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Figure 1. Compared with the existing high-fidelity face swapping methods MageFS [51] and FSLDS [47], our face swapping framework
based on the identity-preserving semantic basis (StyleIPSB) can preserve the pore-level detail and source image’s identity.

Abstract

Recent researches reveal that StyleGAN can generate
highly realistic images, inspiring researchers to use pre-
trained StyleGAN to generate high-fidelity swapped faces.
However, existing methods fail to meet the expectations in
two essential aspects of high-fidelity face swapping. Their
results are blurry without pore-level details and fail to pre-
serve identity for challenging cases. To overcome the above
artifacts, we innovatively construct a series of identity-
preserving semantic bases of StyleGAN (called StyleIPSB)
in respect of pose, expression, and illumination. Each ba-
sis of StyleIPSB controls one specific semantic attribute
and disentangles with the others. The StyleIPSB constrains
style code in the subspace of W+ space to preserve pore-
level details and gives us a novel tool for high-fidelity face
swapping, and we propose a three-stage framework for
face swapping with StyleIPSB. Firstly, we transform the
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target facial images’ attributes to the source image. We
learn the mapping from 3D Morphable Model (3DMM) pa-
rameters, which capture the prominent semantic variance,
to the coordinates of StyleIPSB that show higher identity-
preserving and fidelity. Secondly, to transform detailed at-
tributes which 3DMM does not capture, we learn the resid-
ual attribute between the reenacted face and the target face.
Finally, the face is blended into the background of the tar-
get image. Extensive results and comparisons demonstrate
that StyleIPSB can effectively preserve identity and pore-
level details. The results of face swapping can achieve
state-of-the-art performance. We will release our code at
https://github.com/a686432/StyleIPSB

1. Introduction

Facial image manipulation [36, 37, 48, 50] is a task of
transforming specific attributes from the source image to the
target image while persevering other attributes unchanged.
Face swapping is one of the essential parts of facial im-
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age manipulation, which has attracted lots of interest in the
computer vision and graphics community. Face swapping
aims to generate an image with the source image’s iden-
tity and the target image’s attributes (e.g., expression, pose,
background, hair, etc.). It has wide applications in the film
industry and computer games.

Current face swapping methods are mainly divided into
two categories: 3D model-based methods and 2D image-
based methods. 3D model-based methods [11,17,40] firstly
reconstruct the 3D face models based on 3DMM from
the source image and target image and transfer the non-
identity parameters of the target face model to the source
face model. Then they render the transferred 3D model and
blend it into the target image. Although such methods can
transfer coarse facial attributes such as pose, expression,
and illumination, they have difficulty in generating realis-
tic hair and teeth accessories.

With the development of generative adversarial net-
works, 2D image-based methods [6, 7, 22, 27, 28, 45] can
synthesize photo-realistic images. The generated face im-
ages have convincing and detailed facial attributes, such as
mouth, teeth, and eyebrows. Recent works [21, 46, 47, 51]
employ the pre-trained StyleGAN decoder to further im-
prove the fidelity and synthesize pore-level details. How-
ever, as shown in Fig. 1, despite using the pre-trained Style-
GAN model, their results fail to generate pore-level details
and identity-preserving in challenge conditions. Overall,
2D image-based methods generate more realistic images
than 3D model-based methods, but the identity-preserving
and pore-level details of the images still need improvement.

To tackle the challenges of blurry images and identity-
preserving in face swapping, according to our observations,
the cause of the blurred images is that the regressed style
code is out of W+ space. Additionally, as mentioned in
[18], identity embedding is a non-smooth space, so finding
the identity-preserving optimized direction is challenging.
To address these problems, our method constrains the re-
gressed style code with identity-preserving semantic bases
of StyleGAN (i.e., the proposed StyleIPSB). StyleIPSB
stays within the W+ space, and the identity is preserved
when changing its coordinates.

The advantages of the proposed StyleIPSB are summa-
rized as follows: (1) StyleIPSB constitutes a linear space,
which is the subspace of the W+ space of StyleGAN. By
ensuring the regressed style code within the W+ space of
StyleGAN, we can more easily generate images with pore-
level details. (2) When changing the coordinates of the
StyleIPSB, the identity remains preserved as much as possi-
ble. (3) StyleIPSB can represent various poses, expressions,
and illuminations. To construct the basis that satisfies the
above properties, we propose a novel identity-preserving
distance metric to find the orthogonal semantic directions,
which are further assembled to StyleIPSB.

StyleIPSB also cooperates well with 3DMM to control
facial attributes. StyleRig [39] builds the mapping of the
3DMM parameter space and W+ space of StyleGAN, which
can change the facial attribute of the generated image by
the 3DMM parameters. StyleRig only can manipulate im-
ages generated by StyleGAN. Pie [38] designs a non-linear
optimization problem to edit the real-world image based on
StyleRig, but the optimization operation is time-consuming.
GIF [12] generates face images by the FLAME [23] para-
metric control. However, the generated images are easy to
contain artifacts and change identity. Other face manipu-
lation methods [4, 29, 37] use the network directly to find
the edit direction. Still, without the guidance of 3DMM,
they can only generate some basic expressions (e.g., smile)
and fail to cover various expressions. In this paper, we pro-
pose the StyleGAN-3DMM mapping network, which trans-
forms the semantic information of 3DMM parameters into
StyleIPSB coordinates. The StyleGAN-3DMM mapping
network reduces the gap between 3DMM and StyleIPSB.
It shows that StyleIPSB is very compatible with 3DMM.

In summary, we propose a face swapping framework
based on StyleIPSB and achieve state-of-the-art results. The
main contributions of this paper lie in the following three
aspects:

• We propose a novel method of establishing identity-
preserving semantic bases of StyleGAN called
StyleIPSB. The face image, generated by the linear
space of StyleIPSB, remains pore-level details and
identity-preserving.

• The proposed StyleGAN-3DMM mapping network
serves as the bridge to narrow the gap between 3DMM
and StyleIPSB, which can take advantage of the promi-
nent semantic variance of 3DMM and the identity-
preserving and high-fidelity of styleIPSB.

• We propose the face swapping framework based on
StyleIPSB and StyleGAN-3DMM mapping network.
Extensive results show our method outperforms others
in detail-preserving and identity-preserving.

2. Related works
2.1. Image Modification Using StyleGAN

StyleGAN [14–16] is a powerful image synthesis model
that can generate a wide variety of high-quality face im-
ages. Some methods [5, 31, 34, 35] find the particular at-
tribute editing direction in W+ space using the correspond-
ing attribute classifier. However, their attribute editing is
limited by the classifier’s ability and cannot control diverse
expressions and illumination. To facilitate attribute manip-
ulation in an unsupervised manner, GANSpace [13] and
SeFa [36] perform decomposition to find primary directions
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in the latent space and explore the interpretable directions
among the primary directions. CLIP2StyleGAN [4] discov-
ery and label of StyleGAN edit-direction based on CLIP
image space. However, they only find a few types of ex-
pressions and illumination and fail to discover a complete
set of expressions and illumination. Some works [12,38,39]
map the rigging information to face manipulation, but our
StyleIPSB can generate more detail and identity-preserving
results.

2.2. Face swap

In the early years, many works [24–26, 40] apply 3D
face models for face swapping. Face2face [40] applies an
efficient deformation transfer to track the source video fa-
cial expressions and re-render the synthesized faces with
retrieved and warped mouth interiors. Ma et al. [25] recon-
structed high-resolution facial geometry and appearance by
capturing an individual-specific face model with fine-scale
details. Those 3D model-based methods are difficult to
generate high-fidelity face images, especially realistic hair,
mouth, and teeth. In recent years, conditional GAN archi-
tecture has been widely used in face-swapping. Many works
[7, 19, 21, 22, 28, 46, 49] use neural networks to generate
high-fidelity images. SimSwap [7] and FaceShifter [22] use
a face recognition network to extract the identity embed-
ding and use a decoder to fuse the identity embedding. Re-
cently, many methods [21, 45–47, 51] use pretrained Style-
GAN as the image generator to improve the quality of gen-
erated images further. However, the images generated by
their method still suffer from the lack of details and face
identity shift. Our approach is better at retaining pore-level
details and identify-preserving.

3. Method
This section reveals the details of our proposed method

in three aspects. The first part describes the process of con-
ducting StyleIPSB. The second part describes how to use
StyleIPSB to transfer the facial attributes except for iden-
tity from the target image to the source face. The third
introduces the overall framework of face swap based on
StyleIPSB.

3.1. StyleIPSB Construction

This subsection aims to find a semantic basis in the W+
space of StyleGAN that satisfies the conditions mentioned
in the introduction. In short, StyleIPSB should meet the
following properties: a subspace of W+ space, identity-
preserving, and representation ability. The previous meth-
ods fail to satisfy the above three conditions. For example,
as shown in Tab. 1, GIF [12] does not meet the require-
ments in the W+ subspace, which would lead to generated
image distortion. Some methods [12,35,36] do not concern
the identity preservation and suffer the identity shift when

Method Subspace ID Representation

InterFaceGAN [34]
√ √

GANSpace [13]
√

SeFa [36]
√

GIF [12]
√

Our
√ √ √

Table 1. The conditions of the basis satisfied by different methods.
We compare our method with InterFaceGAN [34], GANSpace
[13], GIF [12] and SeFa [36].

editing. InterFaceGAN [34] cannot edit various expressions
and illumination. Unlike existing methods, our method con-
siders all three conditions when we build StyleIPSB.

Compared with the previous methods, which built the ba-
sis by directly performing decomposition on eigenvalue in
W+ space, we added semantic metrics and identity loss in
our decomposition. Therefore, StyleIPSB is not only in the
W+ subspace but can also represent the complete set of se-
mantic information and have the property of identity preser-
vation. So adding semantic information and maintaining
identity when building StyleIPSB is the crucial point to this
subsection. The following introduces the detailed process
of conducting StyleIPSB.

Formulation The StyleGAN network, denoted by G,
is a mapping from style code w to image I , G : Rn →
RH×W×3, w 7→ I . The 3DMM Fitting network, denoted
by M , regresses the 3DMM parameters p from image I .
The parameters include pose parameter pp, expression pa-
rameter pe and illumination parameter pi. In this paper, we
use DECA [10] as our 3DMM Fitting network.

We first define the distance metric of the pose, expres-
sion, and illumination. The distance metrics measure the
attribute difference between two images generated by style
codes w1, w2. In addition, we add identity loss to the met-
ric. Therefore, the distance metric increases if the difference
between two images’ attributes increases and the identity
remains similar. Then we decompose the Hessian matrix
to find the direction with the fastest distance metric change
in the W+ space. Therefore, the attributes change fast but
identity changes slowly along the direction we found. The
distance metrics are shown as follows:

Dp(w1, w2) =
||M(G(w1))p −M(G(w2))p||2

Lid(G(w1), G(w2))

De(w1, w2) =
||M(G(w1))e −M(G(w2))e||2

Lid(G(w1), G(w2))

Di(w1, w2) =
||M(G(w1))i −M(G(w2))i||2

Lid(G(w1), G(w2))

(1)

where Lid measures the similarity of the identities of two
images. Its value represents the similarity of two identity
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Figure 2. Our framework is divided into three stages. Stage one transfers the target image’s expression, pose, and illumination attributes to
the source image through the semantic base. Stage two transfers detailed non-identity attributes. Stage three blends the transferred image
into the background of the target image.

embeddings obtained by the pre-trained face recognition
network [8] from two input face images.

Lid(I1, I2) = 1− ID(I1) · ID(I2)

| |ID(I1)||2 | |ID(I2)||2
(2)

Then, we use the Hessian matrix to encode the local dis-
tance information on the image manifold up to second-order
approximation.

D2(w0, w0 + δw) ≈ ||δw| |2H = δTwH(w0)δw (3)

The w0 used to construct the semantic base is randomly
sampled, and w0 + δw is the point near w0. We decompose
the Hessian matrix H(w0) =

∑
i λiviv

T
i and find the first

m principal components of v as our basis V . Therefore,
the basis V contains the direction vectors, along which the
distance metric changes first m fastest.

We use the algorithm [42] to calculate and decompose
the Hessian matrix. StyleGAN has 18 different levels, and
the style code of each level itself contains certain semantic
features (for example, the low level includes the features of
face shape and pose, and the high level has the skin color
and illumination, etc.). We construct the semantic base of
the pose on the first three levels of the style code and the
expression on the 4th to 10th levels. The semantic base of

the illumination is on the levels after the 10th. We sampled
w0 100 times and generated 100 sets of bases. And then, we
average these bases and performed Schmidt orthogonaliza-
tion to obtain the semantic base of the pose Vp, expression
Ve, and illumination Vi, respectively. Finally, the pose, ex-
pression, and illumination base are combined as StyleIPSB
V = [Vp, Ve, Vi]

3.2. 3DMM-StyleGAN Mapping

As shown in Fig. 2, the source and target images are
fed into the 3DMM fitting network to regress the 3DMM
parameters αs, αt. The 3DMM-StyleGAN Mapping net-
work, which contains three six-layer multilayer percep-
trons(MLPs), maps 3DMM parameters α to StyleIPSB co-
ordinates of pose βp

s→t, expression βe
s→t and illumination

βi
s→t, respectively. The following equations calculate the

transferred style code ws→t:

ws→t = ws + βs→tV (4)

where βs→t = [βp
s→t, β

e
s→t, β

i
s→t] and ws is the corre-

sponding style code of the source image, which is obtained
from the source image by the StyleGAN encoder [41]. Fi-
nally, ws→t passes through StyleGAN to get the attribute
transferred image.
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Figure 3. The network structure of the image blend. Stage three blends transformed image to the target image by mixing the VGG encoder
feature with the StyleGAN feature through masked spatial feature transforms (MSFT).

3DMM-StyleGAN mapping network aims at precisely
controlling the generated attribute through the 3DMM pa-
rameters while keeping the identity unchanged. Therefore,
we design the attribute loss Lattr to make the generated face
image have the same attribute as the pose, expression, and
illumination as target 3DMM parameters. And we add iden-
tity loss Lid to preserve the identity of the source image.
The total loss is shown as:

L = Lid + εattrLattr (5)

where Lid measure the identity similarity of two images and
defined in Eq. (2). εattr is the weight of two loss func-
tions. Lattr measures the difference between the attributes
of the transferred face and the target face. We reconstruct
the 3D face from the transferred face and the target face,
and then compare their difference in 3D face geometries and
rendered images:

Lattr(α
s, αt, αs→t) = Lgeo(α

s, αs→t)

+ Lrender(α
s, αt, αs→t)

(6)

where αs,αt is the 3DMM parameters of the source and
target images. And αs→t is 3DMM parameters of the trans-
ferred image where αs→t = M(G(ws→t)).

We define that G3DMM (αs, αe, αp) can generate 3D ge-
ometry from 3DMM parameters, and R(αs, αe, αa, αi, αp)
can generate rendered images from 3DMM parameters,
where αs,αe,αa,αi,αp represent shape parameters, pose pa-
rameters, expression parameters, albedo parameters, and
lighting parameters, respectively. Because we only compare
attribute differences between transferred and target images,
we reconstruct the 3D face by the same 3DMM shape pa-
rameters.

The geometric term Lgeo uses the L2 loss between two

face meshes:

Lgeo(α
s, αs→t) =

1

N

∥∥G3DMM (αs
s, α

t
e, α

t
p)−G3DMM (αs→t

s , αs→t
e , αs→t

p )
∥∥
2

(7)
where N is the number of vertices of the face mesh.

The render term Lrender uses the L1 loss between two
rendered images:

Lrender(α
s, αt, αs→t) =∥∥R(αs

s, α
t
e, α

t
a, α

t
i, α

t
p)−R(αs→t

s , αs→t
e , αt

a, α
s→t
i , αs→t

p )
∥∥
1

(8)

3.3. Detailed Attribute Transformation

In the previous subsection, we transfer the attributes of
the target face to the source face, including pose, expres-
sion, and illumination. In this subsection, to transfer at-
tributes beyond the 3DMM expressive capabilities, we use
DAT-MLP to transfer more detailed attributes.

First, we project the target images into the W+ space
using the StyleGAN encoder to obtain the style code wt.
Then, DAT-MLP regresses λ from style codes wt, ws→t us-
ing six-layer MLP. Finally, we use the following formula
to get the latent vector w′

s→t that contains non-identity at-
tributes of the target image:

w′
s→t = λws→t + (1− λ)wt (9)

where λ ∈ R18×512 is constrained to be between 0 and 1
through the sigmoid activation layer. We want to transfer
attributes of wt into w′

s→t as many as possible. The loss
function of the second stage is as follows:

L = Lid+εpLp+εattrLattr(α
s, αt,M(G(w′

s→t))) (10)

The loss function is divided into three items. The first
item is face recognition loss, which is used to constrain
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the identity of the generated face to be consistent with the
source image. The second item Lp represents the perceptual
distance between the generated image and the target image.
It can help transfer residual attributes other than pose, ex-
pression, and illumination. The third term Lattr constrains
the attributes of the generated face consistent with the target
image. εp, εattr represent the weight of the loss function.

The Eq. (9) shows that the style code w′
s→t is in a bound-

ing box of two style codes ws→t and wt. We consider that
most of the bounding box is still in the subspace of W+
space because the attribute of two style codes ws→t and wt

is very close and generated image retains pore-level details
in practice.

3.4. Blend Image

This subsection introduces how to blend the generated
image into the target image. We propose Masked Spa-
tial Feature Transform (MSFT) module to fuse the feature.
Unlike traditional Spatial Feature Transform (SFT) [44],
MSFT only fuses the feature of the masked regions.

The detail of this module is shown in Fig. 3. The VG-
GFace network [30] extracts various level features of the
target image, which is injected into the StyleGAN through
the MSFT module. We use Gaussian filtering to filter the
masked image obtained by the face segmentation algorithm
to make the boundary smoother. The StyleGAN feature is
retained in the facial area, while the background area is from
the mixed feature. We mix features of StyleGAN and VG-
GFace using SFT. The background loss and the perceptual
loss make the swapped image have the same background as
the target image:

L = Lb + εpLp (11)

Lb is the background loss used to measure the difference
in the background between the generated image and the tar-
get image. Lp represents the perceptual distance between
the generated image and the target image. εp is the weight
of the loss function. The background loss is expressed as:

Lb = ∥M ⊙ (Ir − It)∥ (12)

where M is the binarized image of the background region
obtained by face segmentation algorithm [2].

4. Experiment
As mentioned above, StyleIPSB has the following ad-

vantages: (1) StyleIPSB can represent various poses, ex-
pressions, and illumination properties. (2) When the
style code is modified along one base, it only changes
the specific attribute while remaining identity unchanged.
(3) StyleIPSB can preserve the pore-level details. (4)
StyleIPSB cooperates well with 3DMM to control facial
attributes. Therefore, in this section, we mainly evaluate

the effectiveness of our method in the following aspects:
(1) Evaluating the properties of StyleIPSB. (2) Evaluating
the performance of 3DMM controlling facial attributes with
StyleIPSB. (3) Comparison of face swapping results with
other methods. First of all, we introduce the dataset and
training detail.

4.1. Dateset and Training Detail

Dataset. We used the FFHQ database [15] to train
the 3DMM StyleGAN Mapping module. Flickr-Faces-
HQ (FFHQ) consists of 70,000 high-quality face images at
1024×1024 resolution. CelebAMask-HQ [20] is a large-
scale face image dataset with 30,000 high-resolution face
images selected from the CelebA dataset by following
CelebA-HQ. FaceForensics++ [32] is a forensics dataset
consisting of 1,000 original video sequences.

Training environment and hyperparameter We train
the network on a GTX 3090 using the Pytorch framework.
In training, our optimizer is Adam, the weight decay is 5e-
5, and the batch size is 2. In order to effectively train the
above three stages, we first pre-train the three stages sep-
arately and finally train them together. In the three-stage
pre-training, the learning rate is 2e-4; in the final together
training stage, we adjust the learning rate to 2e-5.

4.2. The Properties of StyleIPSB

The representation and the disentanglement of
StyleIPSB. We conduct experiments on the representation
of StyleIPSB to evaluate whether it can represent various
poses, expressions, and illumination properties while iden-
tity is unchanged. Fig. 4 shows that StyleIPSB can express
pitch, yaw rotations, and lighting with different colors, di-
rections, and intensities. In terms of expressions, StyleIPSB
can not only control whether the mouth is open or not, the
eyes are open or closed but also control different eyeball
orientations and raising eyebrows. Supplementary material
reveals the effect of modifying coordinates in different base
directions.

To evaluate the disentanglement of StyleIPSB, we
present the quantitative results, which show the identity
change when manipulating the pose. As shown in Fig. 5,
the horizontal axis represents the yaw angle between the
anchored face and the edited image, and the vertical axis
represents identity loss as defined in Eq. (2) between the
anchored face and the edited image. Our StyleIPSB outper-
forms Ganspace [13], which is also a basis constructed in
W+ space using unsupervised learning. We achieve com-
parable results with the supervised method. InterfaceGAN
[34]. It needs a dataset that contains left and right-facing
faces. StyleIPSB uses unsupervised learning and can repre-
sent more attributes than InterfaceGAN. Fig. 5 also shows
that if we introduce identity loss into the distance metric
when building StyleIPSB, the identity-preserving perfor-
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Figure 4. StyleIPSB can modify various poses, expressions, and illumination by adjusting its coordinates while keeping the identity
unchanged. The first row is the results of changing coordinates of pose and illumination basis. The second row shows the results of the
changing coordinate of the expression basis.

Figure 5. Effects of different methods of changing face pose at-
tributes on face identity information

Figure 6. We compare our method with GANSpace [13] and In-
terfaceGAN [34] in the editing of facial expression.

mance of StyleIPSB is enhanced.
Editing results of StyleIPSB. We compare StyleIPSB

with other StyleGAN-based face edit methods. Fig. 6 com-
pares the edit results of expression (smile) with other meth-
ods. The results show that our approach has better per-
formance in identity-preserving. StyleIPSB preserves the
face shape when expression changes, while face shape is
deformed in other methods.

Fig. 7 shows examples of editing a face image using the

Figure 7. 3D face models control the attribute of generated images.
The top is the rendered images of 3D face geometry. The bottom
is the edited images controlled by the 3DMM parameters of the
top 3D face geometry.

3DMM parameters of FLAME [23]. The first row is the
3D face models generated by the 3DMM parameters. The
second row is the edited image controlled by those 3DMM
parameters. These results show that StyleIPSB cooperates
well with 3DMM to control the facial attributes of the gen-
erated image.

4.3. Result of Face Swapping

This subsection evaluates the performance of face swap-
ping based on StyleIPSB. First, the ablation experiments
evaluate the influence of StyleIPSB on attribute transfer per-
formance. Then, we compare our face swapping with other
methods.

Ablation experiment In the experiment, ”no basis”
means that the 3DMM-StyleGAN mapping network di-
rectly regresses the ws→t instead of βs→t. As shown in
Fig. 8, using StyleIPSB can constrain the generated style
code on the subspace of W+ space and preserve the pore-
level details.

Tab. 2 shows the quantitative comparison results on the
performance of StyleIPSB in stage one. FID (Fréchet in-
ception distance) is used to evaluate the image quality gen-
erated by the image generation model. ”Exp” and ”Pose”
represent the Euclidean distance between the target image
and the transferred image expression and pose parameters,
respectively. ID Similarity means the cosine similarity be-
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Figure 8. The qualitative ablation experiments on StyleIPSB. The
results show we can generate pore-level details with StyleIPSB.

FID ↓ Exp ↓ Pose ↓ ID similarity ↑

No Basis 26.06 3.73 0.074 0.65
With basis 22.15 3.37 0.078 0.67

Table 2. The quantitative ablation experiments on StyleIPSB.

tween the identity embedding of the source image and the
transferred image. D3FR [9] is used to extract the 3D
face parameters, and CosFace [43] is used to extract the
identity embedding. The test set is 10,000 image pairs
randomly sampled from the CelebAMask-HQ [20]. The
Tab. 2 shows that using StyleIPSB can effectively reduce
the value of FID because StyleIPSB is in the subspace of
W+ space. In addition, the performance of transferring ex-
pressions with StyleIPSB is better in identity-preserving be-
cause the identity is preserved while changing the coordi-
nates of StyleIPSB.

Tab. 3 shows the quantitative comparison results of dif-
ferent methods on the FaceForensics++ dataset. The dataset
is classified into 885 identities, and the identity retrieval in-
dicates the top-1 matching rate of swapped and the source
image. We apply CosFace [43] to extract identity em-
bedding. Expressions are measured in the same way as
Tab. 2, The pose measurement method uses a pose estima-
tor [33]. We compare our results with FaceSwap [3], Deep-
Fakes [1], FaceShifter [22], MegaFace [51] and FSLDS
[47]. As shown in the Tab. 3, our method outperforms
in identity-preserving and expression transfer thanks to
StyleIPSB’s identity-preserving property and the ability to
present various expressions. Our performance of pose trans-
fer does not outperform other methods, which may be be-
cause StyleIPSB only contains two bases expressing poses
in raw and pitch directions, which makes it hard to express
very accurate poses. However, the error of the pose is only
a few degrees, so our results still look accurate visually.

Fig. 9 shows the results of face swapping under chal-
lenging conditions. The results show that our method can
preserve the unique noise patterns in portraiture in the red
boxes. In the second row of the figure, our method success-
fully keeps pore-level details and identity while the source
and target pose is quite different. Tab. 4 shows that our
method has the better image quality and identity preserva-
tion ability than other StyleGAN-based methods. The met-

Method ID Retri.(%) ↑ Exp Err. ↓ Pose Err. ↓
FaceSwap [3] 72.69 2.89 2.58
Deepfakes [1] 88.39 3.33 4.64

FaceShifter [22] 90.68 2.82 2.55
MegaFS [51] 90.83 2.92 2.64
FSLDS [47] 90.05 2.79 2.46

Ours 95.05 2.23 3.58

Table 3. The quantitative experiments on FaceForensics++ dataset
with other methods.

FID ↓ Exp ↓ Pose ↓ ID similarity ↑

MageFS [51] 22.03 2.85 0.043 0.4837
RAFS [46] 13.25 3.15 - 0.5232
FSLDS [47] 10.01 2.99 0.053 0.4761
Ours 9.37 2.75 0.078 0.5378

Table 4. The quantitative experiments on the CelebAHQ dataset
with other methods.

Figure 9. We compare our method with MageFS [51] and FSLDS
[47] in challenging conditions.

Figure 10. limitation of our method

ric is the same as in Tab. 2. We follow RAFS and compare
100k swapped faces for a fair comparison.

5. Conclusion and Limitation
We have developed a new semantic basis for face swap-

ping, called StyleIPSB, that is specifically designed to pre-
serve identity and pore-level details. Our experiments have
demonstrated that StyleIPSB outperforms other state-of-
the-art methods. Despite this, there is still potential for fur-
ther improvement, as shown in Fig. 10. (1) Occlusion is
limited by the mask. (2) The glasses in the source image
cannot be removed. (3) Light and shadow cannot be per-
fectly restored in the case of complex illumination.
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