
MotionDiffuser: Controllable Multi-Agent Motion Prediction using Diffusion

Chiyu “Max” Jiang∗ Andre Cornman∗ Cheolho Park
Benjamin Sapp Yin Zhou Dragomir Anguelov

∗ equal contribution

Waymo LLC

Figure 1. MotionDiffuser is a learned representation for the distribution of multi-agent trajectories based on diffusion models. During
inference, samples from the predicted joint future distribution are first drawn i.i.d. from a random normal distribution (leftmost column),
and gradually denoised using a learned denoiser into the final predictions (rightmost column). Diffusion allows us to learn a diverse,
multimodal distribution over joint outputs (top right). Furthermore, guidance in the form of a differentiable cost function can be applied at
inference time to obtain results satisfying additional priors and constraints (bottom right).

Abstract
We present MotionDiffuser, a diffusion based represen-

tation for the joint distribution of future trajectories over
multiple agents. Such representation has several key ad-
vantages: first, our model learns a highly multimodal dis-
tribution that captures diverse future outcomes. Second, the
simple predictor design requires only a single L2 loss train-
ing objective, and does not depend on trajectory anchors.
Third, our model is capable of learning the joint distribu-
tion for the motion of multiple agents in a permutation-
invariant manner. Furthermore, we utilize a compressed
trajectory representation via PCA, which improves model
performance and allows for efficient computation of the
exact sample log probability. Subsequently, we propose
a general constrained sampling framework that enables
controlled trajectory sampling based on differentiable cost
functions. This strategy enables a host of applications such
as enforcing rules and physical priors, or creating tai-
lored simulation scenarios. MotionDiffuser can be com-
bined with existing backbone architectures to achieve top
motion forecasting results. We obtain state-of-the-art re-
sults for multi-agent motion prediction on the Waymo Open
Motion Dataset.

1. Introduction

Motion prediction is a central yet challenging problem
for autonomous vehicles to safely navigate under uncertain-
ties. Motion prediction, in the autonomous driving setting,
refers to the prediction of the future trajectories of modeled
agents, conditioned on the histories of the modeled agents,
context agents, road graph and traffic light signals.

Several key challenges arise in the motion prediction
problem. First, motion prediction is probabilistic and multi-
modal in nature where it is important to faithfully predict
an unbiased distribution of possible futures. Second, mo-
tion prediction requires jointly reasoning about the future
distribution for a set of agents that may interact with each
other in each such futures. Naively predicting and sampling
from the marginal distribution of trajectories for each agent
independently leads to unrealistic and often conflicting out-
comes. Last but not least, while it is challenging to constrain
or bias the predictions of conventional regression-based tra-
jectory models, guided sampling of the trajectories is often
required. For example, it may be useful to enforce rules
or physical priors for creating tailored simulation scenarios.
This requires the ability to enforce constraints over the fu-
ture time steps, or enforce a specified behavior for one or

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9644

Figure 2. Overview for multi-agent motion prediction using diffusion models. The input scene containing agent history, traffic lights and
road graphs is encoded via a transformer encoder into a set of condition tokens C. During training, a random set of noises are sampled i.i.d.
from a normal distribution and added to the ground truth (GT) trajectory. The denoiser, while attending to the condition tokens, predicts
the denoised trajectories corresponding to each agent. The entire model can be trained end-to-end using a simple L2 loss between the
predicted denoised trajectory and the GT trajectory. During inference, a population of trajectories for each agent can first be sampled from
pure noise at the highest noise level σmax, and iteratively denoised by the denoiser to produce a plausible distribution of future trajectories.
An optional constraint in the form of an arbitrary differentiable loss function can be injected in the denoising process to enforce constraints.

more agents among a set of agents.

In light of these challenges, we present MotionDiffuser,
a denoising diffusion model-based representation for the
joint distribution of future trajectories for a set of agents
(see Fig. 2). MotionDiffuser leverages a conditional
denoising diffusion model. Denoising diffusion models
[16, 23, 33, 43, 44] (henceforth, diffusion models) are a
class of generative models that learns a denoising function
based on noisy data and samples from a learned data distri-
bution via iteratively refining a noisy sample starting from
pure Gaussian noise (see Fig. 1). Diffusion models have
recently gained immense popularity due to their simplicity,
strong capacity to represent complex, high dimensional and
multimodal distributions, ability to solve inverse problems
[4, 6, 24, 44], and effectiveness across multiple problem do-
mains, including image generation [36, 37, 39], video gen-
eration [15, 18, 49] and 3D shape generation [35].

Building on top of conditional diffusion models as a
basis for trajectory generation, we propose several unique
design improvements for the multi-agent motion predic-
tion problem. First, we propose a cross-attention-based
permutation-invariant denoiser architecture for learning the
motion distribution for a set of agents regardless of their
ordering. Second, we propose a general and flexible frame-
work for performing controlled and guided trajectory sam-
pling based on arbitrary differentiable cost functions of the
trajectories, which enables several interesting applications
such as rules and controls on the trajectories, trajectory
in-painting and creating tailored simulation scenarios. Fi-

nally, we propose several enhancements to the representa-
tion, including PCA-based latent trajectory diffusion and
improved trajectory sample clustering to further boost the
performance of our model.

In summary, the main contributions of this work are:

• A novel permutation-invariant, multi-agent joint mo-
tion distribution representation using conditional dif-
fusion models.

• A general and flexible framework for performing con-
trolled and guided trajectory sampling based on ar-
bitrary differentiable cost functions of the trajectories
with a range of novel applications.

• Several significant enhancements to the representation,
including PCA-based latent trajectory diffusion formu-
lation and improved trajectory sample clustering algo-
rithm to further boost the model performance.

2. Related Work
Denoising diffusion models Denoising diffusion models
[16, 33], methodologically highly related to the class of
score-based generative models [23, 43, 44], have recently
emerged as a powerful class of generative models that
demonstrate high sample quality across a wide range of ap-
plication domains, including image generation [36, 37, 39],
video generation [15, 18, 49] and 3D shape generation [35].
We are among the first to use diffusion models for predict-
ing the joint motion of agents.

9645

Constrained sampling Diffusion models have been
shown to be effective at solving inverse problems such as
image in-painting, colorization and sparse-view computed
tomography by using a controllable sampling process [4–
6, 22, 24, 43, 44]. Concurrent work [53] explores diffusion
modeling for controllable traffic generation, which we com-
pare to in Sec. 3.4. In diffusion models, the generation pro-
cess can be conditioned on information not available during
training. The inverse problem can be posed as sampling
from the posterior p(x;y) based on a learned unconditional
distribution p(x), where y is an observation of the event x.
We defer further technical details to Sec. 3.4.

Motion prediction There are two main categories of ap-
proaches for motion prediction: supervised learning and
generative learning. Supervised learning trains a model
with logged trajectories with supervised losses such as L2
loss. One of the challenges is to model inherent multi-
modal behavior of the agents. For this, MultiPath [40]
uses static anchors, and MultiPath++ [48], Wayformer [31],
SceneTransformer [32] use learned anchors, and DenseTNT
[13] uses goal-based predictions. Home [9] and GoHome
[10] predict future occupancy heatmaps, and then decode
trajectories from the samples. MP3 [2] and NMP [50]
learn the cost function evaluator of trajectories, and then
the output trajectories are heuristically enumerated. Many
of these approaches use ensembles for further diversified
predictions. The next section covers generative approaches.

Generative models for motion prediction Various re-
cent works have modeled the motion prediction task as
a conditional probability inference problem of the form
p(s; c) using generative models, where s denote the fu-
ture trajectories of one or more agents, and c denote the
context or observation. HP-GAN [1] learns a probability
density function (PDF) of future human poses conditioned
on previous poses using an improved Wasserstein Gener-
ative Adversarial Network (GAN). Conditional Variational
Auto-Encoders (C-VAEs) [11, 20, 34], Normalizing Flows
[8, 28, 29, 41] have also been shown to be effective at learn-
ing this conditional PDF of future trajectories for motion
prediction. Very recent works have started looking into
diffusion models as an alternative to modeling the condi-
tional distributions of future sequences such as human mo-
tion pose sequences [38, 52] and planning [21]. In a more
relevant work, [14] the authors utilize diffusion models to
model the uncertainties of pedestrian motion. As far as
we are aware, we are the first to utilize diffusion models
to model the multi-agent joint motion distribution.

Multi-agent motion prediction While much of the mo-
tion prediction literature has worked on predicting motions
of individual agents independently, there has been some

work to model the motion of multiple agents jointly. Scene-
Transformer [32] outputs a fixed set of joint motion predic-
tions for all the agents in the scene. M2I [45], WIMP [25],
PIP [42], and CBP [47] propose a conditional model where
the motions of the other agents are predicted by given mo-
tions of the controlled agents.

There is a set of literature using probabilistic graphical
models. DSDNet [51] and MFP [46] use fully connected
graphs. JFP [27] supports static graphs such as fully con-
nected graphs and autonomous vehicle centered graphs, and
dynamic graphs where the edges are constructed between
the interacting agents. RAIN [26] learns the dynamic graph
of the interaction through separate RL training.

3. Method
3.1. Diffusion Model Preliminaries

Preliminaries Diffusion models [23] provide a learned
parameterization of the probability distribution pθ(x)
through learnable parameters θ. Denote this probability
density function, convolved with a Gaussian kernel of stan-
dard deviation σ to be pθ(x, σ). Instead of directly learn-
ing a normalized probability density function pθ(x) where
the normalization constant is generally intractable [19], dif-
fusion models learn the score function of the distribution:
∇x log pθ(x;σ) at a range of noise levels σ.

Given the score function ∇x log pθ(x;σ), one can sam-
ple from the distribution by denoising a noise sample. Sam-
ples can be drawn from the underlying distribution x0 ∼
pθ(x) via the following dynamics:

x0 = x(T) +

∫ 0

T

−σ̇(t)σ(t)∇x log pθ(x(t);σ(t))dt

where x(T) ∼ N (0, σ2
maxI) (1)

where variance σ(t) is a monotonic, deterministic function
of an auxiliary parameter of time t. Following [23], we use
the linear noise schedule σ(t) = t. The initial noise sample
is sampled i.i.d. from a unit Gaussian scaled to the highest
standard deviation σ(T) = σmax.

The diffusion model can be trained to approximate a data
distribution pχ(x), where χ = {x1,x2, · · · ,xNd} denote
the set of training data. The empirical distribution of the
data can be viewed as a sum of delta functions around each
data point: pχ(x) = 1

n

∑Nd
i=0 δ(x − xi). Denote the de-

noiser as D(x;σ) which is a function that recovers the un-
noised sample corresponding to the noised sample x. The
denoiser is related to the score function via:

∇x log p(x;σ) = (D(x;σ)− x)/σ2 (2)
The denoiser can be learned by minimizing the expected L2

denoising error for a perturbed sample x at any noise level
σ sampled from the noise distribution q(σ):
arg min

θ
Ex∼pχEσ∼q(σ)Eε∼N (0,σ2I)||Dθ(x+ ε;σ)− x||22

(3)

9646

Figure 3. Network architecture for set denoiserDθ(S;C, σ). The
noisy trajectories corresponding to agents s1 · · · sNa are first con-
catenated with a random-fourier encoded noise level σ, before go-
ing through repeated blocks of self-attention among the set of tra-
jectories and cross-attention with respect to the condition tokens
c1 · · · cNc . The self-attention allows the diffusion model to learn
a joint distribution across the agents and cross-attention allows
the model to learn a more accurate scene-conditional distribution.
Note that each agent cross-attends to its own condition tokens from
the agent-centric scene encoding (not shown for simplicity). The
[learnable components] are marked with brackets.

Conditional diffusion models In this work, we are in-
terested in the conditional setting of learning pθ(x; c),
where x denote the future trajectories of a set of
agents and c is the scene context. A simple modifi-
cation is to augment both the denoiser D(x; c, σ) and
the score function ∇x log p(x; c, σ) by the condition c.
Given a dataset χc augmented by conditions: χc =
{(x1, c1), · · · , (xNd , cN)}, the conditional denoiser can be
learned by a conditional denoising score matching objective
to minimize the following:
Ex,c∼χcEσ∼q(σ)Eε∼N (0,σ2I)||Dθ(x+ ε; c, σ)− x||22

(4)
which leads to the learned conditional score function:

∇x log pθ(x; c, σ) = (Dθ(x; c, σ)− x)/σ2 (5)

Preconditioning and training Directly training the
model with the denoising score matching objective (Eqn.
4) has various drawbacks. First, the input to the denoiser
has non-unit variance: Var(x + ε) = Var(x) + Var(ε) =
σ2

data +σ2, σ ∈ [0, σmax]. Second, at small noise levels of σ,
it is much easier for the model to predict the residual noise
than predicting the clean signal. Following [23], we adopt a
preconditioned form of the denoiser:
Dθ(x; c, σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; c, cnoise(σ))

(6)
Fθ is the neural network to train, cskip, cin, cout, cnoise respec-
tively scale the skip connection to the noisy x, input to the
network, output from the network, and noise input σ to the
network. We do not additionally scale c since it is the output
of an encoder network, assumed to have modulated scales.

Sampling We follow the ODE dynamics in Eqn. 1 when
sampling the predictions. We utilize Huen’s 2nd order
method for solving the corresponding ODE using the de-
fault parameters and 32 sampling steps.

3.2. Diffusion Model for Multi-Agent Trajectories

One of the main contributions of this work is to propose
a framework for modeling the joint distribution of multi-
agent trajectories using diffusion models. Denote the fu-
ture trajectory of agent i as si ∈ RNt×Nf where Nt is
the number of future time steps and Nf is the number of
features per time steps, such as longitudinal and lateral po-
sitions, heading directions etc. Denote ci ∈ R··· as the
learned ego-centric context encoding of the scene, includ-
ing the road graph, traffic lights, histories of modeled and
context agents, as well as interactions within these scene el-
ements, centered around agent i. For generality c could be
of arbitrary dimensions, either as a single condition vector,
or as a set of context tokens. Denote the set of agent futures
trajectories as S ∈ RNa×Nt×Nf , the set of ego-centric con-
text encodings as C ∈ RNa×···, where |S| = |C| = Na
is the number of modeled agents. We append each agent’s
position and heading (relative to the ego vehicle) to its cor-
responding context vectors.Denote the j-th permutation of
agents in the two sets to be Sj , Cj , sharing consistent or-
dering of the agents. We seek to model the set probabil-
ity distribution of agent trajectories using diffusion models:
p(Sj ; Cj). Since the agent ordering in the scene is arbitrary,
learning a permutation invariant set probability distribution
is essential, i.e.,

p(S;C) = p(Sj ;Cj),∀j ∈ [1, Na!] (7)

To learn a permutation-invariant set probability distribu-
tion, we seek to learn a permutation-equivariant denoiser,
i.e., when the order of the agents in the denoiser permutes,
the denoiser output follows the same permutation:

D(Sj ;Cj , σ) = Dj(S;C, σ),∀j ∈ [1, Na!] (8)
Another major consideration for the denoiser architecture is
the ability to effectively attend to the condition tensor c and
noise level σ. Both of these motivations prompt us to uti-
lize the transformer as the main denoiser architecture. We
utilize the scene encoder architecture from the state-of-the-
art Wayformer [31] model to encode scene elements such
as road graph, agent histories and traffic light states into
a set of latent embeddings. The denoiser takes as input the
GT trajectory corresponding to each agent, perturbed with a
random noise level σ ∼ q(σ), and the noise level σ. During
the denoising process, the noisy input undergoes repeated
blocks of self-attention between the agents and cross at-
tention to the set of context tokens per agent, and finally
the results are projected to the same feature dimensionality
as the inputs. Since we do not apply positional encoding
along the agent dimension, transformers naturally preserve

9647

Figure 4. Inferred exact log probability of 64 sampled trajecto-
ries per agent. Higher probability samples are plotted with lighter
colors. The orange agent represents the AV (autonomous vehicle).

the equivariance among the tokens (agents), leading to the
permutation-equivarnance of the denoiser model. See Fig.
3 for a more detailed design of the transformer-based de-
noiser architecture.

3.3. Exact Log Probability Inference

With our model, we can infer the exact log probability of
the generated samples with the following method. First, the
change of log density over time follows a second differen-
tial equation, called the instantaneous change of variables
formula [3],

log p(x(t))

∂t
= −Tr

(
∂f

∂x(t)

)
wheref = ∂x/∂t (9)

In the diffusion model, the flow function, f follows,

f(x(t), t) =
∂x(t)

∂t
= −σ̇(t)σ(t)∇x log p(x(t);σ(t))

(10)

The log probability of the sample can be calculated by
integrating over time as below.

log p(x(0)) = log p(x(T))−
∫ 0

T

Tr

(
∂f

∂x(t)

)
dt (11)

The computation of the trace of the Jacobian takesO(n2)
where n is the dimensionality of x. When we use PCA as
in Sec. 3.5, n will be much smaller than the dimensionality
of the original data. We can also use Hutchinson’s trace
estimator as in FFJORD [12] which takes O(n).

The log probability can be used for filtering higher prob-
ability predictions. In Fig. 4, for example, higher probabil-
ity samples plotted with lighter colors are more likely.

3.4. Constraining Trajectory Samples

Constrained trajectory sampling has a range of applica-
tions. One situation where controllability of the sampled
trajectories would be required is to inject physical rules and
constraints. For example, agent trajectories should avoid
collision with static objects and other road users. Another
application is to perform trajectory in-painting: to solve
the inverse problem of completing the trajectory prediction
given one or more control points. This is a useful tool in cre-
ating custom traffic scenarios for autonomous vehicle devel-
opment and simulation.

More formally, we seek the solution to sampling from
the joint conditional distribution p(S;C) · q(S;C), where
p(S;C) is the learned future distribution for trajectories
and q(S;C) a secondary distribution representing the con-
straint manifold for S. The score of this joint distribu-
tion is ∇S log

(
p(S;C) · q(S;C)

)
= ∇S log p(S;C) +

∇S log q(S;C). In order to sample this joint distribution,
we need the joint score function at all noise levels σ:

∇S log p(S;C, σ) +∇S log q(S;C, σ) (12)
The first term directly corresponds to the conditional score
function in Eqn. 5. The second term accounts for gra-
dient guidance based on the constraint, which resembles
classifier-based guidance [17] in class-conditional image
generation tasks, where a specialty neural network is trained
to estimate this guidance term under a range of noise lev-
els. We refer to this as the constraint gradient score. How-
ever, since our goal is to approximate the constraint gradi-
ent score with an arbitrary differentiable cost function of the
trajectory, how is this a function of the noise parameter σ?

The key insight is to exploit the duality between any in-
termediate noisy trajectory S and the denoised trajectory at
that noise level D(S;C, σ). While S is clearly off the data
manifold and not a physical trajectory, D(S;C, σ) usually
closely resembles a physical trajectory that is on the data
manifold since it is trained to regress for the ground truth
(Eqn. 4), even at a high σ value. The denoised event and
the noisy event converge at the limit σ → 0. In this light,
we approximate the constraint gradient score as:

∇S log q(S;C, σ) ≈ λ ∂

∂S
L
(
D(S;C, σ)

)
(13)

where L : RNa×Nt×Nf 7→ R is an arbitrary cost function
for the set of sampled trajectories, and λ is a hyperparameter
controlling the weight of this constraint.

In this work, we introduce two simple cost functions for
trajectory controls: an attractor and a repeller. Attractors
encourage the predicted trajectory at certain timesteps to
arrive at certain locations. Repellers discourage interacting
agents from getting too close to each other and mitigates
collisions. We define the costs as:

9648

Attractor cost

Lattract(D(S;C, σ)) =

∑
|(D(S;C, σ)− Starget)�Mtarget|∑

|Mtarget|+ eps
(14)

Where Starget ∈ RNa×Nt×Nf are the target location ten-
sor, and Mtarget is a binary mask tensor indicating which
locations in Starget to enforce. � denotes the elementwise
product and eps denotes an infinitesimal value to prevent
underflow.

Repeller cost

A = max
((

1− 1

r
∆(D(S;C, σ))

)
� (1− I), 0

)
(15)

Lrepell(D(S)) =

∑
A∑

(A > 0) + eps
(16)

Where A is the per time step repeller cost. we denote
the pairwise L2 distance function between all pairs of
denoised agents at all time steps as ∆(D(S;C, σ)) ∈
RNa×Na×Nt , identity tensor broadcast to all Nt time steps
I ∈ RNa×Na×Nt , and repeller radius as r.

Constraint score thresholding To further increase the
stability of the constrained sampling process, we propose a
simple and effective strategy: constraint score thresholding
(ST). From Eqn. 2, we make the observation that:
σ∇x log p(x;σ) = (D(x, σ)− x)/σ = ε, ε ∼ N (0, I)

(17)
Therefore, we adjust the constraint score in Eqn. 13 via an
elementwise clipping function:
∇S log q(S;C, σ) := clip(σ∇S log q(S;C, σ),±1)/σ

(18)
We ablate this design choice in Table 2.

3.5. Trajectory Representation Enhancements

Sample clustering While MotionDiffuser learns an entire
distribution of possible joint future trajectories from which
we can draw an arbitrary number of samples, it is often nec-
essary to extract a more limited number of representative
modes from the output distribution. The Interaction Pre-
diction challenge in Waymo Open Motion Dataset, for in-
stance, computes metrics based on a set of 6 predicted joint
futures across modeled agents. Thus, we need to generate a
representative set from the larger set of sampled trajectories.

To this end, we follow the trajectory aggregation method
defined in [48] which performs iterative greedy clustering
to maximize the probability of trajectory samples falling
within a fixed distance threshold to an output cluster. We
refer readers to [48] for details on the clustering algorithm.

In the joint agent prediction setting, we modify the clus-
tering algorithm such that for each joint prediction sample,
we maximize the probability that all agent predictions fall
within a distance threshold to an output cluster.

PCA latent diffusion Inspired by the recent success of la-
tent diffusion models [37] for image generation, we utilize
a compressed representation for trajectories using Principal
Component Analysis (PCA). PCA is particularly suitable
for representing trajectories, as trajectories are temporally
and geometrically smooth in nature, and the trajectories can
be represented by a very small set of components. Our anal-
ysis shows that a mere 3 components (for trajectories with
80 × 2 degrees of freedom) accounts for 99.7% of all ex-
plained variance, though we use 10 components for a more
accurate reconstruction. PCA representation has multiple
benefits, including faster inference, better success with con-
trolled trajectory, and perhaps most importantly, better ac-
curacy and performance (see ablation studies in Sec. 5).

First, as many ground truth trajectories include missing
time steps (due to occlusion / agent leaving the scene), we
use linear interpolation / extrapolation to fill in the missing
steps in each trajectory. We uniformly sample a large popu-
lation of Ns = 105 agent trajectories, where each trajectory
si ∈ RNtNf , i ∈ [1, Ns] is first centered around the agent’s
current location, rotated such that the agent’s heading is in
+y direction, and flattened into a single vector. Denote this
random subset of agent trajectories as S′ ∈ RNs×NtNf .
We compute its corresponding principle component matrix
(with whitening) as Wpca ∈ RNp×(NtNf) where Np is the
number of principle components to use, and its mean as
s̄′ ∈ RNtNf . We obtain the PCA and inverse PCA trans-
formation for each trajectory Si as:

ŝi = (si − s̄)WT
pca ⇔ si = ŝi(W

T
pca)
−1 + s̄ (19)

With the new representation, we have agent trajectories in
Eqn. 7 in PCA space as S ∈ RNa×Np .

4. Experiment and Results
4.1. PCA Mode Analysis

To motivate our use of PCA as a simple and accurate
compressed trajectory representation, we analyze the prin-
cipal components computed from Ns = 105 randomly
selected trajectories from the Waymo Open Dataset train-
ing split. Fig. 5a shows the average reconstruction error
per waypoint using increasing numbers of principal com-
ponents. When keeping only the first 10 principal com-
ponents, the average reconstruction error is 0.06 meters,
which is significantly lower than the average prediction er-
ror achieved by state-of-the-art methods. This motivates
PCA as an effective compression strategy, without the need
for more complex strategies like autoencoders in [37].

We visualize the top-10 principal components in Fig.
5b. The higher order principal components are increasingly
similar, and deviate only slightly from the dataset mean.
These components represent high frequency trajectory in-
formation that are irrelevant for modeling, and may also be
a result of perception noise.

9649

0.25

Number of PCA Components

PC
A

Re
co

ns
tr

uc
tio

n
Er

ro
r

(m
)

0.30

0.20

0.15

0.10

0.05

0.00
5 10 15 20 25

(a) PCA trajectory reconstruction error
vs number of PCA components.

#1

#2

#3

#4#5,7,8
#6

(b) Visualization of the top-10 PCA
components for trajectories.

Figure 5. Analysis of PCA representation for agent trajectories.
(a) shows the average reconstruction error for varying numbers
of principal components. (b) shows a visualization of the top-10
principal components. The higher modes representing higher fre-
quencies are increasingly similar and have a small impact on the
final trajectory.

4.2. Multi-Agent Motion Prediction

To evaluate MotionDiffuser’s performance in the multi-
agent prediction setting, we assess our method on the
Waymo Open Dataset Interactive split, which contains pairs
of agents in highly interactive and diverse scenarios [7].

In Table 1, we report the main metrics for the Interactive
split, as defined in [7]. minSADE measures the displace-
ment between the ground-truth future agent trajectories and
the closest joint prediction (out of 6 joint predictions), av-
eraged over the future time horizon and over the pair of in-
teracting agents. minSFDE measures the minimum joint
displacement error at the time horizon endpoint. SMissRate
measures the recall of the joint predictions, with distance
thresholds defined as a function of agent speed and future
timestep. Finally mAP measures the joint Mean Average
Precision based on agent action types, such as left-turn and
u-turn. The reported metrics are averaged over future time
horizons (3s, 5s, and 8s) and over agent types (vehicles,
pedestrians, and cyclists) .

Additionally, we report results for the Overlap metric
[27] by measuring the overlap rate on the most likely joint
prediction, which captures the consistency of model predic-
tions, as consistent joint predictions should not collide.

Our model achieves state-of-the-art results, as shown in
Table 1. While MotionDiffuser and Wayformer [31] use
the same backbone, our method performs significantly bet-
ter across all metrics due to the strength of the diffusion
head. Compared to JFP [27] on the test split, we demon-
strate an improvement with respect to the minSADE and
minSFDE metrics. For mAP, and Overlap, our method per-
forms slightly worse than JFP, but outperforms all other
methods.

Method Overlap minSADE minSFDE sMissRate mAP
(↓) (↓) (↓) (↓) (↑)

Test

LSTM baseline [7] - 1.91 5.03 0.78 0.05
HeatIRm4 [30] - 1.42 3.26 0.72 0.08
SceneTransformer(J) [32] - 0.98 2.19 0.49 0.12
M2I [45] - 1.35 2.83 0.55 0.12
DenseTNT [13] - 1.14 2.49 0.54 0.16
MultiPath++[48] - 1.00 2.33 0.54 0.17
JFP [27] - 0.88 1.99 0.42 0.21
MotionDiffuser (Ours) - 0.86 1.95 0.43 0.20

Val

SceneTransformer(M) [32] 0.091 1.12 2.60 0.54 0.09
SceneTransformer(J) [32] 0.046 0.97 2.17 0.49 0.12
MultiPath++ [48] 0.064 1.00 2.33 0.54 0.18
JFP [27] 0.030 0.87 1.96 0.42 0.20
Wayformer [31] 0.061 0.99 2.30 0.47 0.16
MotionDiffuser (Ours) 0.036 0.86 1.92 0.42 0.19

Table 1. WOMD Interactive Split: we report scene-level joint met-
rics numbers averaged for all object types over t = 3, 5, 8 seconds.
Metrics minSADE, minSFDE, SMissRate, and mAP are from the
benchmark [7]. Overlap is defined in [27].

Realism (↓) Constraint Effectiveness
Method minSADE meanSADE Overlap minSFDE (↓) meanSFDE (↓) SR2m (↑) SR5m (↑)

No Constraint 1.261 3.239 0.059 2.609 8.731 0.059 0.316

Attractor (to GT final point)
Optimization 4.563 5.385 0.054 0.010 0.074 1.000 1.000
GTC[53] 1.18 1.947 0.057 0.515 0.838 0.921 0.957
Ours (-ST) 1.094 2.083 0.042 0.627 1.078 0.913 0.949
Ours 0.533 2.194 0.040 0.007 0.747 0.952 0.994

Repeller (between the pair of agents)
Ours 1.359 3.229 0.008 2.875 8.888 0.063 0.317

Table 2. Quantitative validation for controllable trajectory synthe-
sis. We enforce the attractor or repeller constraints in Sec. 3.4.

4.3. Controllable Trajectory Synthesis

We experimentally validate the effectiveness of our con-
trollable trajectory synthesis approach. In particular, we
validate the attractor and repeller designs proposed in Sec.
3.4. We continue these experiments using the Interactive
Split from Waymo Open Motion Dataset. In experiments
for both the attractor and the repeller, we use the same base-
line diffusion model trained in Sec. 4.2. We randomly sam-
ple 64 trajectories from the predicted distribution. We report
our results in Table 2. We measure min/mean ADE/FDE
and overlap metrics, following Sec. 4.2. The mean metrics
computes the mean quantity over the 64 predictions.

For the attractor experiment, we constrain the last point
of all predicted trajectories to be close to the last point in
the ground truth data. Therefore, min/meanSADE serves as
a proxy for the realism of the predictions and how closely
they stay to the data manifold. For baselines, we compare
to two approaches: “Optimization” directly samples the tra-
jectories from our diffusion model, followed by a post pro-
cessing step via Adam optimizer to enforce the constraints.
“CTG” is a reimplementation of the sampling method in a
concurrent work [53] that performs an inner optimization
loop to enforce constraints on the denoised samples during
every step of the diffusion process. See Table 2 for detailed
results. Although trajectory optimization after the sampling

9650

No Constraint

No Constraint

Optimization

Optimization

CTG

CTG Ours

Ours

Single
Agent
Constraint

Multi-
Agent
Constraint

Figure 6. Qualitative results for controllable trajectory synthesis. We apply an attractor-based constraint (marked as ×) on the last point
of the trajectory. Without any constraint at inference time, the initial prediction distributions from MotionDiffuser (“No Constraint”) are
plausible yet dispersed. While test time optimization of the predicted trajectories is effective at enforcing the constraints on model outputs,
it deviates significantly from the data manifold, resulting in unrealistic outputs. Our method produces realistic and well-constrained results.

Method minSADE(↓) minSFDE(↓) SMissRate(↓)
Ours (-PCA) 1.03 2.29 0.53
Ours (-Transformer) 0.93 2.08 0.47
Ours (-SelfAttention) 0.91 2.07 0.46
MotionDiffuser (Ours) 0.88 1.97 0.43

Table 3. Ablations on WOMD Interactive Validation Split. We
ablate components of the denoiser architecture, and the PCA com-
pressed trajectory representation.

process has the strongest effect in enforcing constraints, it
results in unrealistic trajectories. With our method we have
a high level of effectiveness in enforcing the trajectories,
second only to optimization methods, while maintaining a
high degree of realism. Additionally we show qualitative
comparisons for the optimized trajectories in Fig. 6.

For the repeller experiment, we add the repeller con-
straint (radius 5m) between all pairs of modeled agents. We
were able to significantly decrease overlap between joint
predictions by an order of magnitude, demonstrating its ef-
fectiveness in repelling between the modeled agents.

5. Ablation Studies

We validate the effectiveness of our proposed Score
Thresholding (ST) approach in Table 2, with Ours(-ST) de-
noting the removal of this technique, resulting in signifi-
cantly worse constraint satisfaction.

Furthermore, we ablate critical components of the Mo-
tionDiffuser architecture in Table 3. We find that using
the uncompressed trajectory representation Ours(-PCA) de-
grades performance significantly. Additionally, replacing
the Transformer architecture with a simple MLP Ours(-
Transformer) reduces performance. We also ablate the

self-attention layers in the denoiser architecture Ours(-
SelfAttention), while keeping the cross-attention layers (to
allow for conditioning on the scene context and noise level).
This result shows that attention between modeled agents’
noisy future trajectories is important for generating consis-
tent joint predictions. Note that MotionDiffuser’s perfor-
mance in Table 3 is slightly worse than Table 1 due to a
reduced Wayformer encoder backbone size.

6. Conclusion and Discussions

In this work, we introduced MotionDiffuser, a novel dif-
fusion model based multi-agent motion prediction frame-
work that allows us to learn a diverse, multimodal joint fu-
ture distribution for multiple agents. We propose a novel
transformer-based set denoiser architecture that is permu-
tation invariant across agents. Furthermore we propose a
general and flexible constrained sampling framework, and
demonstrate the effectiveness of two simple and useful con-
straints - attractor and repeller. We demonstrate state-of-
the-art multi-agent motion prediction results, and the effec-
tiveness of our approach on Waymo Open Motion Dataset.

Future work includes applying the diffusion-based gen-
erative modeling technique to other topics of interest in au-
tonomous vehicles, such as planning and scene generation.

Acknowledgements We thank Wenjie Luo for helping
with the overlap metrics code, Ari Seff for helping with
multi-agent NMS, Rami Al-RFou, Charles Qi and Carlton
Downey for helpful discussions, Joao Messias for reviewing
the manuscript, and anonymous reviewers.

9651

References
[1] Emad Barsoum, John Kender, and Zicheng Liu. Hp-gan:

Probabilistic 3d human motion prediction via gan. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition workshops, pages 1418–1427, 2018. 3

[2] Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3: A
unified model to map, perceive, predict and plan. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14403–14412, 2021. 3

[3] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equa-
tions. Advances in neural information processing systems,
31, 2018. 5

[4] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune
Gwon, and Sungroh Yoon. Ilvr: Conditioning method for
denoising diffusion probabilistic models. arXiv preprint
arXiv:2108.02938, 2021. 2, 3

[5] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and
Jong Chul Ye. Improving diffusion models for inverse
problems using manifold constraints. arXiv preprint
arXiv:2206.00941, 2022.

[6] Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye.
Come-closer-diffuse-faster: Accelerating conditional diffu-
sion models for inverse problems through stochastic contrac-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12413–12422,
2022. 2, 3

[7] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi
Liu, Hang Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp,
Charles Qi, Yin Zhou, Zoey Yang, Aurelien Chouard,
Pei Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander Mc-
Cauley, Jonathon Shlens, and Dragomir Anguelov. Large
scale interactive motion forecasting for autonomous driv-
ing: The waymo open motion dataset. arXiv preprint
arXiv:2104.10133, 2021. 7

[8] Samuel G Fadel, Sebastian Mair, Ricardo da Silva Torres,
and Ulf Brefeld. Contextual movement models based on nor-
malizing flows. AStA Advances in Statistical Analysis, pages
1–22, 2021. 3

[9] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan
Stanciulescu, and Fabien Moutarde. Home: Heatmap output
for future motion estimation. In 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC), pages
500–507. IEEE, 2021. 3

[10] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bog-
dan Stanciulescu, and Fabien Moutarde. Gohome: Graph-
oriented heatmap output for future motion estimation. In
2022 International Conference on Robotics and Automation
(ICRA), pages 9107–9114. IEEE, 2022. 3

[11] Sebastian Gomez-Gonzalez, Sergey Prokudin, Bernhard
Schölkopf, and Jan Peters. Real time trajectory prediction
using deep conditional generative models. IEEE Robotics
and Automation Letters, 5(2):970–976, 2020. 3

[12] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya
Sutskever, and David Duvenaud. Ffjord: Free-form con-
tinuous dynamics for scalable reversible generative models.
arXiv preprint arXiv:1810.01367, 2018. 5

[13] Junru Gu, Qiao Sun, and Hang Zhao. Densetnt: Waymo

open dataset motion prediction challenge 1st place solution.
CoRR, abs/2106.14160, 2021. 3, 7

[14] Tianpei Gu, Guangyi Chen, Junlong Li, Chunze Lin, Yong-
ming Rao, Jie Zhou, and Jiwen Lu. Stochastic trajectory
prediction via motion indeterminacy diffusion. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 17113–17122, 2022. 3

[15] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
video: High definition video generation with diffusion mod-
els. arXiv preprint arXiv:2210.02303, 2022. 2

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 2

[17] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 5

[18] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. arXiv preprint arXiv:2204.03458, 2022. 2

[19] Aapo Hyvärinen and Peter Dayan. Estimation of non-
normalized statistical models by score matching. Journal
of Machine Learning Research, 6(4), 2005. 3

[20] Boris Ivanovic, Karen Leung, Edward Schmerling, and
Marco Pavone. Multimodal deep generative models for tra-
jectory prediction: A conditional variational autoencoder ap-
proach. IEEE Robotics and Automation Letters, 6(2):295–
302, 2020. 3

[21] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey
Levine. Planning with diffusion for flexible behavior synthe-
sis. In International Conference on Machine Learning, 2022.
3

[22] Zahra Kadkhodaie and Eero Simoncelli. Stochastic solutions
for linear inverse problems using the prior implicit in a de-
noiser. Advances in Neural Information Processing Systems,
34:13242–13254, 2021. 3

[23] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. arXiv preprint arXiv:2206.00364, 2022. 2, 3, 4

[24] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming
Song. Denoising diffusion restoration models. arXiv preprint
arXiv:2201.11793, 2022. 2, 3

[25] Siddhesh Khandelwal, William Qi, Jagjeet Singh, Andrew
Hartnett, and Deva Ramanan. What-if motion prediction
for autonomous driving. arXiv preprint arXiv:2008.10587,
2020. 3

[26] Jiachen Li, Fan Yang, Hengbo Ma, Srikanth Malla,
Masayoshi Tomizuka, and Chiho Choi. Rain: Reinforced
hybrid attention inference network for motion forecasting.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 16096–16106, 2021. 3

[27] Wenjie Luo, Cheolho Park, Andre Cornman, Benjamin Sapp,
and Dragomir Anguelov. Jfp: Joint future prediction with
interactive multi-agent modeling for autonomous driving. In
Conf. On Robot Learning, 2022. 3, 7

[28] Yecheng Jason Ma, Jeevana Priya Inala, Dinesh Jayara-
man, and Osbert Bastani. Diverse sampling for normal-
izing flow based trajectory forecasting. arXiv preprint
arXiv:2011.15084, 7(8), 2020. 3

9652

[29] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. Generat-
ing smooth pose sequences for diverse human motion pre-
diction. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 13309–13318, 2021. 3

[30] Xiaoyu Mo, Zhiyu Huang, and Chen Lv. Multi-modal inter-
active agent trajectory prediction using heterogeneous edge-
enhanced graph attention network. In Workshop on Au-
tonomous Driving, CVPR, volume 6, page 7, 2021. 7

[31] Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth
Goel, Khaled S Refaat, and Benjamin Sapp. Wayformer:
Motion forecasting via simple & efficient attention networks.
arXiv preprint arXiv:2207.05844, 2022. 3, 4, 7

[32] Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zheng-
dong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Rebecca
Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, David
Weiss, Benjamin Sapp, Zhifeng Chen, and Jonathon Shlens.
Scene transformer: A unified multi-task model for behavior
prediction and planning. CoRR, abs/2106.08417, 2021. 3, 7

[33] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,
2021. 2

[34] Geunseob Oh and Huei Peng. Cvae-h: Conditionaliz-
ing variational autoencoders via hypernetworks and trajec-
tory forecasting for autonomous driving. arXiv preprint
arXiv:2201.09874, 2022. 3

[35] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022. 2

[36] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 2

[37] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 2, 6

[38] Saeed Saadatnejad, Ali Rasekh, Mohammadreza Mofayezi,
Yasamin Medghalchi, Sara Rajabzadeh, Taylor Mordan, and
Alexandre Alahi. A generic diffusion-based approach for
3d human pose prediction in the wild. arXiv preprint
arXiv:2210.05669, 2022. 3

[39] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 2

[40] Benjamin Sapp, Yuning Chai, Mayank Bansal, and Dragomir
Anguelov. Multipath: Multiple probabilistic anchor trajec-
tory hypotheses for behavior prediction. In Conference on
Robot Learning, pages 86–99. PMLR, 2020. 3

[41] Christoph Schöller and Alois Knoll. Flomo: Tractable mo-
tion prediction with normalizing flows. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 7977–7984. IEEE, 2021. 3

[42] Haoran Song, Wenchao Ding, Yuxuan Chen, Shaojie Shen,
Michael Yu Wang, and Qifeng Chen. Pip: Planning-

informed trajectory prediction for autonomous driving. In
European Conference on Computer Vision, pages 598–614.
Springer, 2020. 3

[43] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 2, 3

[44] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. arXiv preprint arXiv:2011.13456, 2020. 2, 3

[45] Qiao Sun, Xin Huang, Junru Gu, Brian C Williams,
and Hang Zhao. M2i: From factored marginal trajec-
tory prediction to interactive prediction. arXiv preprint
arXiv:2202.11884, 2022. 3, 7

[46] Charlie Tang and Russ R Salakhutdinov. Multiple futures
prediction. In NeurIPS. 2019. 3

[47] Ekaterina I. Tolstaya, Reza Mahjourian, Carlton Downey,
Balakrishnan Varadarajan, Benjamin Sapp, and Dragomir
Anguelov. Identifying driver interactions via conditional
behavior prediction. In IEEE International Conference on
Robotics and Automation, ICRA 2021, Xi’an, China, May 30
- June 5, 2021, pages 3473–3479. IEEE, 2021. 3

[48] Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Srivas-
tava, Khaled S Refaat, Nigamaa Nayakanti, Andre Cornman,
Kan Chen, Bertrand Douillard, Chi Pang Lam, Dragomir
Anguelov, et al. Multipath++: Efficient information fusion
and trajectory aggregation for behavior prediction. arXiv
preprint arXiv:2111.14973, 2021. 3, 6, 7

[49] Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Dif-
fusion probabilistic modeling for video generation. arXiv
preprint arXiv:2203.09481, 2022. 2

[50] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin
Yang, Sergio Casas, and Raquel Urtasun. End-to-end in-
terpretable neural motion planner. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8660–8669, 2019. 3

[51] Wenyuan Zeng, Shenlong Wang, Renjie Liao, Yun Chen, Bin
Yang, and Raquel Urtasun. Dsdnet: Deep structured self-
driving network. In European conference on computer vi-
sion, pages 156–172. Springer, 2020. 3

[52] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou
Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondif-
fuse: Text-driven human motion generation with diffusion
model. arXiv preprint arXiv:2208.15001, 2022. 3

[53] Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen,
Sushant Veer, Tong Che, Baishakhi Ray, and Marco Pavone.
Guided conditional diffusion for controllable traffic simula-
tion. arXiv preprint arXiv:2210.17366, 2022. 3, 7

9653

