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Abstract

Masked signal modeling has greatly advanced self-
supervised pre-training for language and 2D images. How-
ever, it is still not fully explored in 3D scene understand-
ing. Thus, this paper introduces Masked Shape Prediction
(MSP), a new framework to conduct masked signal model-
ing in 3D scenes. MSP uses the essential 3D semantic cue,
i.e., geometric shape, as the prediction target for masked
points. The context-enhanced shape target consisting of ex-
plicit shape context and implicit deep shape feature is pro-
posed to facilitate exploiting contextual cues in shape pre-
diction. Meanwhile, the pre-training architecture in MSP
is carefully designed to alleviate the masked shape leakage
from point coordinates. Experiments on multiple 3D under-
standing tasks on both indoor and outdoor datasets demon-
strate the effectiveness of MSP in learning good feature rep-
resentations to consistently boost downstream performance.

1. Introduction
Self-supervised pre-training has witnessed considerable

progress in natural language processing (NLP) [4, 10, 42]
and 2D computer vision [2, 15, 17, 18], the main idea of
which is to define a pretext task to leverage unlabeled data
to learn meaningful representations. With the development
of transformer [11,30,59], masked signal modeling (MSM)
has been proved to be an effective pretext task, attaining bet-
ter results than other tasks like contrastive learning [6, 18].
An MSM architecture first partially masks out the input and
then reconstructs the masked part given the remaining con-
tent, forcing the network to learn semantic knowledge for
completing the missing part.

Compared to 2D images, the labeling of 3D real-scene
data is more labor-intensive. Therefore, self-supervised pre-
training is important in 3D scene understanding for its abil-
ity in boosting the performance with limited labeled data.
Previous 3D scene-level pre-training methods mostly fol-
low the contrastive pipeline [20, 21, 43, 64]. Though effec-
tive, MSM is less explored in 3D scene level. Some recent

methods [36, 74] also explore MSM with point clouds but
focus on single-object-level understanding. In contrast, we
investigate MSM for more practical scene-level understand-
ing that contains complicated contextual environments, and
we propose a Masked Shape Prediction (MSP) framework
to conduct pre-training on point cloud scenes.

There are several key problems when performing
masked signal modeling in 3D scenes. The first is the de-
sign of the reconstruction target. In 2D images, pixel colors
constitute the semantic contents, making appearance sig-
nals [17,62] good choices as targets. In 3D, the most essen-
tial semantic clue is geometric shape, which motivates us
to explore shape information in target design. In 3D scene-
level understanding with complex object distribution, broad
contextual information is essential in achieving outstand-
ing performance. Therefore, to promote the network to ex-
ploit contextual cues in shape prediction, we propose the
context-enhanced shape target, which includes two compo-
nents: shape context and deep shape feature. Shape con-
text explicitly describes the 3D shape by discretizing the
local space into multiple bins, which is robust to the un-
even point distributions. Deep shape feature is extracted
from point clouds with complete shapes by a deep network.
As a learned shape descriptor, deep shape feature is able
to adaptively integrate contextual information in a larger
range, thanks to the large receptive field of the deep net-
work. By combining shape context and deep shape feature
as our context-enhanced shape target, the network is pro-
moted to not only focus on explicit shape patterns, but also
on contextual object relations in a larger scope.

Using the geometric shapes as reconstruction target,
however, raises another problem. Shape information can
be inferred from the point coordinates, yet masked signal
modeling requires the coordinates of masked points to spec-
ify the target positions for reconstruction, which may reveal
the masked shape and thus create a shortcut for network
learning. In this paper, we discuss several MSP network
designs to prevent the masked shape from being revealed
by the masked point coordinates. The core idea is to either
avoid the information interactions between masked points
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or restrict the interactions to sparsely sampled keypoints.
We follow [20, 64] to perform unsupervised pre-training

on ScanNet v2 [9] indoor scene dataset, and then evalu-
ate it via supervised fine-tuning in different downstream
tasks. Our MSP extracts representative 3D features that
are beneficial in indoor scene understanding tasks on mul-
tiple datasets [1, 9, 54], achieving excellent performance in
both segmentation and detection and showing great ability
in data-efficient learning. We also evaluate its transferring
ability to outdoor scenes. Our core technical contributions
are listed below:

• We propose a self-supervised pre-training method for
3D scene understanding, namely, Masked Shape Pre-
diction (MSP), which consistently boosts the down-
stream performance.

• We present the context-enhanced shape target, com-
bining the strengths of explicit shape context descrip-
tor and implicit deep shape feature.

• We explore different MSP network architecture de-
signs to promote feature learning and mitigate the
masked shape leakage problem.

2. Related Work
3D Point Cloud Understanding. 3D point cloud under-
standing tasks have been widely explored in recent years,
including detection [31,37,38,51,53,73], segmentation [12,
16,19,22,23,27,35,56,68,70,77] and classification [39,58,
61,63]. Two major data representations used in these meth-
ods are points and voxels. Point-based methods [40, 61]
take raw points as input, which reserve the precise position
information. Voxel-based methods apply sparse convolu-
tions [8, 14] on voxelized 3D data, capable of processing
large-scale point clouds efficiently. Recent methods pro-
pose transformer [59] backbones, but are limited to spe-
cific tasks, e.g., Point Transformer [78] for segmentation
and classification, and Voxel Transformer [33] for detec-
tion. [71] proposes an embedding-querying paradigm, en-
abling a general transformer-based backbone network on
various tasks. We apply the EQ-Net in [71] as the feature
extractor in our pre-training framework, which also serves
as the backbone network in downstream tasks.
3D Shape Descriptor. Geometric shape is an important sig-
nal in 3D point cloud understanding. There are several 3D
shape descriptors, such as shape context [3, 24], point fea-
ture histogram [47], and fast point feature histogram [46].
In this work, we adopt shape context to describe shape due
to its intuitive formulation and robustness to noise.
Self-supervised Pre-training. Self-supervised pre-training
has achieved great success in NLP [4, 10, 41, 42] and 2D
computer vision [6, 15, 17, 18, 62, 79]. Recently, its ef-
fectiveness has also been verified in 3D domain [25, 26,

44, 48, 49, 60, 64, 72] with diverse pretext tasks. Among
them, [20, 21, 43, 64, 75] attempt to extend the contrastive
learning scheme to 3D with different designs in feature
pair construction. OcCo [60] proposes an encoder-decoder
framework to complete the occluded points. IAE [67] ap-
plies an autoencoder to reconstruct implicit representations
of point clouds. [49] solves the jigsaw puzzles by recon-
structing shapes with randomly arranged parts.

Masked Signal Modeling. Inspired by the success of
masked signal modeling for self-supervised pre-training in
NLP [10] and 2D [2, 17], Point-BERT [74] proposes the
masked point modeling, using dVAE [45] tokens as predic-
tion targets. Some recent works [29,36] also investigate the
masked point modeling by applying an autoencoder struc-
ture or a discriminative decoder. These methods perform
pre-training on ShapeNet [5] and mainly put their attention
on single-object-level understanding. This paper also fol-
lows the line of masked signal modeling but focuses on the
3D scene understanding.

3. Method

We start by giving an overview of our masked shape pre-
diction (MSP) in Sec. 3.1. We then introduce our context-
enhanced shape target in Sec. 3.2. Our exploration of the
pre-training MSP network design is presented in Sec. 3.3,
with a focus on mitigating masked shape leakage.

3.1. Overview of Masked Shape Prediction

Pretext Task Definition. For pre-training the network
without labels, we follow the works in NLP [10] and
2D [2, 17, 62] to perform the masked signal modeling task,
which masks out a portion of the input data and then re-
constructs the features of the removed parts based on the
remaining contents. Appearance signals like pixel col-
ors [17, 66] are effective reconstruction targets in masked
image modeling. However, unlike 2D vision in which ap-
pearance information contributes most to the semantic un-
derstanding, 3D vision with point clouds relies more on ge-
ometric shape for semantic reasoning. Hence, we define
our 3D pre-training task as masked shape prediction (MSP),
with geometric shapes as reconstruction targets. Specifi-
cally, we denote the masked and remaining points as Pm

and Pr, respectively. Our task is to reconstruct the shape
features Fm of Pm given Pr. The overall pipeline is shown
in Fig. 1(a). We first extract point features from Pr, and
then design an MSP network to build the interaction be-
tween masked and unmasked points, which is finally uti-
lized to predict the shape features for the masked parts.

Masking Strategy. Similar to 2D works [2, 17], we divide
the 3D space into blocks of side length w. Since 3D data
is sparse, we only consider non-empty blocks with interior
points. We randomly sample some non-empty blocks with
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Figure 1. Illustration of the masked shape prediction (MSP) pipeline and the context-enhanced shape target. The reconstruction
branch takes the remaining points Pr as input and predicts shape features using our well-designed context-enhanced shape target as
supervision, which has two components: the deep shape feature F̂DS

m and the 3D shape context feature F̂SC
m . F̂SC

m explicitly encodes
the local geometric shape around a center point. F̂DS

m is produced by the target branch with a complete point cloud as the input. The
reconstruction and target branches share the same feature extractor architecture.

a ratio r and drop all points in them. By adjusting the block
size w and masking ratio r, we can control the difficulty of
masked shape prediction. Since the network is expected to
attain semantic understanding of the scene by completing
the missing part, properly setting the masking ratio and the
block size is important, as discussed in Sec. 4.4.

3.2. Context-enhanced Shape Target

The central problem in MSP is how to represent the
geometric shape of the masked parts to effectively guide
the network pre-training. Since the contextual information
is important in scene-level understanding, we propose the
context-enhanced shape reconstruction target to promote
the network to extract semantically rich information. The
context-enhanced shape target consists of two elements:
shape context which explicitly describes the local geomet-
ric shape around the masked points, and deep shape fea-
ture which adaptively encodes the surrounding contextual
information and represents the shape implicitly.
Shape Context. Shape context is a traditional feature de-
scriptor that well presents the local shape structure; it was
first introduced for 2D shape matching [3] and extended to
3D in [24, 65]. For computing the shape context feature
for a center point p, as shown in Fig. 1(c), we split the ball
of radius R centered at p into several bins by partitioning
it along the polar angle θ, azimuth angle φ, and radius R.
We evenly divide polar and azimuth angles into nθ and nφ

sectors, respectively, while for radius R, we partition it into
nr sectors in a spatially-increasing way, where the radius
sectors for inner bins are smaller so that the inner shape
are described in a more detailed manner. Specifically, for

a neighboring point pi in the ball with relative distance di,
polar angle θi and azimuth angle φi to p, we calculate its
bin index bi as

bθi =

⌊
θi
π

· nθ

⌋
, bφi =

⌊φi

2π
· nφ

⌋
,

bri =

⌊
log(di + ξ)− log(ξ)

log(R+ ξ)− log(ξ)
· nr

⌋
, bi = (bθi , b

φ
i , b

r
i ),

(1)

where ξ is a hyperparameter to control the spatial variance
of radius partition. In this way, we allocate each neighbor-
ing point of p to the bin it falls inside.

Different from the original shape context feature that de-
scribes the point counts in each bin, considering that the
point cloud in a real scene is usually inhomogeneous, we
set the bin value to one if any point exists in the bin and to
zero if there is no point. The shape context feature of size
nθ × nφ × nr thus robustly describes the geometric shape
around point p. We adopt a multi-scale setting for the sec-
tor numbers nθ, nφ and nr. Two partitions, {2, 4, 3} and
{4, 8, 5}, are adopted jointly to represent the coarser shape
and finer detail in the local ball. We denote the ground-truth
shape context features of the masked points as F̂SC

m .
Deep Shape Feature. Besides shape context, we adopt an-
other shape representation to further enhance the contextual
information for describing the shape. For this shape repre-
sentation, inspired by BYOL [15], we adopt a two-branch
structure, as shown in Fig. 1(b). The target branch takes
the whole point cloud with full shape information as input,
whose network parameters are updated as the exponential
moving average (EMA) of the feature extractor weights in
the reconstruction branch. The target branch accepts com-
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Figure 2. Illustration of the masked shape leakage under (a) orig-
inal points and (b) subsampled points. The local shape around the
masked point pm is shown in yellow, which can be easily inferred
from the nearby points of pm in (a) and largely kept secret in (b).

plete shape input, thus is expected to produce features with a
comprehensive understanding of the contextual shape. The
masked parts of the produced features are then taken as the
targets for the predicted masked shape features in the re-
construction branch. We denote the deep shape feature tar-
get as F̂DS

m . Compared to explicit shape context descrip-
tor, the deep shape feature extracted by the network has
a larger receptive field and thus enables a relatively more
global understanding of the contextual information in a 3D
scene. Also, the feature extractor in the target branch are
adaptively updated in the training process to extract more
representative features for different shapes.

Loss Function. We combine the shape context and the deep
shape feature as the context-enhanced shape target to su-
pervise the shape prediction, achieving better performance
than using them alone (see Table 6). Specifically, as shown
in Fig. 1(a), the MSP network predicts the shape features
Fm = [FSC

m ,FDS
m ]. The shape context prediction FSC

m is
optimized towards F̂SC

m with the binary cross-entropy loss.
For the deep shape feature, we adopt the cosine similarity
loss to minimize the distance between predicted FDS

m and
target features F̂DS

m . Additionally, we take color predic-
tion as an auxiliary task and optimize it with mean squared
error (MSE) loss, which can further slightly boost the per-
formance, as shown in Table 6. The final loss is the sum of
the above losses with equal loss weights of 1.0.

3.3. MSP Network: Discussion of the Masked Shape
Leakage Problem

Masked Shape Leakage. In the pre-training methods with
masked signal modeling [2, 10, 17, 62], the positions of the
masked parts (e.g., the pixel indices) are required to indicate
the locations for feature prediction. In 3D situation, these
positions are the masked point coordinates Pm. However,
the shape knowledge of masked parts is also contained in
these point coordinates. Hence, when using shape targets,
a potential problem is that these masked point coordinates
may leak the target information. For example, in Fig. 2(a),
pm is a point in masked blocks, whose surrounding shape is
to be predicted in MSP. However, the local geometric shape

of pm (shown in yellow) is implied by the positions of the
nearby points around pm (i.e., points in the circle centered
at pm). So if the masked points around pm (i.e., red points
in the circle centered at pm) are known in the shape predic-
tion process of pm—which is a usual case in masked signal
modeling that uses self-attention layers to build interaction
among points—the masked shape around pm, i.e., the shape
prediction target, may be revealed by these masked points’
coordinates. We follow previous masked signal modeling
works [2, 17, 74] to use the transformer structure—which
shows great effectiveness in building connections between
remaining and masked parts—in our MSP network design,
while taking the masked shape leakage problem into con-
sideration, as discussed in the following paragraphs.

MSP-CA & MSP-CA++. To mitigate the masked shape
leakage, an intuitive strategy is to avoid information interac-
tion between masked points. For this purpose, we propose
the MSP-CA architecture (Fig. 3(a)) with cross-attentions
to generate shape features for masked points based on the
remaining point features. The cross-attentions in MSP-CA
are QKV-based multi-head attention layers [59] with Pm

as queries and Pr as keys. Since there is no information
interaction between masked points in MSP-CA, the feature
of each masked point is extracted independently. Hence,
for a specific masked point, the masked parts of its local
geometric structure will not be revealed by other masked
points. To improve the feature interaction among points, as
shown in Fig. 3(b), we further propose an advanced version
of MSP-CA, i.e., MSP-CA++, which applies self-attentions
on Pr to enhance the connections among remaining parts
and refine the remaining point features. Although avoiding
masked shape leakage, the lack of communication between
masked points in MSP-CA and MSP-CA++ may hinder the
shape reasoning for masked points far from the remaining
parts, since the masked points close to the remaining points
can serve as bridges to propagate information from remain-
ing points to distant masked points. Therefore, we propose
another architecture, MSP-SA (Fig. 3(c)).

MSP-SA. In this architecture, we enable the interaction be-
tween masked points to avoid the aforementioned issue of
distant masked points, but restrict the interaction to only
sparsely sampled keypoints to alleviate masked shape leak-
age. Specifically, after using the feature extractor to gener-
ate features for remaining points Pr, we randomly sample
a subset of keypoints Ps from the whole point cloud P, and
denote the masked and remaining points in the subset as
Ps

m and Ps
r, respectively. As shown in Fig. 3(c), MSP-SA

adopts a standard transformer encoder structure [59] with
iterative self-attention and feed-forward layers to build con-
nection among all the keypoints in Ps. Note that the re-
maining points are also sparsely sampled as Ps

r to main-
tain balanced sparsity with Ps

m, which facilitates the shape
reasoning by shortening the information propagation path
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Figure 3. MSP Network Architectures. (a) MSP-CA and (b) MSP-CA++ apply cross-attentions to query shape features for masked
points from only the remaining point features, thus avoiding the masked shape leakage in shape prediction. MSP-CA++ further adopts self-
attention layers to refine the remaining point features. (c) MSP-SA performs self-attentions on the entire scene to enhance the information
propagation, but restricts the interaction to subsampled keypoints to mitigate shape target leakage. Nr , Nm, nr , and nm denote the point
numbers of Pr , Pm, Ps

r , and Ps
m, respectively. C denotes the feature channel number. The attention and feed-forward layers are both

followed by normalization layers and residual additions (as in [59]), which are ignored in the figure for clarity.

between two distant parts. As shown in Fig. 2(b), with in-
formation propagation between only sparsely sampled key-
points, the masked parts of pm’s surrounding shape (shown
in yellow) will not be severely leaked by pm’s surrounding
points as most of them are dropped out in the subsampling
and kept unknown in pm’s local shape prediction process.

In general, MSP-CA, MSP-CA++, and MSP-SA are all
able to learn semantically-meaningful latent features, yet
MSP-SA with a preferable information propagation manner
is a more effective architecture when the sampling number
is properly set. Sec. 4.4 shows the experimental comparison
of these MSP network designs.
Network Details. As the MSP network input, the features
of masked points are initialized as learnable mask tokens as
in 2D works [2, 17]. The shape predictor is a linear layer to
produce final shape predictions. Considering the network
efficiency in processing scene-level point clouds, we fol-
low [71,78] to implement the attention layers in a local way,
in which k nearest neighbor points are searched for each
query for attention calculation. Similar to the autoencoder
structure in MAE [17] for 2D vision, we take the feature ex-
tractor as an encoder for visible parts and the MSP network
as a decoder for shape reconstruction. The MSP network is
only used in pre-trainining and discarded in the downstream
tasks. We adopt EQ-Net [71], a scene-level transformer-
based network, as the feature extractor, which also serves as
a unified and strong backbone in various downstream tasks.

4. Experiments
4.1. Pre-training Setups
Data Setups. We pre-train our model on ScanNet v2 [9],
which contains 1613 indoor 3D scenes created from RGB-D
sequences with 2.5M views, and we use the training split for
pre-training. The data augmentations include point jittering,
flipping, rotation, and elastic transformation [14].
Network Architecture. We use the Embedding-Querying

Network (EQ-Net) in [71] as the feature extractor in pre-
training and the backbone in downstream tasks. Unlike [71]
which applies different embedding and querying architec-
tures in different 3D tasks, we unify the network structure so
that we can apply the pre-trained weights to different down-
stream tasks. Specifically, we take SparseConvNet [8,14] as
embedding network and the transformer-based Q-Net [71]
as the querying network. The dimension of the output fea-
ture of EQ-Net is set to 576. For MSP network, we set the
number of attention blocks to 6, and the number of heads to
12. The neighborhood number k in local attention is 32.

Implementation and Training Details. We set R and ξ in
shape context to 0.15 and 0.3, respectively. For the deep
shape feature, we set the target decay rate for EMA update
to 0.999. We set the ratio r and block size w for masking
to 60% and 0.3m, respectively. For MSP-SA, we randomly
sample 10k keypoints. AdamW [32] is adopted as the opti-
mizer with a weight decay of 0.1. We train for 600 epochs
with a batch size of 8 with four GPUs.

4.2. Fine-tuning in Downstream Tasks

We evaluate the pre-trained representations on various
downstream tasks in a supervised way, including seman-
tic segmentation, indoor and outdoor object detection. The
MSP network structure is MSP-SA by default.

Semantic Segmentation. We perform tests on two real-
world datasets, ScanNet v2 and S3DIS [1]. ScanNet v2
contains 20 segmentation categories. S3DIS has 271 scenes
in six areas with points annotated in 13 categories. We fol-
low previous works [20, 64, 77] to test on Area 5. We adopt
AdamW optimizer with a weight decay of 0.1. The batch
size is set to 8. For ScanNet v2 and S3DIS, we train for
200 and 600 epochs, respectively. The results (mIoU(%))
are shown in Table 1. Great performance gains are attained
with the pre-trained weights.

Indoor Object Detection. We adopt two datasets, ScanNet
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Method
ScanNet val. S3DIS Area 5

scratch pre-trained scratch pre-trained
PointContrast [64] 72.2 74.1 68.2 70.3

CSC [20] 72.2 73.8 68.2 72.2
DepthContrast [75] 70.3 71.2 68.2 70.6

Ours 73.6 75.6 70.7 73.0

Table 1. Results (mIoU(%)) of semantic segmentation.

v2 [9] and SUN RGB-D [54], for indoor object detection.
ScanNet v2 contains 1613 scenes, which are split into 1201,
312, and 100 scenes for training, validation, and testing,
respectively. It includes 18 object categories. SUN RGB-
D contains 10335 single-view indoor scenes with bound-
ing boxes in 10 categories, including 5285 scenes for train-
ing and 5050 scenes for testing. The optimizer used for
both datasets is AdamW. We set the weight decay to 0.1,
the learning rate to 0.001 with cosine decay, and the train-
ing epochs to 200. The batch sizes for ScanNet v2 and
SUN RGB-D are 4 and 8, respectively. We conduct ex-
periments based on two detection methods: VoteNet [37]
and GroupFree [31]. GroupFree is one of the state-of-the-
art methods for indoor object detection. As shown in Ta-
ble 2, with EQ-Net as the backbone network, we get a high
training-from-scratch baseline performance. Based on the
strong baseline, our pre-trained weights still improve the
mAP by a large margin. Among all the VoteNet-based mod-
els, our fine-tuning model gets the highest performance.
Also, our GroupFree-based model with pre-trained weights
as initialization attains top performance on both datasets.

Outdoor Object Detection. We evaluate the transferring
ability of our method to outdoor scenes by conducting ob-
ject detection experiments on the large-scale Waymo [55]
dataset, which includes 798 training sequences with ≈158k
LiDAR samples and 202 validation sequences with ≈40k
LiDAR samples. We follow the settings in OpenPCDet [57]
and use 20% of the training data for our experiments. The
optimizer is AdamW with a weight decay of 0.01 and a
learning rate of 0.003. We train for 30 epochs with a batch
size of 4. We experiment with two outdoor detection meth-
ods, SECOND [69] and CenterPoint [73], both of which are
utilized as fundamental and strong 3D region proposal net-
works in state-of-the-art outdoor 3D detectors [7,28,50,52].
Table 3 shows the results. Surprisingly, although the pre-
training is on an indoor dataset, the learned representations
still benefit the fine-tuning on outdoor scenes, which means
that some unified intrinsic 3D shape information is learned
and exploited in the pre-training process.

Data efficiency of pre-training. An important purpose of
pre-training is to improve performance on tasks with lim-
ited data. We show that our pre-training is data-efficient by
fine-tuning on ScanNet v2 in two settings: limited scenes
and limited annotations per scene. For scene and annotation
splits, we follow the configurations in CSC [20] and use the

Method P
ScanNet v2 SUN RGB-D

AP50 AP25 AP50 AP25

VoteNet [37] × 33.5 58.6 32.9 57.7
H3DNet [76] × 48.1 67.2 39.0 60.1
3DETR [34] × 47.0 65.0 32.7 59.1

GroupFreeL6,O256 [31] × 48.9 67.3 45.2 63.0

PointContrast [64] (VoteNet) ✓ 38.0 58.5 34.8 57.5
CSC [20] (VoteNet) ✓ 39.3 - 36.4 -

DepthContrast [75] (VoteNet) ✓ 42.9 64.0 35.5 61.6
DepthContrast [75] (H3DNet) ✓ 50.0 69.0 43.4 63.5

IAE [67] (VoteNet) ✓ 39.8 61.5 36.0 60.4
RandomRooms [43] (VoteNet) ✓ 36.2 61.3 35.4 59.2
RandomRooms [43] (H3DNet) ✓ 51.5 68.6 43.1 61.6

STRL [21] (VoteNet) ✓ 38.4 59.5 35.0 58.2
MaskPoint [29] (3DETR) ✓ 42.1 64.2 - -

Ours (VoteNet) × 44.5 66.4 36.7 61.8
Ours (VoteNet) ✓ 48.5 67.4 39.5 62.7

Ours (GroupFreeL6,O256) × 51.1 70.1 45.4 64.2
Ours (GroupFreeL6,O256) ✓ 53.7 71.8 47.5 64.8

Table 2. Results of indoor object detection. The methods in the
brackets indicate the detection heads. “P” indicates “Pre-trained”.

Method P Vehicle Pedestrian Cyclist Avg.
Second [69]† × 62.02 47.49 53.53 54.35

Ours (Second) × 64.33 50.18 57.31 57.27
Ours (Second) ✓ 65.12 50.87 59.08 58.36

CenterPoint [73]† × 62.65 58.23 64.87 61.92
Ours (CenterPoint) × 63.99 59.35 67.19 63.51
Ours (CenterPoint) ✓ 64.11 60.00 68.66 64.26

Table 3. Results of outdoor object detection with 20% training
data. “†” denotes the results reported in OpenPCDet [57]. “P”
denotes “Pre-trained”. Our models use EQ-Net as the backbone
network. The metric is mean average precision weighted by head-
ing (mAPH) at Level 2 [55].

official data-efficient splits of ScanNet benchmark [9]. Our
experiments are conducted on two tasks: semantic segmen-
tation and object detection. (i) We show the semantic seg-
mentation results in Table 4. When trained with {1%, 5%,
10%, 20%} scenes, our models initialized with pre-trained
weights consistently outperform the ones with random ini-
tialization and attain better results than CSC. Also, with
only limited {20, 50, 100, 200} points annotated per scene,
our pre-training consistently improves mIoU. We find that
in the limited annotation setting, our models with random
initialization already achieve much better performance than
CSC, as we use a stronger transformer-based backbone. It
is noteworthy that when only few data or annotations are
available, our pre-training can boost the model performance
by a large margin (e.g., +4.4 p.p. for 1% data and +3.3 p.p.
for 20 points). (ii) The VoteNet [37]-based detection results
are shown in Table 5. {10%, 20%, 40%, 80%} scenes are
sampled for limited-scene object detection. We make much
better baseline predictions than CSC with deficient train-
ing data. Our pre-training further brings performance gains
based on the strong baselines. For limited-annotation de-
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Data Pct.
CSC [20] Ours

scratch pre-trained ∆ scratch pre-trained ∆

100% 72.2 73.8 +1.6 73.6 75.6 +2.0
1% 26.0 28.9 +2.9 25.8 30.2 +4.4
5% 47.8 49.8 +2.0 48.1 50.3 +2.2
10% 56.7 59.4 +2.7 57.6 62.3 +4.7
20% 62.9 64.6 +1.7 63.9 66.0 +2.1

(a) Limited scenes.

No. of Points
CSC [20] Ours

scratch pre-trained ∆ scratch pre-trained ∆

all 72.2 73.8 +1.6 73.6 75.6 +2.0
20 53.6 53.8 +0.2 62.2 65.5 +3.3
50 60.7 62.9 +2.2 68.1 70.3 +2.2

100 65.7 66.9 +1.2 69.0 71.5 +2.5
200 68.2 69.0 +0.8 70.4 72.0 +1.6

(b) Limited annotated points per scene.

Table 4. Data-efficient semantic segmentation results on ScanNet
validation set. The metric is mIoU(%).

Data Pct.
CSC [20] (VoteNet) Ours (VoteNet)

scratch pre-trained ∆ scratch pre-trained ∆

100% 35.4 39.3 +3.9 44.5 48.5 +4.0
10% 0.3 8.6 +8.3 29.5 32.8 +3.3
20% 4.6 20.9 +16.3 34.7 37.2 +2.5
40% 22.0 29.2 +7.2 37.4 41.4 +4.0
80% 33.7 36.7 +3.0 43.0 46.1 +3.1

(a) Limited scenes.

No. of Boxes
CSC [20] (VoteNet) Ours (VoteNet)

scratch pre-trained ∆ scratch pre-trained ∆

all 35.4 39.3 +3.9 44.5 48.5 +4.0
1 9.1 10.9 +1.8 16.5 17.9 +1.4
2 15.9 18.5 +2.6 23.8 26.1 +2.3
4 22.5 26.1 +3.6 30.6 33.1 +2.5
7 26.5 30.4 +3.9 34.0 38.5 +4.5

(b) Limited annotated boxes per scene.

Table 5. Data-efficient object detection results on ScanNet vali-
dation set. VoteNet [37] is the detection head used in the experi-
ments. The metric is mAP@0.5(%).

tection, {1, 2, 4, 7} bounding boxes are annotated for each
scene. The results in Table 5b again indicate the effective-
ness of our pre-training in label-efficient learning.

4.3. Study of the Reconstruction Targets

We compare the fine-tuning performance of different tar-
gets in Table 6. Besides our context-enhanced shape target,
we also explore point color and local point set as the re-
construction target. Pixel color carries important semantic
information that is helpful in recognizing or separating ob-
jects, as validated in 2D works [2, 66]. When it comes to
3D, learning to reconstruct point colors also benefits the se-
mantic understanding, but the performance gain is limited.

Local point set is also used in Point-MAE [36], a recent
work for single-object-level 3D masked signal modeling, as
a shape reconstruction target. To apply the point set target in
3D scenes, for a masked point, we take the points in a local
ball with a radius R centered at that point as its ground-truth
local point set. We then set a fixed predicted point number

(a)		Input	Scene (b)		𝑟 60%,𝑤 0.3𝑚 (c)		𝑟 60%,𝑤 0.5𝑚 (d)		𝑟 80%,𝑤 0.3𝑚

Figure 4. Masked point clouds with different masking settings. In
(b), the chair is partially masked out, leaving clues for completing
the chair. In (c) and (d), the chair is totally masked out, making
the chair reconstruction a hard problem given only visible parts.

K for each masked point to ensure a fixed channel num-
ber for shape features. So for each input masked point, the
shape predictor produces a feature of size K×3, i.e., K 3D
coordinates relative to the center. In our implementation,
we set R and K to 0.15m and 200, respectively. We mini-
mize the Chamfer distance loss [13] to decrease the distance
of the predicted and ground-truth point sets for each input
masked point. Local point set is the most explicit represen-
tation of local 3D geometry, capable of describing the shape
details with points in continuous space, which shows great
results in 3D single-object-level pre-training, as shown by
Point-MAE [36]. However, local point set is not as effec-
tive in 3D scenes as in objects (see Table 6). A possible
reason is that for a real-scene point cloud, the scanning and
3D reconstruction inevitably introduce noisy points and in-
consistent point densities. In ScanNet, the point numbers in
local balls with radius 0.15m range from one to thousands.
The local point sets for depicting similar shapes can be very
different in point numbers and distributions, which makes
local point set an inferior option as the shape target.

In contrast, shape context is a more stable geometric de-
scriptor, which structures the surrounding local space into
ordered bins and thus is more robust to the point density
and distribution variations. Besides, shape context models
the space occupancy, explicitly taking the empty space into
consideration, which is also essential in describing shape.
Different from the hand-crafted shape context, deep shape
features are adaptively learned to fit in with varying point
distributions. Also, a deeper encoding of the shape and a
more flexible aggregation of contextual information are en-
abled in this manner. Large downstream performance gains
can be attained with only shape context or deep shape fea-
tures as reconstruction targets. Our context-enhanced shape
target combines the strengths of shape context and deep
shape feature and achieves better performance. In addition,
although the color alone does not bring large improvement,
integrating color with our context-enhanced target further
boost the fine-tuning performance.

4.4. Ablation Studies

We conduct ablations by fine-tuning on ScanNet seman-
tic segmentation and report mIoU(%) on validation set.

Masking Ratio r and Block Size w. The effects of dif-
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Targets
mIoU(%)

Color Point Set
CEST (Ours)
SC DSF

from scratch 73.64
✓ 73.98

✓ 73.71
✓ 75.05

✓ 74.92
✓ ✓ 75.42

✓ ✓ ✓ 75.57

Table 6. Effects of different reconstruction targets. The experi-
ments are conducted on ScanNet semantic segmentation based on
MSP-SA. CEST, SC, and DSF denote context-enhanced shape tar-
get, shape context and deep shape feature, respectively.

r 40% 50% 60% 70% 80%
mIoU 75.00 75.24 75.57 74.98 74.34

w (m) 0.2 0.3 0.4 0.5
mIoU 74.85 75.57 75.12 74.62

Table 7. Effects of different masking ratios r and block sizes w.
The default settings (r 60%, w 0.3m) are marked in gray.

Model MSP-CA MSP-CA++
MSP-SA

scratch
5k 10k 20k 40k

mIoU(%) 73.64 74.85 75.05 75.16 75.57 75.41 74.49

Table 8. Analysis on MSP network architectures. MSP-SA is
tested with {5k, 10k, 20k, 40k} keypoints.

ferent masking ratios and block sizes are shown in Table 7.
The best fine-tuning performance is achieved with a mask-
ing ratio of 60% and a block size of 0.3m. An example of
the masked point cloud in this case is shown in Fig. 4(b).
Shapes in 3D scenes (e.g., the chair) are largely masked out
so that the masked shape can not be easily interpolated from
the remaining parts, forcing the network to exploit semantic
information for completing the shape. However, when the
masking ratio or block size is too large, as shown in Fig. 4
(c) and (d), it is likely to mask out the entire objects in the
scene, leaving deficient clues for masked object reasoning.
MSP Network Architectures & Keypoint Numbers. We
introduce three MSP Network architectures, i.e., MSP-CA,
MSP-CA++, and MSP-SA, for mitigating the masked shape
leakage. As shown in Table 8, MSP-CA learns meaning-
ful representations, boosting the downstream performance
with an improvement of 1.21%. With enhanced informa-
tion interaction among remaining points, MSP-CA++ fur-
ther improves the performance. By cutting off communica-
tion between masked points, masked shape leakage is en-
tirely avoided in MSP-CA and MSP-CA++. However, the
lack of interaction among masked points makes the shape
prediction hard when a masked point is far from all the re-
maining parts, potentially hindering the semantic reasoning
in MSP. MSP-SA addresses this concern and meanwhile al-
leviates the masked shape leakage by building information
interaction only between subsampled sparse keypoints. Its
performance is greatly affected by the keypoint sampling

Feature Extractor scratch MSP Improvement
SparseConvNet 72.80 74.13 +1.33

EQ-Net 73.64 75.57 +1.93

Table 9. Combination of MSP and different feature extractors.

Method scratch PointContrast CSC MSP (Ours)
mIoU(%) 73.64 74.28 74.88 75.57

Table 10. Comparison of different pre-training methods with EQ-
Net as the backbone (i.e., the feature extractor).

numbers. With a proper sampling number (e.g., 10k from
hundreds of thousands of points in a ScanNet scene), MSP-
SA further improves the feature learning, achieving better
fine-tuning performance than MSP-CA and MSP-CA++.
When the keypoint number is small, fewer shape patterns
are covered and learned in the pre-training, causing a per-
formance drop. When sampling too many keypoints, the
fine-tuning performance also drops, since the keypoint co-
ordinates reveal too much geometric information.

Feature Extractor. We also try our pre-training task MSP
on another popular feature extraction network, i.e., Spar-
seConvNet [8, 14]. To achieve this, we use SparseConvNet
to extract voxel features and then map the voxels to points to
get the features of the corresponding keypoints as the input
to our MSP network. The fine-tuning results on ScanNet are
shown in Table 9. With convolution-based SparseConvNet
as the feature extractor, we can still observe improvement
brought by MSP, but with the transformer-based EQ-Net,
the feature learning ability of MSP is better exploited.

Comparison of Different Pre-training Methods with the
Same Backbone. To better compare MSP with other scene-
level pre-training methods, we keep the same backbone EQ-
Net [71] and apply other methods, i.e., PointContrast [64]
and CSC [20], for pre-training. Specifically, we directly
adopt the released codes of PointContrast and CSC for the
contrastive loss and implement a data loader to augment
each scene twice as the pre-training input. The training
schemes for both pre-training and fine-tuning are kept the
same as MSP. The fine-tuning results are shown in Table 10.

5. Conclusion

Our experiments show that the proposed MSP is a power-
ful self-supervised pre-training method for 3D scene under-
standing that significantly boosts the performance of down-
stream tasks. MSP learns representative features that gen-
eralise well, thanks to the combination of robust shape con-
text and flexible deep shape feature as the context-enhanced
shape target. Nevertheless, the effectiveness of MSP de-
creases when training for more epochs in downstream tasks.
We conjecture that this is due to the relatively small size of
our pre-training dataset. We take the extension of MSP to
larger datasets as future work.
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