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Abstract

Fashion representation learning involves the analysis
and understanding of various visual elements at different
granularities and the interactions among them. Existing
works often learn fine-grained fashion representations at
the attribute level without considering their relationships
and inter-dependencies across different classes. In this
work, we propose to learn an attribute and class- specific
fashion representation duet to better model such attribute
relationships and inter-dependencies by leveraging prior
knowledge about the taxonomy of fashion attributes and
classes. Through two sub-networks for the attributes and
classes, respectively, our proposed an embedding network
progressively learns and refines the visual representation of
a fashion image to improve its robustness for fashion re-
trieval. A multi-granularity loss consisting of attribute-level
and class-level losses is proposed to introduce appropri-
ate inductive bias to learn across different granularities of
the fashion representations. Experimental results on three
benchmark datasets demonstrate the effectiveness of our
method, which outperforms the state-of-the-art methods by
a large margin.

1. Introduction

Fashion products have become one of the most con-
sumed products in online shopping. Unlike other types of
products, fashion products are usually rich in visual ele-
ments at different levels of granularity. For instance, besides
the overall visual appearance, a fashion product can be de-
scribed by a set of attributes, such as “shape”, “color” and
“style”, which focus on different aspects of the visual rep-
resentation. Each attribute can be further categorized into
various classes. For example, “fit”, “flare” and “pencil” are
different classes under attribute “shape” (Fig. 1). There-
fore, modeling fashion representation in different granu-
larities is essential for online shopping and other down-
stream applications, especially those that require analysis
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Figure 1. Left: existing fine-grained representation learning meth-
ods often learn attribute-specific representations for fashion prod-
ucts, thus may not be able to discern the two dresses that have dif-
ferent compositions of visual elements at the class level.Right: our
proposed method (right) jointly learns attribute and class-specific
representations. Therefore, it can discriminate between the two
dresses by their class-specific representations.

of subtle or fine-grained details such as attribute-based fash-
ion manipulation [1, 2, 27] and retrieval [6, 14, 19, 23, 24],
fashion copyright [6, 19], and fashion compatibility analy-
sis [11, 15, 21, 23].

Fine-grained fashion modeling and analysis in recent
years explore the attribute-specific representation learning.
The focus has recently shifted from earlier works that
learn separate representations for each attribute indepen-
dently [1, 2] to multi-task learning, which uses a common
backbone for different attributes while tailoring the learning
for each specific attribute via mechanisms such as attention
masks [6,14,19,24]. Success of these attribute-specific rep-
resentation learning methods for fine-grained fashion anal-
ysis can be attributed to their capabilities to discriminate
visual features associated with different aspects of fashion
products, which learning an image-level global representa-
tion finds challenging.

However, when it comes to classes, such attribute-
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specific representation methods face a similar challenge to
the above. The reason is that due to the dynamic and aes-
thetic nature of fashion products, different visual elements
are often composited together to achieve certain visual ef-
fects, making an attribute-level description insufficient to
capture such interactions and granularity. For instance, un-
der the same “shape” attribute, one may go for a dress de-
sign that combines classes “fit” and “flare” for a more ca-
sual look (top image, Fig. 1), but go for a different dress
that combines “fit” and “pencil” for a more formal look
while flattering one’s natural curves (bottom image, Fig. 1).
Therefore, an attribute-level representation is hard to dif-
ferentiate the two dresses. Alternatively, one may directly
learn a class-specific representation for each class under the
“shape” attribute, which, however, faces the scalability is-
sue. For instance, if a fashion image is associated with N
attributes and M classes per attribute, one would need to
learn N ×M class-specific representations.

To better discriminate fashion products with distinct de-
sign considerations and model the interplay among vari-
ous visual elements, we propose to leverage prior knowl-
edge about fashion taxonomy to model fashion products.
We jointly learn both attribute-specific and class-specific
fashion representations through a multi-attribute multi-
granularity multi-label embedding network (M3-Net). M3-
Net consists of two sub-networks, for attributes and classes,
respectively. Different attributes share the same backbone
sub-network as well as two attribute-conditional attention
modules, while different classes under a given attribute
share two class-conditional attention modules.

The shared backbone and conditional attention modules
allow the network to better capture the inter-dependencies
and shared visual statistics among the attributes and classes.
Through multi-label learning on attribute-specific represen-
tations, we also improve the scalability of the proposed net-
work by focusing class-specific representation learning on
high likelihood classes only. Finally, a multi-granularity
loss consisting of attribute-level and class-level losses is de-
signed to introduce appropriate inductive bias for learning
across different granularities.

In summary, our contributions are:

• We propose to model fashion products at both attribute
and class levels based on fashion taxonomy to better
capture the inter-dependencies of various visual ele-
ments and improve the discriminative power of learned
fashion representations.

• We design a multi-attribute multi-granularity multi-
label network (M3-Net) to jointly learn attribute-
specific and class-specific representation duet for fine-
grained fashion analysis. Through two sub-networks
and conditional attention modules, M3-Net is able to
progressively learn discriminative representations at

different granularities, with appropriate inductive bias
introduced by the attribute-level and class-level losses.

• Our model outperforms state-of-the-art methods in
fine-grained fashion retrieval on three benchmark
datasets. The experimental results demonstrate the ef-
ficacy of our proposed method.

2. Related Work
2.1. Generic Fashion Representation Learning

Earlier fashion representation learning works [7, 8, 16,
20, 25, 26] focus on the global representation of a fashion
product by learning a generic metric embedding from the
entire fashion image. The generic representations benefit
tasks such as in-shop fashion retrieval [16, 22, 26], street-
to-shop fashion retrieval [4, 7, 8, 13, 17, 18] and compatibil-
ity retrieval [11, 15, 20, 25]. For in-shop fashion retrieval,
the images often have a consistent background and photo
shooting angle. In comparison, street-to-shop retrieval is
more challenging because the images are often taken in an
uncontrolled environment with varying lighting conditions,
scales, and viewing angles. Different from the above two
tasks that focus on the overall similarity, compatibility re-
trieval focuses on a specific global attribute such as color,
fabric, and style. Although effective in global represen-
tation learning, these works lack the capabilities to model
fine-grain details and subtleties in fashion products.

2.2. Multi-attribute Representation Learning

Many works tackle the problem of fine-grained fash-
ion representation learning by analyzing fashion attributes.
We have seen great success of such approaches in tasks
such as attribute-specific retrieval [2, 6, 19, 24] and re-
trieval with attribute manipulation [1, 12, 27]. One group
of works [12, 27] utilizes fully connected layers to trans-
form generic representations into attribute-specific repre-
sentations. However, the linear transformation function
of fully connected layers neglects the spatial relationship
within attribute-specific representations. Another group of
works learns attribute-specific representations by leverag-
ing region proposal, either via a dedicated network [13] or
via global pooling layers [1,2,9]. For example, some works
[1, 2] localize the spatial area of each attribute using global
pooling layers, and crop the spatial feature maps for further
attribute-specific learning. Although cropping spatial fea-
ture maps allows representation learning to focus on a local
region, it rigidly limits the visual representation to a spe-
cific area and ignores other correlated visual elements in a
larger area. In contrast, the third group of works uses atten-
tion masks to incorporate a global view into representation
learning with the flexibility to bring in contexts from other
regions. For instance, the authors of [6, 14, 19, 24] utilize
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Figure 2. The architecture of the proposed M3-Net. M3-Net first obtains a generic representation using a backbone CNN. It learns attribute-
specific representations through two attribute-conditional attention modules (SCA-A and CCA-A). Taking the high-likelihood classes from
the multi-label classification, M3-Net employs two class-conditional attention modules (SCA-C and CCA-C) to learn the class-specific
representations. SCA-A and SCA-C are extended from the SCA module (Alg. 1), and CCA-A and CCA-C are extended from CCA module
(Alg. 2).

attention masks to dynamically assign weights to different
dimensions of the global representation of an image for spe-
cific attributes. Veit, Belongie and Karaletsos [24] use at-
tention masks to select and reweight relevant dimensions for
each attribute to induce attribute-specific subspaces. Instead
of learning attribute-specific weights, other works [6, 19]
propose to learn attribute-aware spatial and channel atten-
tion modules. The attention modules are attached to the
feature extraction network to enhance the participation of
attributes in representation learning.

2.3. Multi-granularity Representation Learning

As attribute-level representations may still fall short of
fashion tasks that require analysis of finer granular interac-
tions, such as the one shown in Fig. 1, a few works pro-
pose to learn fashion representations in multiple granulari-
ties. Some works tackle the multi-granularity representation
learning problem from the spatial domain, which essentially
transforms multi-granularity learning into multi-scale learn-
ing. For instance, Dong, Ma and their co-authors [6, 19]
propose to use a global branch and a local branch to learn
two attribute-specific representations on two scales. Simi-
larly, Bao, Zhang and their co-authors [3] propose a feature
learning network that jointly learns the representation in
two feature map scales and three image scales via a global,
a part-base, and a local branch. Instead of multi-scale learn-
ing, Jiao, Xie and their co-authors [14] propose to segment
the attribute-specific embedding spaces into class-specific
embedding spaces using the cluster prototypes learned by
online deep clustering. The proposed model achieves state-
of-the-art performance on the fine-grained fashion retrieval
task by prioritizing retrieval in class-specific embedding
spaces. However, the representations are not optimized in

class-specific embedding spaces because the segmentation
happens in the inference stage. In our work, we propose to
jointly learn both attribute-specific and class-specific repre-
sentations through a multi-granularity embedding network.

3. Proposed Method
The proposed multi-attribute multi-granularity multi-

label embedding network (M3-Net) is an end-to-end net-
work that jointly learns the attribute and class level rep-
resentations. As shown in Figure 2, M3-Net employs a
backbone network, two attribute-conditional attention mod-
ules, two class-conditional attention modules, and a multi-
label classification module. The backbone network shares
learned weights across all attributes, which makes the em-
bedding network scalable. It embeds an input image into
a generic representation that represents the entire image.
The generic representation is then fed through two attribute-
conditional attention modules to focus learning on fine-
grained attributes and obtain attribute-specific representa-
tions. Two class-conditional attention modules are fur-
ther applied to learn more fine-grained class-specific rep-
resentations. The shared backbone and conditional atten-
tion modules allow the network to better capture the inter-
dependencies and shared visual statistics among the at-
tributes and classes. The multi-label classification module
serves to improve the scalability of the proposed network
by focusing class-specific representation learning on high-
likelihood classes.

3.1. M3-Net Architecture

Given a set of fashion product images {I}, we denote
the set of attributes associated with these images as {An},
where n ∈ [1, N ]. Similarly, we denote the set of classes
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associated with a given attributeAn as {Cmn}, wheremn ∈
[1,Mn] andMn is the number of classes under attributeAn.
Given An, an image I ∈ {I} can associate with a subset of
labels in {1, 2, ...,Mn}, which is represented by a vector
[y1n , ...ymn

, ..., yMn
], where ymn

= 1 if and only if image
I is associated with class Cmn , and 0 otherwise.
Generic representation. Denote the parameters of M3-
Net as θ and the parameters of the backbone network as
θb. Correspondingly, fθ represents M3-Net and fθb repre-
sents the backbone network. The generic visual representa-
tion of an image I is then denoted by ψ = fθb(I), where
ψ ∈ Rc×h×w, c, h, w are the number of channels, height,
and width, respectively.

From here, we will use ψ to denote a generic feature
map, use ϕ to denote a spatially attended feature map and φ
to denote a channel-wise attended feature map. Meanwhile,
we use x to denote the attribute-specific representation, and
x to denote the class-specific representation.
Attribute-specific representation. The attribute-specific
representation learning acts as a connector between the
generic representations and the class-specific representa-
tions. It refines the generic representation by focusing learn-
ing on the attribute-specific visual features, and the result-
ing attribute-specific representation will be further refined
in subsequent modules to obtain more fine-grained class-
specific visual representations. To reduce the complexity
of the class-specific representation learning, we conduct
the attribute-specific representation learning in a multi-label
setting. Therefore, instead of learning N +

∑N
n Mn repre-

sentations (N attribute-specific and
∑N

n Mn class-specific
representations), we can exclude unlikely classes, thus im-
prove scalability.

Motivated by the effectiveness of spatial and channel-
wise attention for multi-attribute fashion representation
learning in prior works, we utilize Spatial Conditional At-
tention module (SCA) and Channel-wise Conditional atten-
tion module (CCA) akin to the attribute-aware attention in
[19]. Both SCA (Algorithm 1) and CCA (Algorithm 2) are
applied to both attribute-specific and class-specific repre-
sentation learning. The structures of SCA and CCA are
shown in Figure 2.

Attribute-conditional attention modules help represen-
tation learning focus on spatial locations and dimensions
relevant to a given attribute. The Spatial Conditional At-
tention on Attribute (SCA-A) applies SCA (Algorithm 1)
at the attribute level, while the Channel-wise Conditional
Attention on Attribute (CCA-A) applies CCA (Algorithm
2) at the attribute level. Given the generic representation
ψ and an attribute An, SCA-A takes them as inputs and
transforms them into feature maps with an identical size,
p1(ψ), p2(An) ∈ Rc′×h×w (step 5, 6 in Algorithm 1). The
attention map αn is the Hadamard product between the im-
age feature p1(ψ) and attribute feature p2(An) with a scal-

Algorithm 1 Spatial Conditional Attention (SCA)

1: Input: a general feature map ψ ∈ Rc×h×w, targeted label l,
intermediate channel number c′

2: Output: conditional spatial attention αl ∈ Rc×h×w

3: Define: feature transform function T, T (ψ) ∈ Rc
′×h×w, la-

bel embedding function E1, E1(l) ∈ Rc
′×1, linear function

W1,W1 ∈ Rc
′×c′

4: Define: Hadamard product ⊙, J1,h,w ∈ R1×h×w and Jc,1 ∈
Rc×1 are all-ones matrix for spatial duplication

5: Transform the input feature:
p1(ψ) = tanh(T (ψ)), p1(ψ) ∈ Rc

′×h×w

6: Embedding and transform the input label:
p2(l) = tanh(W1E1(l)) · J1,h,w , p2(l) ∈ Rc

′×h×w

7: Calculate spatial attention:

αl = Jc,1 · softmax
∑c′

i [p2(l)⊙p1(ψ)]i√
c′

Algorithm 2 Channel-wise Conditional Attention (CCA)

1: Input: a general feature map ψ ∈ Rc×h×w, targeted label l,
intermediate channel number c′

2: Output: conditional channel attention βl ∈ Rc×1

3: Define: label embedding function E2, E2(l) ∈ Rc
′×1, em-

bedding transform function W2,W2 ∈ Rc
′×c′ , linear func-

tions W3,W4, W3 ∈ Rc
′×(c+c′), and W4 ∈ Rc×c

′

4: Define: feature vector concatenation [a; b]
5: Transform the input feature to vector:
q1(ψ) =

∑h×m
j p(ψ), q1(ψ) ∈ Rc×1

6: Embedding and transform the input label:
q2(l) = relu(W2E2(l)), q2(l) ∈ Rc

′×1

7: Calculate channel attention:
βl = sigmoid(W4(relu(W3[q1(ψ); q2(l)])))

ing factor
√
c′ (step 7). Then the spatially attended feature

map is generated as

ϕn = αn ⊙ ψ, ϕn ∈ Rc×h×w, (1)

where ⊙ is Hadamard product. To further focus on
the attribute-relevant dimensions, the Channel-wise Condi-
tional Attention on Attribute, CCA-A (Algorithm 2), takes
the spatially attended feature maps ϕn and attribute An

as inputs, and transforms them into feature vectors q1(ϕn)
and q2(An) (step 5, 6 in Algorithm 2), where q1(ϕn) ∈
Rc×1, q2(An) ∈ Rc′×1. The attention output βn is ob-
tained from the concatenation of q1(ϕn) and q2(An) (step
7). βn ∈ Rc×1. Finally, the attribute-specific representation
is generated as

φn = βn ⊙ q1(ϕn), φn ∈ Rc×1. (2)

Subsequently, to reduce the number of class-specific repre-
sentations in learning, we involve the multi-label classifi-
cation to exclude low-likelihood classes. As Eq. 3 shows,
given an attribute-specific MLP module gn, the probability
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of all classes for an attribute-specific representation on An

is Pn(I).

Pn(I) = [x1n , ..., xmn
, ..., xMn

] = gn(φn). (3)

By setting a threshold γ, we obtain the multi-label class pre-
diction {l̂n} = {Cmn

|∀xmn
> γ}. {l̂n} is the set of pre-

dicted high-likelihood classes. Empirically, with γ = 0.8,
we can exclude on average 94% of classes for an image.
Please see the sensitivity analysis of γ in Suppl.
Class-specific representation. As an attribute often in-
volves multiple classes, the class-conditional attention mod-
ules help M3-Net focus on individual classes and learn
class-specific representations.

Class-conditional attention modules consist of Spatial
Conditional Attention on Class (SCA-C) and Channel-
wise Conditional Attention on Class (CCA-C). SCA-C and
CCA-C are attribute-specific. Different from the attribute-
conditional attention modules, we expect them to focus on
the relevant spatial locations and dimensions of correspond-
ing classes.

Given an attribute An, its spatially attended feature map
ϕn, and class Cmn

∈ {l̂n}, the SCA-C generates a class-
conditional spatial attention map αmn

. We obtain the spa-
tially attended feature map ϕmn as

ϕmn
= αmn

⊙ ϕn, ϕmn
∈ Rc×h×w. (4)

ϕmn
is subsequently fed through both attribute-

conditional channel attention (CCA-A) and class-
conditional channel attention (CCA-C). Especially,
the CCA-A of An outputs the attribute-conditional channel
attention map βn. The attended feature is

φn = βn ⊙ q1(ϕmn
), φn ∈ Rc×1. (5)

The CCA-C of An takes the feature vector φn and the
class Cmn

as inputs to generate the feature vector q1(φn)
and gives the class-conditional channel-wise attention map
βmn

. The class-specific representation is obtained as

φmn
= βmn

⊙ q1(φn), φmn
∈ Rc×1. (6)

M3-Net has three key outputs: the attribute-specific
representation φn, class-specific-representation φmn , and
multi-label probability vector Pn(I). They are used to con-
strain the multi-granularity embedding spaces via a multi-
granularity objective. In this part, we build our method upon
the online clustering method and prototypical triplet loss
in [14] and further extend them to learning two-granularity
fine-grained representations.

3.2. Multi-granularity Objective

To learn across different granularities of the fashion rep-
resentations in an end-to-end manner, we design two losses

to introduce appropriate inductive bias: an attribute-level
loss and a class-level loss.

Attribute-level loss. At the attribute level, we define the
below multi-label classification loss to allow the represen-
tation learning on multi-label attributes. Given an image I
with N attributes {An}, each with Mn classes {Cmn} and
corresponding class labels {ymn}, the loss of multi-label
classification is a binary cross-entropy loss,

LM(I, An|ymn
) =

1

Mn
(

Mn∑
m=1

[−wpymn
· log xmn

+ (1− ymn
) · log(1− xmn

)]),∀xmn
∈ Pn(I),

(7)

where xmn
is the predicted probability of I in class Cmn

,
wp is the weight on the positive samples to mitigate the
class-imbalance problem.

Class-level loss. At the class level, we propose to reg-
ularize the class-specific representation learning on both
global and local structures via two triplet losses. For the
global structure, we construct a prototypical triplet loss be-
tween an image representation, the representation of the
positive prototype of the class that the image belongs to,
and a negative representation. The triplet loss associated
with the local structure involves instance-level representa-
tions to refine the local distance.

A classic triplet loss between an anchor, a positive, and
a negative representation is defined as

L△(I, I+, I−) = max{0, ζ + d(I, I+)− d(I, I−)}, (8)

where ζ = 0.4 is a predefined margin, and d is the cosine
similarity.

Given a triplet of images [I, I+, I−] associated with
classes [Cmn

, C+
mn
, C−

mn
] in attribute An, Cmn

= C+
mn

̸=
C−

mn
. The prototypical triplet loss in the class-specific em-

bedding spaces is defined as

LCC(I, An, Cmn
) = L△(φmn

(I), φC+ , φmn
(I−)), (9)

where φmn
(I) is the anchor representation, φmn

(I−) is a
random negative representation in the class-specific embed-
ding space, and φC+ is the positive class prototype in the
space. The computation of φC+ is akin to [14].

The instance triplet loss in the class-specific embedding
spaces is defined as

LCI(I, An, Cmn
) = L△(φmn

(I), φmn
(I+), φmn

(I−)),
(10)

where φmn(I), φmn(I
+), φmn(I

−) are the class-specific
representations for the anchor, positive, and negative sam-
ple, respectively.

Final objective function. The final objective function
combines both attribute and class-level objectives and al-
lows a simple end-to-end training, as shown in Eq.(11)

min
θ

(λMLM + λCCLCC + λCILCI). (11)
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Dataset Attr type # Attr # Class per attr Train/val/test
DeepFashion [18] multi-label 5 156-230 220K/28K/28K
FashionAI [28] single-label 8 5-10 144k/18k/18k
DARN [13] single-label 9 7-55 163k/20k/20k

Table 1. Summary of the datasets used in experimental validations.
Attr: attribute.

where, λM , λCC and λCI are hyperparameters, which are
set to 1 in our experiments.

4. Experiments

4.1. Datasets

In Table 1, we summarize the three benchmark datasets
used in the experiments. DeepFashion is a large dataset con-
taining image labels of fashion attributes, landmarks, etc.
We use the coarsely-annotated attribute prediction subset,
which is one of the most popular datasets in fashion re-
trieval, and is a multi-label dataset.

4.2. Experimental Settings

We compare our proposed method with the state-of-the-
art solutions [6, 14, 19] on the aforementioned datasets.
Baselines. ASEN networks are the state-of-the-art works on
attribute-specific representation learning. ASEN [19] learns
1024 dimensional attribute-specific representations by us-
ing an attribute-aware spatial attention and an attribute-
aware channel attention. ASENv2 [19] builds a new atten-
tion module structure and achieves better performance than
ASEN. ASEN++ [6] further proposes a cascade network
with a global branch and a local branch to learn multi-scale
representations in 2,048 dimensions.

MODC [14] it is a fine-grained representation learning
framework with online deep clustering to achieve retrieval
in two granularities. It splits the attribute-specific embed-
ding spaces into class-specific embedding spaces in the in-
ference stage to enable retrieval at the finer granularity.
MODC learns attribute-specific representations with 2048
dimensions and achieves the state-of-the-art results on mul-
tiple datasets.

M3-Net is our proposed method which jointly learns
attribute-specific and class-specific representation duet for
fine-grained fashion analysis. The attribute-specific and
class-specific representations are 1024 dimensions. To iso-
late the effects of two-granularity attentions, we trained M3-
Net with only the attribute-conditional attention modules,
with only the class-conditional attention modules, and with
both, called M3-Neta, M3-Netc, and M3-Net respectively.
Training details M3-Net employs a ResNet50 [10] pre-
trained on ImageNet [5] as the shared backbone network,
and removes the last residual block. It is identical to the
backbone of the baselines for fair comparisons. To train

M3-Net, we use a learning rate 1 × 10−4 with a 0.975 de-
cay per epoch and a batch size of 16. We sample 40k triplet
of images each epoch of training. In training, We set wp to
100 for DeepFashion, and 1 for FashionAI and DARN. To
train the baselines on DeepFashion, We follow the descrip-
tions in [6, 14, 19].
Evaluation Tasks and Metrics. We evaluate our pro-
posed method in comparison with the above baselines on
the fine-grained fashion retrieval task. Following the ex-
isting protocol for multi-granularity retrieval as proposed
in MODC [14], the retrieval is prioritized in the class-
specific embedding space, followed by retrieval in the
attribute-specific embedding space. Same as existing works
[6, 14, 19], we employ Mean Average Precision (MAP) and
Recall as the evaluation metrics.

4.3. Experimental Results

In this section, we discuss the experimental results and
ablation study of M3-Net on multi-label attributes and
single-label attributes. Table 2 presents the overall perfor-
mance and the performance on each attribute of baselines
and M3-Net on DeepFashion. Table 3 and Table 4 sum-
marizes the performance on FashionAI and DARN. On all
datasets, we show the ablation study of separately employ-
ing attribute-conditional attention modules (i.e., M3-Neta)
and class-conditional attention modules (i.e., M3-Netc) to
demonstrate the effectiveness of representation learning on
attribute granularity and class granularity.

4.3.1 Quantitative evaluation on multi-label dataset

Table 2 summarizes the performance of fine-grained fash-
ion retrieval on all attributes in DeepFashion. Note that
ASENv2 [19] and ASEN++ [6] report performance on
DeepFashion by treating it as a single-label dataset. To
evaluate the performance in the multi-label setting, we split
DeepFashion following the multi-class labels of each image
in the dataset. The train/validation/test split is shown in Ta-
ble 1. For the retrieval task, the validation set and test set
are further split into the query and candidate sets by 1:4.

DeepFashion is an extremely challenging dataset for
fine-grained fashion retrieval. Therefore, all methods per-
form much worse on DeepFashion than on other bench-
mark datasets Compared with the baselines, the pro-
posed M3-Net consistently achieves the best performance
with a large margin on all evaluation metrics on indi-
vidual attributes and overall. Even when compared with
the state-of-the-art multi-granularity method, MODC, the
proposed M3-Net shows significant improvements over
MODC on MAP@all (70.42%), MAP@100 (57.95%), and
Recall@100 (112.5%). The results demonstrate the efficacy
of the attribute and class-specific representations learned by
M3-Net.
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Model DeepFashion
MAP@all MAP@all MAP@100 Recall@100

Attribute texture fabric shape part style overall overall overall
ASEN [19] 21.03 11.61 14.68 7.81 4.66 12.33 20.60 5.10
ASENv2 [19] 21.86 11.67 14.58 7.93 4.68 12.51 20.55 4.99
ASEN++ [6] 22.20 11.71 14.70 8.15 4.72 12.74 20.79 5.21
MODC [14] 22.26 11.98 14.68 7.96 5.23 12.78 22.21 6.06
M3-Neta 27.37 18.34 22.96 14.66 9.74 19.03 28.14 10.59
M3-Netc 30.09 19.60 25.24 16.43 11.32 20.92 30.58 12.10
M3-Net 30.79 20.20 27.11 17.28 11.61 21.78 35.08 12.88

Table 2. Performance comparison on all attributes of the multi-label dataset, DeepFashion.

Model FashionAI
MAP@all MAP@all MAP@100 Recall@100

Attribute skirt length sleeve length coat length pant length collar design lapel design neckline design neck design overall overall overall
ASEN [19] 64.61 49.98 49.75 65.76 70.30 62.86 52.14 56.42 57.37 64.70 22.77
ASENv2 [19] 65.58 54.42 52.03 67.41 71.36 66.76 60.91 59.58 61.13 67.85 24.14
ASEN++ [6] 66.31 57.51 55.43 68.83 72.79 66.85 66.78 67.02 64.27 70.62 25.30
MODC [14] 74.54 67.48 68.25 77.69 81.11 76.90 77.46 77.10 74.32 80.29 30.26
M3-Neta 73.21 69.58 65.27 78.79 80.80 78.05 77.04 73.40 73.93 81.57 30.48
M3-Netc 74.33 65.91 64.27 78.26 82.00 78.85 74.80 72.39 72.88 82.58 30.77
M3-Net 75.27 70.04 67.90 79.31 82.82 78.58 76.81 75.51 75.04 87.04 32.01

Table 3. Performance comparison on all attributes of the single-label dataset, FashionAI.

Ablation study on M3-Neta, M3-Netc and M3-Net sug-
gests that employing more fine-grained attention on classes
(M3-Netc) performs better than attribute-level attention
alone (M3-Neta). Yet combining attribute-conditional at-
tentions and class-conditional attentions works the best
(M3-Net). It shows that representations learned at the two
granularities are complementary to each other.

Furthermore, we analyze the performance on co-
occurring classes on DeepFashion to evaluate the effective-
ness of M3-Net in capturing the inter-dependencies between
different classes in representation learning. We first calcu-
late the pairwise co-occurrence rates of all classes in the
dataset. Two classes are considered co-occurring if both
are associated with the same image. The range of co-
occurrence rate is [0, 0.03], i.e., the most frequently co-
occurring class pairs appear in 3% of the images. We set
the cut-off at 0.002 (corresponding to 565 co-occurrences),
resulting in 468 class pairs from the 1M class pairs in the
dataset. This gives us 122 unique classes. M3-Net achieves
a MAP@all at 35.61 on this set of classes, which is 63.50%
higher than the average of all classes. We hypothesize that
M3-Net is able to incorporate the inter-dependencies be-
tween these classes into representation learning, thus per-
forming better on them.

4.3.2 Quantitative evaluation on single-label datasets

For the two single-label datasets, FashionAI and DARN,
we follow the same split as in [19]. On both datasets,
we observe similar competence of the proposed M3-Net
in fine-grained fashion retrieval. On FashionAI, M3-Net
achieve the best performance overall on all evaluation met-

class: slitattribute: partimage class: elegantattribute: style

class: contrast trimattribute: partimage class: stretchattribute: fabric

class: drapedattribute: partimage class: fitattribute: shape
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0.8
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elegant

slit

stretch

contrast trim

draped

fit

Figure 3. Two-granularity attentions learned by M3-Net on Deep-
Fashion. The attribute-conditional attention tends to focus on a
wider range of regions in an image, while the class-conditional at-
tention focuses more narrowly on a region relevant to each class.
For instance, row 1: class ”slit” focuses on the dress slit, ”elegant”
focuses on the waist; row 2: ”contrast trim” focuses on the part
with two different colors, ”stretch” focuses on the strap; row 3:
”draped” focuses on the drape decoration, and ”fit” focuses on the
waist. Best viewed in color on a computer screen.

rics (MAP@all, MAP@100, and Recall@100). It also out-
performs the baselines on most individual attributes.

On DARN, we again observe a boost on all evalua-
tion metrics. While baselines perform unsatisfactorily on
“clothes category” and “collar shape”, M3-Net improves
them the most along with improvements on other attributes.
Overall, M3-Net exceeds the best baseline, MODC, on
MAP@all by 16.35%, MAP@100 by 14.59%, and Re-
call@100 by 18.24%. The results of M3-Net on single-label
datasets again demonstrate the effectiveness of the attribute-
specific and class-specific representations. Compared with
MODC, which obtains class-specific representations by di-
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Model DARN
MAP@all MAP@all MAP@100 Recall@100

Attribute clothes category clothes button clothes color clothes length clothes pattern clothes shape collar shape sleeve length sleeve shape overall overall overall
ASEN [19] 36.62 46.01 52.76 56.85 54.89 56.85 34.40 79.95 58.08 52.75 58.72 20.26
ASENv2 [19] 37.97 49.24 52.26 59.13 55.32 59.06 36.86 81.54 58.82 54.29 59.66 20.88
ASEN++ [6] 40.21 50.04 53.14 59.83 57.41 59.70 37.45 83.70 60.41 55.78 61.09 21.51
MODC [14] 49.94 60.75 58.79 66.34 62.24 68.41 45.14 87.41 65.32 62.56 72.16 26.76
M3-Neta 59.16 69.94 68.18 72.58 72.87 76.21 60.22 89.36 71.58 71.06 78.12 30.77
M3-Netc 60.98 70.91 68.52 74.95 74.48 79.15 63.09 90.31 73.00 72.79 81.46 31.64
M3-Net 60.54 70.39 69.52 73.97 74.40 77.83 61.63 90.03 73.94 72.42 82.69 31.34

Table 4. Performance comparison on all attributes of the single-label dataset, DARN.

attribute: texture 
label: print, tribal

Query Top ranked retrieval results

attribute: shape 
label: maxi

attribute: style 
label: miami, heat

attribute: fabric 
label: lace

(b)

M3-Net 

(a)

M3-Net 

MODC

MODC

Query Top ranked retrieval results

Figure 4. (a) single-label and (b) multi-label fashion retrieval by M3-Net and MODC on DeepFashion. Green: true positive retrieval; red:
false positive retrieval. Best viewed in color on a computer screen.

rectly segmenting the attribute-specific representation into
class-specific clusters in the same embedding space, M3-
Net learns separate representation spaces for attributes and
classes and performs better.

Ablation study on FashionAI shows that overall having
attentions on two granularities (M3-Net) performs better
than attentions on either granularity alone (M3-Neta and
M3-Netc). On DARN, M3-Net’s performance is compa-
rable to that of M3-Netc, which only has class-conditional
attention modules. We speculate that this is due to discrim-
inating attributes and classes is less challenging on single-
label datasets than on multi-label attribute datasets.

4.3.3 Qualitative evaluations

Figure 3 visualizes the two-granularity attentions learned
by M3-Net. The attribute-conditional attention tends to fo-
cus on all regions that are likely to be associated with the
attribute. For example, in the first row of Figure 3, the at-
tention of attribute “part” involves areas covering various
parts of the dress such as collar, belt area, and hemline
(second image in the first row). On the contrary, the class-
conditional attention tends to focus on class-specific regions
in the image. For instance, class ”slit” highlights the dress
slit region (third image in the first row). The visualized at-
tention is consistent with our hypothesis.

Figure 4 presents examples of fine-grained fashion re-
trieval results on single-label and multi-label datasets. In

the figure, we compared the results from our proposed M3-
Net with those from MODC (the best-performing base-
line). Figure 4 (a) shows that on single-label retrieval, M3-
Net can better discriminate fine-grained visual features than
MODC, leading to more accurate retrieval results on indi-
vidual classes. Moreover, on multi-label retrieval, M3-Net
is able to retrieve images containing multiple class labels.
For example, when searching an image on attribute ”tex-
ture” with both ”print” and ”tribal” class labels (last exam-
ple in Figure 4), M3-Net accurately retrieves related images,
while MODC retrieves many other printed textures that is
not “tribal”.

5. Conclusion
We have proposed a multi-attribute multi-granularity

multi-label network (M3-Net) for fine-grained fashion anal-
ysis. Our proposed architecture learns both attribute and
class-level representations for a fashion image through a
shared backbone and two sub-networks with attribute and
class conditional attention modules. This design, together
with a multi-granularity loss, allows the network to ef-
fectively learn discriminative representations while captur-
ing the inter-dependencies among various visual elements
in different granularities. Our experiments show that the
proposed M3-Net sets new state-of-the-art performance on
both single-label and multi-label benchmark datasets in the
fine-grained fashion retrieval task.
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