
LayoutFormer++: Conditional Graphic Layout Generation via Constraint
Serialization and Decoding Space Restriction

Zhaoyun Jiang1*, Jiaqi Guo2, Shizhao Sun2, Huayu Deng3*, Zhongkai Wu4*,
Vuksan Mijovic5, Zijiang James Yang1, Jian-Guang Lou2, Dongmei Zhang2

1Xi’an Jiaotong University, 2Microsoft Research Asia,
3Shanghai Jiaotong University, 4Beihang University, 5Microsoft,

jzy124@stu.xjtu.edu.cn, deng hy99@sjtu.edu.cn, 17376487@buaa.edu.cn,

zijiang@xjtu.edu.cn, {jiaqiguo, shizsu, vmijovic, jlou, dongmeiz}@microsoft.com

Abstract

Conditional graphic layout generation, which generates
realistic layouts according to user constraints, is a chal-
lenging task that has not been well-studied yet. First, there
is limited discussion about how to handle diverse user con-
straints flexibly and uniformly. Second, to make the lay-
outs conform to user constraints, existing work often sac-
rifices generation quality significantly. In this work, we
propose LayoutFormer++ to tackle the above problems.
First, to flexibly handle diverse constraints, we propose a
constraint serialization scheme, which represents different
user constraints as sequences of tokens with a predefined
format. Then, we formulate conditional layout generation
as a sequence-to-sequence transformation, and leverage
encoder-decoder framework with Transformer as the ba-
sic architecture. Furthermore, to make the layout better
meet user requirements without harming quality, we pro-
pose a decoding space restriction strategy. Specifically, we
prune the predicted distribution by ignoring the options that
definitely violate user constraints and likely result in low-
quality layouts, and make the model samples from the re-
stricted distribution. Experiments demonstrate that Lay-
outFormer++ outperforms existing approaches on all the
tasks in terms of both better generation quality and less con-
straint violation.

1. Introduction

Graphic designs greatly facilitate information communi-
cation in our daily life. During its creation, the layout, i.e.,
positions and sizes of elements, plays a critical role. To
assist layout design, conditional layout generation, which
takes user constraints as input and generates layouts as out-

*Work done during an internship at Microsoft Research Asia.

Good
Controllability

Text ToolbarImage model A

smaller than
Icon at the top of Text
Icon Text

model B

Bad
Quality

Violate
Constraints

Layout
Former++

Previous Approaches:

Sufficient Flexibility

LayoutFormer++:

Constraints A:

Constraints B:

<sos> image|text|text <eos>

<sos> icon|text||icon top
text|icon smaller text <eos>

Figure 1. Comparing with previous conditional layout generation
approaches, LayoutFormer++ performs better on sufficient flexi-
bility and good controllability.

put, attracts great attention (see Figure 1). It is different
from unconditional layout generation, which generates lay-
outs freely without constraints, from at least two aspects.
First, the model should be able to handle diverse user con-
straints, called sufficient flexibility. Figure 2 shows 6 typical
tasks of layout generation in real-world applications includ-
ing layout completion, layout refinement, layout generation
conditioned on element types, element types with sizes, el-
ement relationships, or any of their combinations. Second,
the model should generate layouts conforming to user re-
quirements (i.e., constraints) as many as possible without
harming quality, called good controllability (see Figure 1).

However, existing work cannot meet the above two re-
quirements. First, there is no existing work can support all
the layout generation tasks with different user constraints.
Most existing approaches simply focus on tackling a sin-
gle conditional layout generation task without considering
whether they can be applied to other tasks. For example,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

18403

LayoutTransformer [3] can only perform completion task
and BLT [10] cannot handle element relationships. Such
task-specific approaches hinder the development of solu-
tions for the new task. Second, there are no satisfactory
methods to ensure good controllability. Some approaches
directly replace the values in the predicted layout with the
ones specified in the user constraints [3, 10]. Another work
defines a set of heuristic rules and leverages latent opti-
mization [8]. To make the generated layouts meet user re-
quirements, they often degrade the generation quality sig-
nificantly.

In this work, we propose a unified model called Layout-
Former++ to support the different scenarios of conditional
layout generation. In LayoutFormer++, a set of constraints
is represented as a sequence. Specifically, we use a con-
straint serialization scheme to serialize different user con-
straints into a sequence of tokens with a predefined format
(see Figure 1). The intuition behind this design choice is as
follows. First, the sequence format is widely used and ef-
fective. Its effectiveness in layout generation has also been
demonstrated in recent works [3,10]. Second, a sequence is
very flexible to accommodate different constraints for lay-
out generation. We can serialize any structured information
in the user constraints as a sequence. We found although
user needs are diverse, they are all about element types and
five attributes including type, top coordinate, left coordi-
nate, width and height. Thus, we can simply define a set of
vocabularies to describe the attributes respectively and con-
catenate descriptions of different attributes and elements to
construct a sequence.

Therefore, the conditional layout generation problem can
be formulated as a sequence-to-sequence transformation
problem. This enables us to leverage a simple yet effec-
tive encoder-decoder framework with Transformer [26] as
a basic model architecture. The encoder processes the user
constraints in a bidirectional way. The decoder predicts the
layout sequence autoregressively, where there are multiple
decoding steps and the model samples one token from the
predicted distribution at each decoding step.

Furthermore, to achieve good controllability, we intro-
duce a decoding space restriction strategy in the inference
stage. Our key idea is to prune the infeasible options in the
predicted distribution and make the model sample from the
restricted distribution at each decoding step. Specifically,
we leverage two kinds of information to prune the options.
First, the options that definitely violate the user constraints
are pruned. For example, if a user wants one image and
two buttons, the option for putting one text box will not be
acceptable. Second, the options with low probabilities in
the predicted distribution, which will very likely result in
low-quality layouts, are also pruned. As the feasible op-
tion set may be empty after pruning, we further introduce
a backtracking mechanism, in which the model goes back

image,
text, text

Element Types:

(1). Generation Conditioned
on Element Types

img

text 1

text 2

img

text 1

text 2

image (36,36),
text (60,20),
text (60,20)

Types with Sizes:

(2). Generation Conditioned
on Element Types and Sizes

text 1 at the top of
text 2; text 2 at the
bottom of canvas.

Types:
Relationships:

img

text 1

text 2

image, text, text

(3). Generation Conditioned
on Element Relationships

img

text 1

text 2

img

(5). Completion

img

text 1

text 2

img

text 1

text 2

(4). Refinement

img

text 1

text 2

None

(6). Unconstrained Generation

Figure 2. Typical tasks for conditional layout generation.

to a certain decoding step and find a better solution. Note
that the whole generation process of the proposed strategy
still relies on the distribution learned from the training data.
Thus, it is less likely to disturb a layout when making it
better conform to user constraints.

We conduct extensive experiments on two public
datasets [15, 30] and six layout generation tasks with dif-
ferent user constraints, to evaluate LayoutFormer++ and
compare it with state-of-the-art approaches. Experimental
results show that LayoutFormer++ can successfully tackle
all six layout generation tasks that are handled separately
by previous work, demonstrating that it is able to provide
sufficient flexibility. Furthermore, LayoutFormer++ signif-
icantly outperforms previous approaches in terms of both
better generation quality and less constraint violation, indi-
cating that it achieves good controllability.

2. Related Work
Graphic Layout Generation. Graphic layout genera-

tion aims at generating aesthetic layouts to tackle users’
needs. As users’ needs are diverse in real-world applica-
tions, various tasks of layout generation are explored (see
Figure 2), such as generation condition on element types [8,
10, 12], generation condition on types and sizes [10], gen-
eration condition on element relationships [8, 12], refine-
ment [23] and completion [3]. Some other approaches focus
on unconstrained generation [2, 7, 13, 27].

However, none of existing approaches can achieve suf-
ficient flexibility to handle diverse layout generation tasks,
due to the limitations in constraint modeling. Some works
represent the constraints in the same format of the target
layout, thus can not handle other complex constraints [3,
10, 23]. For example, LayoutTransformer [3] can only han-
dle completion task but cannot deal with relationships be-
tween elements. Other works design the modeling formats
specific to the constraint, which are hard to adapt to other
tasks. For example, [12] leverages graph format to represent
the relationships among the elements, which is inconvenient
for the size constraints. In this work, we propose Layout-
Former++ with constraint serialization scheme, modeling
different constraints into same format of the sequence, elim-
inating the isolation between layout generation tasks.

18404

Existing approaches also consider different methods for
constraint satisfaction. Some approaches directly reset the
predicted attributes by the values specified in the con-
straints [3, 10]. Other approaches define the heuristic rules
and cost functions to control the generation [8, 12]. For ex-
ample, [8] designs cost functions for each constraint and
takes the constrained generation as an optimization prob-
lem. However, these methods often decrease the genera-
tion quality significantly. For [3, 10], directly resetting the
sequence will make the generated layout deviate from the
distribution learned by model. For [8, 12], it is hard to de-
fine the rules and cost functions to handle the trade-off be-
tween constraint satisfaction and generation quality. Differ-
ent from existing approaches, we introduce decoding space
restriction strategy to prune the infeasible values during de-
coding process, which does not rely on sophisticated rules
or cost functions, and also fits the learned distribution.

Decoding Methods. Decoding method plays an impor-
tant role in autoregressive generation. The most prominent
decoding methods include Greedy Search, Beam Search,
Top-K sampling and Top-P sampling [5], etc. To en-
able the control over the output sequence, constrained de-
coding is first proposed in controllable text generation.
[1,4,6,16,17,21] propose constrained decoding methods for
hard lexical constraints where a set of tokens are required
to occur in target output. [22,28] present decoding methods
for soft constraints which assign a value between 0 and 1
to indicate how constraints are satisfied. [11, 24, 25] intro-
duce decoding methods for structural constraints which im-
pose a rigorous structures on the output sequence. Inspired
by these methods, we propose a new constrained decoding
method tailored for conditional layout generation. We care-
fully design two pruning modules and a backtracking mech-
anism to improve the satisfaction of constraints while main-
taining high layout quality.

3. Approach

3.1. Overview

A layout is made up of a set of elements, where each
element can be described by its type c, left and top coordi-
nate x and y, as well as width w and height h. The con-
tinuous attributes x, y, w and h are quantized, which is
proven to be helpful for graphic layouts [2, 3, 23]. Thus,
an element can be represented by five tokens. Follow-
ing the state-of-the-art approaches, we represent a lay-
out by concatenating all the elements’ tokens, i.e., L =
{⟨sos⟩c1x1y1w1h1 . . . cNxNyNwNhN ⟨eos⟩}. Here, N de-
notes the total number of elements, ⟨sos⟩ and ⟨eos⟩ are spe-
cial tokens indicating the start and end of a sequence.

In this work, we propose a new approach named Lay-
outFormer++ for conditional layout generation. The overall
model architecture is illustrated in Figure 3a.

To achieve sufficient flexibility, different constraints are
formatted uniformly into sequence through constraint seri-
alization. The details of the constraint serialization scheme
will be introduced in Section 3.2.

We leverage a Transformer encoder-decoder architecture
for LayoutFormer++ based on the experience of previous
works. The bidirectional encoder takes the constraint se-
quence as input and outputs their contextualized represen-
tations. The autoregressive decoder iteratively predicts the
probabilities of future tokens. The model is trained to min-
imize the negative log-likelihood of layout tokens, i.e.,

minimize
N∑
t=1

− logPθ(Lt|L<t, S), (1)

where S is the input constraint sequence, L is the output
layout sequence, θ refers to the model parameters and N
denotes the length of the layout sequence.

Finally, we introduce the decoding space restriction
strategy with a backtracking mechanism into inference pro-
cess to achieve good controllability. The details of the de-
coding space restriction strategy are given in Section 3.3.

3.2. Serializing Constraints

3.2.1 Principles

Instead of directly presenting concrete sequences for the
constraints considered in previous work, we first introduce
the principles for serializing constraints. These principles
not only summarize how the existing constraints are seri-
alized but also provide a general guidance for formulating
other constraints. There are two critical questions in seri-
alizing constraints. First, how to represent each constraint
in a sequence format. Second, how to combine different
constraints into a complete sequence.
Constraint Representation. To present a constraint as a
sequence, the basic idea is to first define a set of vocabular-
ies and then concatenate the tokens from these vocabularies.
Specifically, the constraints often fall into two categories.

First, some constraints are only related to a single el-
ement. For example, put an image on the page or the
element should be 10 pixel wide. The serialization for
such constraint is quite straightforward: we just define
a vocabulary and then represent the constraint by a sin-
gle token from the vocabulary. For example, for the
constraints about element type, the vocabulary could be
{image,toolbar, . . . ,button}, and the constraint ‘an
image’ can be represented as image.

Second, other constraints are related to multiple ele-
ments. For example, put an image on top of a button.
To distinguish the elements referred in the constraint,
we first build a vocabulary representing unique IDs
for the elements. Then, we define a vocabulary for
the relationships between elements. At last, we con-
catenate the tokens of element IDs and relationships.

18405

image | text <eos>

<sos> image 60

or

…

…<sos>

Constraint Serialization

<sos> image | text | text || text 1 top text
2 | text 2 bottom canvas <eos>

Decoding Space RestrictionBidirectional
Transformer Encoder

Autoregressive
Transformer Decoder

Relation Constraints:
Element types: image, text, text.

Relations: text 1 at the top of the text 2,
text 2 at the bottom of the canvas.

Pruning

Sampling

22 20image

Backtracking

…

…

22

11 …

(a) Model Architecture

Input Sequence

Gen-T: <sos> image | text | text
<eos>

Gen-TS: <sos> image 36 36 | text
60 20 | text 60 20 <eos>

Gen-R: <sos> image | text | text
|| text 1 top text 2 | text 2
bottom canvas <eos>

Refinement: <sos> image 20 13
35 34 | text 11 59 61 21 | text 9
87 63 19 <eos>

Completion: <sos> image 20 13
35 34 <eos> UGen: <sos> <eos>

Output Sequence
<sos> image 22 11 36 36 | text 10 58 60 20 | text 10 89 60 20 <eos>

(b) Input and Output Sequences

Figure 3. a The overall model architecture of LayoutFormer++, illustrated by taking the task Gen-R as an example. b The examples of
input and output sequences for different conditional layout generation tasks through constraint serialization.

For example, the vocabulary for element IDs could be
{image1, . . . ,imageK1

, . . . ,button1, . . . ,buttonKt},
and the vocabulary for relationships could be
{top, . . . ,small}. Then, the constraint ‘an image on top
of a button’ is represented as image1 top button1.
Constraint Combination. To combine different con-
straints, we concatenate their sequences. To ease the learn-
ing of neural network, we use a fixed order instead of a ran-
dom order when concatenating different constraints. First,
for the constraints only related to a single element, we first
concatenate those for the same element and then concate-
nate those from different elements. Second, for the con-
straints related to multiple elements, we put them after all
the constraints for the single elements.

3.2.2 Examples for Typical Tasks

In this work, we consider six typical layout generation tasks
which has been explored in previous work. We demonstrate
how we formulate the constraint sequences for these tasks
according to Section 3.2.1 as followed.

Generation conditioned on types (Gen-T) is to gener-
ate layouts from the element types specified by user con-
straints. We formulate the input constraint sequence by con-
catenating the single-element constraints of element type,
i.e., SGen-T = {⟨sos⟩c1|c2| . . . |cN ⟨eos⟩}.1

Generation conditioned on types and sizes (Gen-TS) is
to generate layouts when user constraints specify the ele-
ment types and sizes. We formulate the input sequence by
concatenating the type, the width and the height constraints
as SGen-TS = {⟨sos⟩c1w1h1|c2w2h2| . . . |cNwNhN ⟨eos⟩}.

Generation conditioned on relationships (Gen-R) gener-
ates layouts conditioned on element relationships. For ex-
ample, a user could expect to put a large image at the top of
a small text box. We formulate a relationship between two
elements as {ck2m−1k2m−1rk2m−1,k2mck2mk2m}, where
ck2m−1

and ck2m
are the element types, k2m−1 and

1According to the practical experience, we add the special tokens ⟨sos⟩
and ⟨eos⟩ at the start and the end of the sequence, and use a separator token
| to distinguish the single constraints.

k2m are the indexes for the elements, and rk2m−1,k2m

is an extra token introduced to denote one kind of
relationships. We concatenate the sequences of type
constraints and relationship constraints as SGen-R =
{⟨sos⟩c1|c2| . . . |cN ||ck1

k1rk1,k2
ck2

k2| . . . |ck2M−1
k2M−1

rk2M−1,k2M
ck2M

k2M ⟨eos⟩}, where M is the number of re-
lationships.

Refinement applies local changes to the elements that
need improvements while maintaining the original lay-
out design. We formulate the input as SRefinement =
{⟨sos⟩c1x1y1w1h1| . . . |cNxNyNwNhN ⟨eos⟩}.

Completion aims to complete layout from a set of spec-
ified elements. We formulate the input as SCompletion =
{⟨sos⟩c1x1y1w1h1| . . . |cPxP yPwPhP ⟨eos⟩}, where P is
the number of known elements.

Unconstrained generation (UGen) aims to generate lay-
outs without any user requirements. We formulate the input
as an empty sequence with necessary special tokens, i.e.,
SUGen = {⟨sos⟩⟨eos⟩}.

3.3. Decoding Space Restriction

During the inference, we introduce the decoding space
restriction strategy to the decoding process. Algorithm 1
presents the pseudo-code for the decoding space restriction.

In each decoding step t, the decoder predicts the proba-
bilities P of the possible values for current attribute. Then,
P will be pruned by two modules. The ConstraintPrun-
ing prunes the infeasible values which may violate the user
given constraints S. The ProbabilityPruning prunes the val-
ues which the probabilities are lower than the threshold θ.

If all the probabilities in P ′ are pruned, it means there
is no feasible value for current attribute. We propose a
backtracking mechanism to solve this problem. When P ′

is empty and the back time B[t] is less than the max back
time maxBack, the backtracking mechanism will roll back
the decoding process to a previous step t′ and restart the
prediction. Otherwise, the value o will be sampled from P ′

and the generation O will be updated. The decoding process
will move to the next step by increasing t by 1.

While the end-of-sequence token EOS is predicted, or

18406

the length of O reaches maxLen, the generation finishes.
In the following, we will give more details about the two
pruning modules and the backtracking mechanism.

Constraint Pruning Module. The constraint pruning
module prunes the value in P which may violate the re-
lated constraints. Take the relationship constraint as exam-
ple, suppose at step t the decoder predicts possibilities P
for the value of the attribute wi of the i-th element, there is
a relation constraint s = {wi ≤ wj}, which specifies the
relative size relationships between element i and j. If wj

has not been predicted at step t, wi will not be influenced
by wj in current step and the P will not be pruned. Other-
wise, if wj has been predicted at previous step, the feasible
values of wi will be restricted to (0, wj] according to s, and
the infeasible values’ probabilities in P will be set as 0.

Probability Pruning Module. The probability pruning
module checks each value’s probability in P ′. The prob-
abilities that are lower than the predetermined threshold θ
will be pruned by setting as 0. The threshold θ is tuned to
achieve the best performance by task.

Backtracking Mechanism. When the probabilities in
P ′ are all set as 0, the backtracking mechanism works to
roll back the decoding process to a previous step and restart
the prediction. The function Backtracking will check why
the P ′ is pruned as empty, and decide which step t′ to back-
track to. One situation is that the current token is restricted
by previous token through the constraint. For example, the
relation constraint s = {wi ≤ wj} restricts the feasible
values of wi by wj . In this case, we choose the step of
wj as the backtracking step. Otherwise, since all the pre-
vious predictions collectively lead to current circumstance,
we randomly pick one previous step to back to.

4. Experiments

4.1. Setups

Datasets. We compare LayoutFormer++ to existing ap-
proaches on two public datasets. RICO [15] is a dataset of
mobile app UI that contains 66K+ UI layouts with 25 ele-
ment types. PubLayNet [30] contains 360K+ document lay-
outs with 5 element types. On both datasets, there are a few
layouts with quite a lot of elements, which easily leads to an
out-of-memory problem. Existing studies use multifarious
rules to filter out these layouts. In our experiments, we sim-
ply filter out the layouts with more than 20 elements. For
RICO, we use 90%, 5% and 5% of data for training, val-
idation and testing. For PubLayNet, we use 95% and 5%
of official training split for training and validation, and the
official validation split for testing.

Baselines. We try our best to reproduce all the existing
approaches. Even so, we regret to not include some ap-
proaches for the following reasons. First, due to the miss-
ing implementation details and hyperparameter settings, we

Algorithm 1: Decoding Space Restriction
Input: Encoder hidden state M ; User constraints S.
Output: Layout sequence O.

1 Initialize step index t, the back time for each step B and
the predicted sequence O.

2 while (O[−1] ̸= EOS) and (t<maxLen) do
3 P ← Decoder(O,M)[t];
4 P ′ ← ConstraintPruning(P, S);
5 P ′ ← ProbabilityPruning(P ′, θ);
6 if (P ′ is ∅) and (B[t]<maxBack) then
7 t′ ← Backtracking(P, S, t);
8 B[t]← B[t] + 1;
9 O ← O[: t];

10 t← t′;
11 else
12 o← Sampling(P ′);
13 O ← O ∪ o;
14 t← t+ 1;
15 end
16 end

fail to reproduce some approaches [13, 14, 18, 20]. Second,
a few approaches consider data-specific attributes and are
difficult to be applied to arbitrary datasets about graphic
layouts [27, 29]. Ultimately, we compare LayoutFormer++
against 1) NDN-none [12], LayoutGAN++ [8] and BLT [10]
on Gen-T, 2) BLT [10] on Gen-TS, 3) NDN [12] and
CLG-LO [8] on Gen-R, 4) RUITE [23] on refinement, 5)
LayoutTransformer [3] on completion, and 6) VTN [2],
Coarse2Fine [7] and LayoutTransformer [3] on UGen.

Evaluation Metrics. We adopt the metrics proposed by
existing works for comprehensive evaluation.

Maximum Intersection over Union (mIoU) measures the
similarity between the generated layouts and the real lay-
outs, which is based on the averaged IoU of bounding
boxes. We use the same implementation as [8].

Alignment (Align.) measures whether the elements are
well-aligned. We modify the metric from [14] by normaliz-
ing it by the number of elements.

Overlap measures the abnormal overlap area between el-
ements. We improve the metric from [14] by ignoring the
elements that serve as a background or padding, e.g., card,
background and modal on RICO.

Frechet Inception Distance (FID) describes the distribu-
tion difference between real and generated layouts. Follow-
ing [8], we train a neural network to convert the layouts
into representative features and then calculate the distribu-
tion difference based on learned features.

Constraint Violation Rate (Vio.%) measures the rate of
the violated constraints. We follow the implementation of
[8] for Gen-R. For other tasks, we calculate Vio.% by di-
viding the number of the violated constraints by the total

18407

RICO PubLayNet

Tasks Methods mIoU ↑ FID ↓ Align. ↓ Overlap ↓ mIoU ↑ FID ↓ Align. ↓ Overlap ↓

Gen-T

NDN-none 0.35 13.76 0.56 0.55 0.31 35.67 0.35 0.17
LayoutGAN++ 0.298 5.954 0.261 0.620 0.297 14.875 0.124 0.148
BLT 0.216 25.633 0.150 0.983 0.140 38.684 0.036 0.196
LayoutFormer++ 0.432 1.096 0.230 0.530 0.348 8.411 0.020 0.008

Gen-TS
BLT 0.604 0.951 0.181 0.660 0.428 7.914 0.021 0.419
LayoutFormer++ 0.620 0.757 0.202 0.542 0.471 0.720 0.024 0.037

Gen-R
NDN 0.36 - 0.56 - 0.31 - 0.36 -
CLG-LO 0.286 8.898 0.311 0.615 0.277 19.738 0.123 0.200
LayoutFormer++ 0.424 5.972 0.332 0.537 0.353 4.954 0.025 0.076

Refinement
RUITE 0.811 0.107 0.133 0.483 0.781 0.061 0.029 0.020.
LayoutFormer++ 0.816 0.032 0.123 0.489 0.785 0.086 0.024 0.006

Completion
LayoutTransformer 0.363 6.679 0.194 0.478 0.077 14.769 0.019 0.0013
LayoutFormer++ 0.732 4.574 0.077 0.487 0.471 10.251 0.020 0.0022

UGen

LayoutTransformer 0.439 22.884 0.052 0.471 0.062 36.304 0.031 0.0009
VTN 0.686 76.064 0.461 0.694 0.210 103.373 0.205 0.211
Coarse2Fine 0.360 46.483 0.128 0.676 0.361 50.854 0.221 0.142
LayoutFormer++ 0.742 19.688 0.047 0.547 0.417 46.522 0.029 0.0009

Table 1. Quantitative comparisons with existing approaches on six layout generation tasks.

number of constraints for all the evaluated layouts.
Among the above metrics, mIoU, Align., Overlap and

FID evaluate the generation quality, and Vio.% evaluate the
constraint satisfaction. A larger value for mIoU indicates
better performance, while smaller values for other metrics
indicate better performance.

Implementation Details. We implement Layout-
Former++ by PyTorch [19]. The model is trained using the
Adam optimizer [9] with NVIDIA V100 GPUs. For Trans-
former blocks, we use 8 layers, 8 heads for multi-attention,
512 embedding dimensions and 2048 feed-forward dimen-
sions. Other hyper-parameters, e.g., the batch size, the
learning rate, and the threshold θ in decoding space restric-
tion, are tuned to achieve the best performance on the val-
idation set2. For Gen-R, following CLG-LO [8], we ran-
domly sample 10% element relationships as the input. For
refinement, following RUITE [23], we synthesize the input
by adding random noise to the position and size of each ele-
ment, which is sampled from a normal distribution with the
mean 0 and the standard variance 0.01.

4.2. Evaluations on Sufficient Flexibility

To demonstrate the sufficient flexibility of Layout-
Former++, we compare LayoutFormer++ with existing ap-
proaches on all six layout generation tasks.

Table 1 shows the quantitative comparisons to existing
works3. It should be noted that the existing approaches can

2Details of the hyper-parameters can be find in supplemental material.
3As we fail to reproduce NDN by ourselves, we directly use the results

from [8] in Table 1. It is evaluated on simple datasets that only consider
layouts with less than 10 elements.

only handle up to two tasks, while LayoutFormer++ can
handle all the six tasks. We highlight the results of Layout-
Former++ by bold when it achieves the best performance
among all the existing approaches in Table 1. According
to the results, LayoutFormer++ achieves significantly bet-
ter performance than the baselines on most metrics. This
demonstrates that LayoutFormer++ not only can flexibly
handle diverse user constraints, but also has advantages in
the generation ability over existing approaches.

Figure 4 and 5 show qualitative comparisons on RICO
and PubLayNet. Compared to baselines, LayoutFormer++
generates layouts with better spacing, less misalignment,
and fewer unreasonable overlaps.

4.3. Evaluations on Good Controllability

In this section, we compare LayoutFormer++ with Lay-
outGAN++ [13], BLT [10] and CLG-LO [8], which pay
attention to the constraint satisfaction. These approaches
handle Gen-T, Gen-TS and Gen-R respectively.

We bold the results of LayoutFormer++ in Table 2 when
it outperforms the baselines. For Gen-T and Gen-TS, since
all approaches have no constraint violation, we focus on the
performance of quality. As the results, LayoutFormer++
outperforms the baselines on both two datasets. For Gen-R,
LayoutFormer++ achieves better performance on both qual-
ity metrics and Vio.%, except a worse Vio.% than CLG-LO
on RICO. However, CLG-LO does not make a good trade-
off: the quality of layouts generated by CLG-LO is signif-
icantly worse than that of LayoutFormer++. This demon-
strates that LayoutFormer++ achieves the best controllabil-
ity among existing approaches.

18408

R
ef
in
em
en
t

LayoutFormer++Input RUITE LayoutFormer++ Input RUITELayoutFormer++Input RUITE LayoutFormer++Input RUITE

C
om
pl
et
io
n

Layout
Former++

Layout
Transformer

Layout
Former++

Layout
Transformer

Layout
Former++

Layout
Transformer

Layout
Former++

Layout
Transformer

Layout
Former++

Layout
Transformer

Layout
Former++

Layout
Transformer

G
en
-T

LayoutFormer++
Layoutgan++ BLTInput LayoutFormer++

Layoutgan++ BLTInput LayoutFormer++
Layoutgan++ BLTInput

image

input

text
button

text ×3
×3

×2
background

image

text ×3

text
button ×7

text ×3
text

button ×5

toolbar

icon

G
en
-T
S

Input LayoutFormer++ BLT Input LayoutFormer++ BLT Input LayoutFormer++ BLT
card

text ×4
image
page indicator

text
button ×5

input ×2
text

button
×4

text ×1
icon ×3

image

Page
Indicator

text ×2
text button

(118,11)
(42,9)
(7,4)

(127,1)
(31,9)

(114,7)

(58,9)
(23,4)

(59,4)

(117,72)

(26,1)

(97,15)

(64,6)

(42,11)

(114,7)

(31,9)
(31,9)

G
en
-R

LayoutFormer++ Input CLG-LO LayoutFormer++ Input CLG-LO LayoutFormer++ Input CLG-LO
image input

Text button
×2

×2

Text button
at the bottom of image
Text button
at the bottom of input

icon
text ×3

Toolbar
at the center
of canvas

text on the left of

advertisement
background image
image ×2

web view ×2

advertisement
smaller than

background image

Text button ×5

Text button

Text button

U
G
en

Layout
Former++

Layout
Transformer VTN Coarse2Fine

Layout
Former++

Layout
Transformer VTN Coarse2Fine

Layout
Former++

Layout
Transformer VTN Coarse2Fine

Figure 4. Qualitative results on RICO.

RICO PubLayNet

Tasks Method mIoU ↑ FID ↓ Align. ↓ Overlap ↓ Vio. % ↓ mIoU ↑ FID ↓ Align. ↓ Overlap ↓ Vio. % ↓

Gen-T

LayoutGAN++ 0.298 5.954 0.261 0.620 0. 0.297 14.875 0.124 0.148 0.

Layout
Former++

Full 0.432 1.096 0.230 0.530 0. 0.348 8.411 0.020 0.008 0.
- Back 0.431 1.320 0.272 0.550 0. 0.345 9.367 0.020 0.009 0.
- Back&Prune 0.439 1.392 0.206 0.545 5.5 0.345 9.373 0.020 0.009 0.05

Gen-TS

BLT 0.604 0.951 0.181 0.660 0. 0.428 7.914 0.021 0.419 0.

Layout
Former++

Full 0.620 0.757 0.202 0.542 0. 0.471 0.720 0.024 0.037 0.
- Back 0.613 0.782 0.206 0.543 0. 0.464 0.903 0.026 0.044 0.
- Back&Prune 0.613 0.801 0.206 0.545 ≈0. 0.464 0.903 0.026 0.044 ≈0.

Gen-R

CLG-LO 0.286 8.898 0.311 0.615 3.66 0.277 19.738 0.123 0.200 6.66

Layout
Former++

Full 0.424 5.972 0.332 0.537 11.84 0.353 4.954 0.025 0.076 3.9
- Back 0.419 8.604 0.284 0.544 12.75 0.352 5.152 0.023 0.075 5.70
- Back&Prune 0.458 5.126 0.221 0.546 33.04 0.358 4.620 0.022 0.030 16.09

Table 2. Comparisons with baselines and the model variants to evaluate the controllability.

18409

G
en
-R

LayoutFormer++ Input CLG-LO LayoutFormer++ Input CLG-LO LayoutFormer++ Input CLG-LO

table text ×2

smaller than
text

table

text ×7 title
figure

text at the bottom of
figure

text larger than title

list ×3 table
text ×4

text equal to list
list at the bottom of

text

R
ef
in
em
en
t

LayoutFormer++ Input RUITE LayoutFormer++ Input RUITELayoutFormer++ Input RUITE LayoutFormer++ Input RUITE

C
om
pl
et
io
n

Layout
Former++

Layout
Transformer

Layout
Former++

Layout
Transformer

Layout
Former++

Layout
Transformer

Layout
Former++

Layout
Transformer

Layout
Former++

Layout
Transformer

Layout
Former++

Layout
Transformer

G
en
-T

LayoutFormer++
Layoutgan++ BLTInput LayoutFormer++

Layoutgan++ BLTInput LayoutFormer++
Layoutgan++ BLTInput

text ×5

text ×11 title ×4

text ×10

list ×2

figure
title

title ×2

list ×3

G
en
-T
S

Input LayoutFormer++ BLT Input LayoutFormer++ BLT Input LayoutFormer++ BLT

text ×13

title ×3

table

(50,13)
(50,13)
(50,13)
(50,21)
(50,2)

(50,28)

text ×13

table
title
list

×2

×2

×2

(50,5)
(50,5)
(37,1)

(11,2)
(50,30)
(48,13)

(35,1)

text ×13
title
list

×4

(50,18)
(50,22)
(50,11)
(11,2)

(47,1)
(10,2)

U
G
en

Layout
Former++

Layout
Transformer VTN Coarse2Fine

Layout
Former++

Layout
Transformer VTN Coarse2Fine

Layout
Former++

Layout
Transformer VTN Coarse2Fine

Figure 5. Qualitative results on PubLayNet.

Besides, we compare LayoutFormer++ framework with
two variants. The first denoted as -Back indicates Layout-
Former++ without backtracking mechanism. The second
denoted as -Back&Prune. is LayoutFormer++ without both
pruning modules and the backtracking mechanism. For
each task in Table 2, the last three lines show the compari-
son between the variants. Comparing -Full with -Back, we
find that after disabling the backtracking mechanism, the
generation quality decreases. And on Gen-R, the Vio.%
also gets worse. Comparing -Full with -Back&Prune, we
find that the Vio.% significantly decreases. It shows that the
full model consistently decreases the violation while hav-
ing little impact on quality, which demonstrates that both
the pruning modules and the backtracking mechanism play
important roles in helping LayoutFormer++ achieve good
controllability.

5. Conclusion

In this work, we propose LayoutFormer++ for condi-
tional layout generation. To achieve the sufficient flexi-
bility, we propose constraint serialization to represent dif-
ferent user constraints by the same sequence format. To
achieve the good controllability, we propose decoding space
restriction to prune the predicted distribution by disabling
the options that violate the constraints or lead to bad qual-
ity. Experiments show that LayoutFormer++ can flexibly
handle different layout generation tasks with better gener-
ation quality and less constraint violation compared to the
existing task-specific approaches. In the future, we plan to
investigate more practical user requirements for layout de-
sign. Besides, as LayoutFormer++ enables a unified way
to handle different layout generation tasks, it is possible to
develop a powerful pretrained model for layout generation
in the future.

18410

References
[1] Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. Guided open vocabulary image captioning
with constrained beam search. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Pro-
cessing, pages 936–945, Copenhagen, Denmark, Sept. 2017.
Association for Computational Linguistics. 3

[2] Diego Martin Arroyo, Janis Postels, and Federico Tombari.
Variational transformer networks for layout generation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 13642–13652,
June 2021. 2, 3, 5

[3] Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S.
Davis, Vijay Mahadevan, and Abhinav Shrivastava. Layout-
transformer: Layout generation and completion with self-
attention. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 1004–1014,
October 2021. 2, 3, 5

[4] Chris Hokamp and Qun Liu. Lexically constrained decod-
ing for sequence generation using grid beam search. In Pro-
ceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
1535–1546, Vancouver, Canada, July 2017. Association for
Computational Linguistics. 3

[5] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin
Choi. The curious case of neural text degeneration. In In-
ternational Conference on Learning Representations, 2020.
3

[6] J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick Xia,
Tongfei Chen, Matt Post, and Benjamin Van Durme. Im-
proved lexically constrained decoding for translation and
monolingual rewriting. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 839–850, Min-
neapolis, Minnesota, June 2019. Association for Computa-
tional Linguistics. 3

[7] Zhaoyun Jiang, Shizhao Sun, Jihua Zhu, Jian-Guang Lou,
and Dongmei Zhang. Coarse-to-fine generative modeling for
graphic layouts. In AAAI’22, February 2022. 2, 5

[8] Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota
Yamaguchi. Constrained graphic layout generation via latent
optimization. In Proceedings of the 29th ACM International
Conference on Multimedia, MM ’21, page 88–96, New York,
NY, USA, 2021. Association for Computing Machinery. 2,
3, 5, 6

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 6

[10] Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan
Hao, Haifeng Gong, and Irfan Essa. Blt: Bidirectional layout
transformer for controllable layout generation, 2021. 2, 3, 5,
6

[11] Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner.
Neural semantic parsing with type constraints for semi-
structured tables. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages

1516–1526, Copenhagen, Denmark, Sept. 2017. Association
for Computational Linguistics. 3

[12] Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B. Le, Haifeng
Gong, Ming-Hsuan Yang, and Weilong Yang. Neural design
network: Graphic layout generation with constraints. In An-
drea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, Computer Vision – ECCV 2020, pages 491–
506, Cham, 2020. Springer International Publishing. 2, 3,
5

[13] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang,
and Tingfa Xu. Layoutgan: Generating graphic layouts with
wireframe discriminators, 2019. 2, 5, 6

[14] Jianan Li, Jimei Yang, Jianming Zhang, Chang Liu,
Christina Wang, and Tingfa Xu. Attribute-conditioned layout
gan for automatic graphic design. IEEE Transactions on Vi-
sualization and Computer Graphics, 27(10):4039–4048, aug
2021. 5

[15] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer,
Radomir Mech, and Ranjitha Kumar. Learning design se-
mantics for mobile apps. In The 31st Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’18,
pages 569–579, New York, NY, USA, 2018. ACM. 2, 5

[16] Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo
Kasai, Daniel Khashabi, Ronan Le Bras, Lianhui Qin,
Youngjae Yu, Rowan Zellers, Noah A. Smith, and Yejin
Choi. NeuroLogic a*esque decoding: Constrained text gen-
eration with lookahead heuristics. In Proceedings of the 2022
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Tech-
nologies, pages 780–799, Seattle, United States, July 2022.
Association for Computational Linguistics. 3

[17] Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. NeuroLogic decod-
ing: (un)supervised neural text generation with predicate
logic constraints. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages
4288–4299, Online, June 2021. Association for Computa-
tional Linguistics. 3

[18] David D. Nguyen, Surya Nepal, and Salil S. Kanhere. Di-
verse multimedia layout generation with multi choice learn-
ing. In Proceedings of the 29th ACM International Confer-
ence on Multimedia, MM ’21, page 218–226, New York, NY,
USA, 2021. Association for Computing Machinery. 5

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 6

[20] Akshay Gadi Patil, Omri Ben-Eliezer, Or Perel, and Hadar
Averbuch-Elor. Read: Recursive autoencoders for document

18411

layout generation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2020. 5

[21] Matt Post and David Vilar. Fast lexically constrained decod-
ing with dynamic beam allocation for neural machine trans-
lation. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long
Papers), pages 1314–1324, New Orleans, Louisiana, June
2018. Association for Computational Linguistics. 3

[22] Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin
Choi. COLD decoding: Energy-based constrained text gen-
eration with langevin dynamics. In Alice H. Oh, Alekh Agar-
wal, Danielle Belgrave, and Kyunghyun Cho, editors, Ad-
vances in Neural Information Processing Systems, 2022. 3

[23] Soliha Rahman, Vinoth Pandian Sermuga Pandian, and
Matthias Jarke. Ruite: Refining ui layout aesthetics using
transformer encoder. In 26th International Conference on
Intelligent User Interfaces - Companion, IUI ’21 Compan-
ion, page 81–83, New York, NY, USA, 2021. Association
for Computing Machinery. 2, 3, 5, 6

[24] Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. PICARD: Parsing incrementally for constrained auto-
regressive decoding from language models. In Proceed-
ings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 9895–9901, Online and
Punta Cana, Dominican Republic, Nov. 2021. Association
for Computational Linguistics. 3

[25] Richard Shin and Benjamin Van Durme. Few-shot semantic
parsing with language models trained on code. In Proceed-
ings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, pages 5417–5425, Seattle, United
States, July 2022. Association for Computational Linguis-
tics. 3

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017. 2

[27] Kota Yamaguchi. Canvasvae: Learning to generate vector
graphic documents. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
5481–5489, October 2021. 2, 5

[28] Maosen Zhang, Nan Jiang, Lei Li, and Yexiang Xue. Lan-
guage generation via combinatorial constraint satisfaction:
A tree search enhanced Monte-Carlo approach. In Findings
of the Association for Computational Linguistics: EMNLP
2020, pages 1286–1298, Online, Nov. 2020. Association for
Computational Linguistics. 3

[29] Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson W. H.
Lau. Content-aware generative modeling of graphic design
layouts. ACM Trans. Graph., 38(4), jul 2019. 5

[30] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Pub-
laynet: largest dataset ever for document layout analysis.
arXiv preprint arXiv:1908.07836, 2019. 2, 5

18412

