slide = L(z.reshape(n * ns, np * na, d))

loss_patient = L(z.reshape(n, ns * np * na, d))

loss = dot(lambdas, # lambdas.shape is (1, 3)

[loss_patch, loss_slide, loss_patient])

# Back-propagate and update network

loss.backward()

optimizer.step()

HiDisc utilizes the natural hierarchy inherent to biomedical
microscopy images to improve visual SSLf.

We randomly sample a minibatch of n patients, ns slides
from each patient, np patches from each slide, and we aug-
ment each patch na times. For patients with less than ns

slides, the slides are repeated and sampled. We assume
np << numbers of patches available for WSI sampling.
Note that if a patient has only one WSI, then patient dis-
crimination degenerates to slide discrimination.

The HiDisc loss consists of the sum of three losses, each
of which corresponds to a discrimination task at a differ-
ent level of the patch-slide-patient hierarchy. Similar to
the supervised contrastive learning loss [27], the compo-
nent HiDisc losses are designed to fit more than one pair
of positives within each level of the hierarchy. We define
the HiDisc loss at the level ` to be:

L`
HiDisc =

X

i2I

�1

|P`(i)|
X

p2P`(i)

log
exp (zi · zp/ ⌧)P

a2A(i) exp (zi · za/ ⌧)
,

(1)
where ` 2 {Patch, Slide, Patient} is the level of discrimina-
tion, and I is the set of all images in the minibatch. A`(i)
is the set of all images in I except for the anchor image i,

A(i) = I \ {i}, (2)

and P`(i) is a set of images that are positive pairs of i at the
`-level,

P`(i) = {p 2 A`(i) : ancestry`(p) = ancestry`(i)}, (3)
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where ancestry`(·) is the `-level ancestry for an augmented
patch in the batch. For example, patches xi and xj from
the same patient would have the same patient ancestry, i.e.,
ancestryPatient(xi) = ancestryPatient(xj).

Patch-, slide-, and patient-level HiDisc losses share the
same overall contrastive objective, but capture positive pairs
at different levels in the hierarchy. Each loss has a different
number of positive pairs within a minibatch. Details about
this relationship are shown in Table 1.

Finally, the complete HiDisc loss is the sum of the
patch-, slide-, and patient-level discrimination losses de-
fined above:

LHiDisc =
X

`2{Patch, Slide, Patient}

�`L
`
HiDisc, (4)

where �` is a weighting hyperparameter for level ` in the
total loss. The pseudocode in PyTorch-style detailing the
training process is shown in Algorithm 1.

4. Experiments
We evaluate HiDisc using two different computational

histopathology tasks: multiclass histopathologic cancer di-
agnosis and molecular genetic mutation prediction. We
present quantitative classification performance metrics, as
well as qualitative evaluation with tSNE visualizations [52]
of the learned patch-level representations.

4.1. Datasets
Stimulated Raman histology (SRH) We validate HiDisc
on a multiclass histopathological cancer diagnosis task us-
ing an SRH dataset. Stimulated Raman histology is an
optical microscopy method that provides rapid, label-free,
sub-micron resolution images of unprocessed biological tis-
sues [14, 41]. The SRH dataset includes specimens from
patients who underwent brain tumor biopsy or tumor resec-
tion. Patients were consecutively and prospectively enrolled
at the University of Michigan for intraoperative SRH imag-
ing, and this study was approved by the Institutional Re-
view Board (HUM00083059). Informed consent was ob-
tained for each patient prior to SRH imaging and approved
the use of tumor specimens for research and development.
The SRH dataset consists of 852K patches from 3560 slide
images from 896 patients with classes consisting of normal
brain tissue and 6 different brain tumor diagnoses: high-
grade glioma (HGG), low-grade glioma (LGG), menin-
gioma, pituitary adenoma, schwannoma, and metastatic tu-
mor. All slides are divided into 300⇥300 patches, and they
are preprocessed to exclude the empty or non-diagnostic re-
gions using a segmentation model [18].

TCGA diffuse gliomas We additionally validate HiDisc
using WSIs from The Cancer Genome Atlas (TCGA)

dataset. We focus on WSIs from brain tumor patients diag-
nosed with diffuse gliomas, the most common and deadly
primary brain tumor [34]. Molecular genetic mutation clas-
sification is used as the evaluation task. The most impor-
tant genetic mutation that defines lower grade versus high
grade diffuse gliomas is isocitrate dehydrogenase-1/2 (IDH)
mutational status [3]. IDH-mutant tumors are known to
have a better prognosis and overall survival (median sur-
vival ⇠10 years) compared to IDH-wildtype tumors (⇠1.5
years). The classification task is to predict IDH muta-
tional status using formalin-fixed, paraffin-embedded H&E-
stained WSI images at 20⇥ magnification from the TCGA
dataset. Predicting IDH mutational status from WSIs is
currently not feasible for board-certified neuropathologists
[3, 12]; genetic mutation prediction from WSIs could avoid
time-consuming and expensive laboratory techniques like
genetic sequencing. WSIs are divided into 300⇥300 pixel
fields-of-view, and blank patches are excluded. The rest of
the patches are stain normalized using the Macenko algo-
rithm [40]. The TCGA data we included consists of a total
of 879 patients and 1703 slides, and 11.3M patches.

4.2. Implementation details
We train HiDisc using ResNet-50 [17] as the backbone

feature extractor and a one-layer MLP projection head to
project the embedding to 128-dimensional latent space. We
use an AdamW [33] optimizer with a learning rate of 0.001
and a cosine decay scheduler after warmup in the first 10%
of the iterations. For a fair comparison, we control the total
number of images in one minibatch (n·na·ns·np) as 512 and
448 for SRH and TCGA data, respectively. We train HiDisc
with patient discrimination by setting na = ns = np = 2,
slide discrimination by setting na = ns = 2, np = 1, and
patch discrimination by setting na = 2, ns = np = 1. The
number of patients n sampled from each batch is adjusted
accordingly. �` for each level of discriminating loss is set
to 1, and temperature ⌧ is set as 0.7 for all experiments. We
define weak augmentation as random horizontal and verti-
cal flipping. The strong augmentations are similar as [9],
including random erasing, color jittering, and affine trans-
formation (for details, see Appendix A). We train HiDisc
till convergence for both datasets (100K and 60K iterations
for SRH and TCGA, respectively) with three random seeds.
Training details for all baselines, including SimCLR [9],
SimSiam [10], BYOL [15], VICReg [1], and SupCon [27],
are similar to HiDisc.

4.3. Evaluation protocols
kNN evaluation Standard protocols to evaluate self-
supervised representation learning include linear and fine-
tuning evaluation. However, both methods are sensitive to
hyperparameters, such as learning rate [5]. Therefore, we
use the k nearest neighbor (kNN) classifier for quantitative
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SRH - Patch SRH - Patient TCGA - Patch TCGA - Patient
Accuracy MCA Accuracy MCA Accuracy AUROC Accuracy AUROC

SimCLR [9] 81.0 (0.1) 73.9 (0.2) 83.1 (0.7) 78.4 (0.6) 77.8 (0.0) 85.2 (0.1) 80.7 (0.6) 88.9 (0.3)
SimSiam [10] 80.3 (1.9) 73.6 (2.7) 82.3 (1.7) 77.0 (4.0) 68.4 (0.3) 74.1 (0.3) 76.6 (0.6) 82.4 (0.3)
BYOL [15] 83.5 (0.1) 78.2 (0.2) 84.8 (1.0) 82.7 (1.0) 80.0 (0.1) 87.5 (0.1) 83.1 (0.6) 89.8 (0.2)
VICReg [1] 82.1 (0.3) 76.0 (0.4) 82.1 (0.7) 78.7 (1.9) 75.5 (0.1) 82.9 (0.1) 77.0 (0.5) 86.0 (0.3)

HiDisc-Patch 80.8 (0.0) 73.5 (0.1) 82.6 (0.3) 77.9 (0.3) 77.2 (0.1) 84.7 (0.1) 81.0 (0.5) 88.1 (0.2)
HiDisc-Slide 86.9 (0.2) 83.2 (0.2) 87.6 (0.5) 87.0 (1.4) 82.7 (0.2) 89.3 (0.2) 84.3 (0.3) 92.3 (0.3)

HiDisc-Patient 87.4 (0.1) 83.5 (0.2) 87.9 (0.5) 86.4 (0.6) 83.1 (0.1) 90.1 (0.1) 83.6 (0.3) 91.8 (0.2)
Supervised 88.9 (0.3) 86.3 (0.3) 88.5 (0.5) 89.1 (0.5) 85.1 (0.3) 91.7 (0.2) 88.3 (0.4) 95.2 (0.2)

Table 2. Main results. We compare HiDisc to state-of-the-art SSL. Supervised refers to models trained with supervision from class labels.
Standard deviations are reported in parentheses. HiDisc-Slide and HiDisc-Patient outperform all baseline methods in all metrics for both
tasks. Our HiDisc benchmark outperforms previously reported fully supervised baselines from the existing literature on the same genetic
mutation classification task on TCGA [30]. MCA, mean class accuracy, AUROC, area under the receiver operating characteristic curve.

Patches colored by patient

HGG LGG Meningioma
Metastasis Pituitary adenoma

Schwannoma Normal

SimCLR HiDisc

Metastasis NormalPituitary adenoma Metastasis NormalPituitary adenoma

Figure 3. Visualization of learned SRH representations using SimCLR and HiDisc. Top. Randomly sampled patch representations
are visualized after SimCLR versus HiDisc pretraining using tSNE [52]. Representations are colored based on brain tumor diagnosis.
HiDisc qualitatively achieves higher quality feature learning and class separation compared to SimCLR. Expectedly, HiDisc shows within-
diagnosis clustering that corresponds to patient discrimination. Bottom. Magnified cropped regions of the above visualizations show
subclusters that correspond to individual patients. Patch representations in magnified crops are colored according to patient membership.
We see patient discrimination within the different tumor diagnoses. Importantly, we do not see patient discrimination within normal brain
tissue because there are minimal-to-no differentiating microscopic features between patients. This demonstrates that in the absence of
discriminative features at the slide- or patient-level, HiDisc can achieve good feature learning using patch discrimination without overfitting
the other discrimination tasks. HGG, high grade glioma; LGG, low grade glioma; Normal, normal brain tissue.
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evaluation. We freeze the pretrained backbone to compute
the representation vectors for both training and testing data,
and the nearest neighbor classifier is used to match each
patch in the testing dataset to the most similar k patches
in the training set based on cosine similarity. It also out-
puts a prediction score measured by the cosine similarity
between each test image and its k nearest neighbors. Due
to the size of the TCGA dataset, we randomly sample 400
patches from each slide for evaluation across three differ-
ent random seeds. Using the kNN classifier, we can com-
pute accuracy (ACC), mean class accuracy (MCA), and area
under receiver operating characteristic curve (AUROC) for
patch metrics. We use MCA for SRH dataset because it is a
multiclass classification problem and the classes are imbal-
anced. The AUROC is used for the TCGA dataset since it
is a balanced binary classification task.

Slide and patient metrics In contrast to patch-level eval-
uation, slide and patient predictions are more practical for
cancer diagnosis and other clinical uses [2]. After getting
patch prediction scores by kNN evaluation, we use aver-
age pooling over the scores within each WSI or patient to
obtain an aggregated prediction score. Compared to most
MIL methods, this non-parametric method directly evalu-
ates representation learning without additional training.

5. Results
5.1. Quantitative metrics

In this section, we evaluate the representations learned
by self-supervised HiDisc pretraining using the training and
evaluation protocols described in Section 4. We compare
HiDisc and SSL baselines on the testing set of both datasets
in Table 2. Since HiDisc-Patch is most similar to SimCLR,
we observe similar performances. After we add slide and
patient discrimination in HiDisc-Slide and HiDisc-Patient,
we observe a significant boost in patch accuracy (+6.1 and
+6.6 on SRH, +5.5 and +5.9 on TCGA), and a similar in-
crease in other performance metrics as well. Among all
methods, HiDisc-Patient has the best performance and out-
performs the best baseline, BYOL, with an improvement
of 3.9% and 3.1% in classification accuracy for SRH and
TCGA, respectively. The GPU wall time needed to train
BYOL is roughly 1.5x longer than HiDisc because it re-
quires updating the weights of the target network using ex-
ponential moving average. Appendix B shows additional
model evaluation metrics.

5.2. Qualitative evaluation
We also qualitatively evaluate the learned patch repre-

sentations with tSNE [52] colored by class and patient la-
bel for both SimCLR and HiDisc. Figures 3 and 4 show the
learned representations for the SRH and TCGA datasets,

respectively. Here, we randomly sample patches from the
validation set and plot them by class membership (tumor
or molecular subtype). We observe that HiDisc learns bet-
ter representations for both classification tasks, with more
discernible clusters for each class. We also observe better
patient clusters within each tumor class in the representa-
tions learned by HiDisc. Furthermore, patient clusters are
not observed in normal brain tissues for both SimCLR and
HiDisc-Patch, as there are minimal differentiating micro-
scopic features between patients.

5.3. Ablation Studies

Weak Augmentation We demonstrate that HiDisc is ca-
pable of preserving excellent performance without the use
of strong, domain-agnostic data augmentations as shown in
Table 3. SimCLR suffers from dimensional collapse with
weak augmentations [25]. Similar to SimCLR, HiDisc-
Patch collapses because it is limited to the diversity from
augmentations alone. HiDisc-Slide and HiDisc-Patient
performance remain high across both datasets and tasks.
HiDisc-Patient outperforms HiDisc-Slide, especially when
evaluating at the patch level. We hypothesize that this is
a result of additional diversity between positive pairs con-
tributed by patient-level discrimination. We also provide
supervised contrastive learning (SupCon) baselines [27] as
an upper performance bound. Figure 5 shows SimCLR
fails to learn semantically meaningful features while HiDisc
achieves high-quality representations. Overall, we observe
that HiDisc, especially HiDisc-Patient, performs well re-
gardless of whether strong augmentations are used.

IDH Wildtype IDH Mutant

SimCLR HiDisc

Figure 4. Visualization of learned TCGA representations using
SimCLR and HiDisc. We randomly sample patches from the val-
idation set, and visualize these representations using tSNE [52].
Representations on the plots are colored by IDH mutational status.
Qualitatively, we can observe that HiDisc forms better represen-
tations compared to SimCLR, with clusters within each mutation
that corresponds to patient membership. This observation is con-
sistent with the visualizations for the SRH dataset in Figure 3.
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SRH - Patch SRH - Patient TCGA - Patch TCGA - Patient
Accuracy MCA Accuracy MCA Accuracy AUROC Accuracy AUROC

SimCLR [9] 31.5 (2.3) 23.1 (1.9) 40.2 (6.9) 28.9 (4.5) 57.1 (1.1) 58.4 (2.2) 58.1 (1.1) 72.8 (3.2)
HiDisc-Patch 31.3 (0.6) 22.2 (0.5) 47.4 (2.1) 33.1 (1.6) 59.0 (0.8) 61.5 (1.3) 61.2 (4.2) 75.8 (2.5)
HiDisc-Slide 82.8 (0.2) 77.4 (0.3) 84.2 (0.5) 82.3 (0.4) 79.6 (0.1) 86.3 (0.2) 77.7 (0.4) 85.3 (0.3)

HiDisc-Patient 84.9 (0.2) 78.9 (0.1) 84.7 (0.5) 80.9 (1.4) 82.9 (0.2) 89.6 (0.2) 82.3 (0.3) 90.3 (0.3)
SupCon [27] 90.0 (0.2) 87.4 (0.3) 90.0 (0.5) 90.3 (0.4) 85.4 (0.4) 92.0 (0.2) 88.4 (0.8) 95.2 (0.4)

Table 3. Results for weak augmentation. Comparison of HiDisc with the SimCLR and SupCon on SRH and TCGA datasets with weak
augmentation (random flipping). Both SimCLR and HiDisc-Patch patch collapse since weak augmentation will make the pretext task
trivial. SupCon, on the other hand, is not sensitive to data augmentations since its positive pairs are defined by class labels. HiDisc-Slide
and HiDisc-Patient are only slightly affected by the augmentation and achieve performance close to the supervised method.

SimCLR HiDisc

HGG LGG Meningioma Metastasis
Pituitary adenoma Schwannoma Normal

Figure 5. Hierarchical self-supervised discriminative learning
without strong data augmentations. Randomly sampled patch
representations are shown after SimCLR and HiDisc-Patient pre-
training without the use of strong, domain-agnostic data augmen-
tations on SRH dataset. HiDisc achieves high-quality representa-
tion learning, while SimCLR is unable to learn semantically mean-
ingful features via instance discrimination alone. HGG, high grade
glioma; LGG, low grade glioma; Normal, normal brain tissue

Other Ablation studies Additional experiments are in-
cluded in Appendix C. We perform ablation studies on
the weighting factor �` for each level of discrimination.
We also train HiDisc with different number of itera-
tions, learning rate and batch size. Some settings may
marginally improve model performance but cost a signifi-
cant amount of computation resources.

6. Conclusion

We present HiDisc, a unified, hierarchical, self-
supervised representation learning method for biomedical
microscopy. HiDisc is able to outperform other state-of-
the-art SSL methods for visual representation learning. The
performance increase is driven by leveraging the inherent
patient-slide-patch hierarchy of clinical WSIs. The inherent
data hierarchy provides image diversity by defining positive
patch pairs based on a common ancestry in the hierarchy

and does not require strong, domain-agnostic augmenta-
tions. By combining patch, slide, and patient discrimination
into a single learning objective, HiDisc implicitly learns im-
age features of the patient’s underlying diagnosis without
the need for patient-level annotations or supervision.

Limitations Like other WSI classification methods,
HiDisc representation learning is currently limited to
single-resolution fields-of-view that are arbitrarily defined.
Expanding HiDisc to include multiple image resolutions
could improve its ability to capture multiscale image fea-
tures of the patient’s underlying diagnosis. Also, we have
limited the evaluation to a contrastive learning framework
and HiDisc can also be evaluated using other siamese learn-
ing frameworks [1, 5, 10].

Broader Impacts We have limited this investigation to
biomedical microscopy and WSIs. However, many imag-
ing medical modalities, such as magnetic resonance imag-
ing and fundoscopy [16], have a clinical hierarchical data
structure that could benefit from a similar hierarchical rep-
resentation learning framework. We hope that hierarchical
discriminative learning will extend beyond microscopy to
other medical and non-medical imaging domains.
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