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Figure 1. Illustration of our 3D-Language Pre-training framework. We first semantically align 3D-language features (Sec. 3.2), and then

further enhance their granularity using mutual masked learning (Sec. 3.3). Our learned multi-modal features generalize well across various

downstream tasks, including 3D visual grounding, 3D dense captioning and 3D question answering.

Abstract

3D visual language reasoning plays an important role
in effective human-computer interaction. The current ap-
proaches for 3D visual reasoning are task-specific, and lack
pre-training methods to learn generic representations that
can transfer across various tasks. Despite the encourag-
ing progress in vision-language pre-training for image-text
data, 3D-language pre-training is still an open issue due
to limited 3D-language paired data, highly sparse and ir-
regular structure of point clouds and ambiguities in spa-
tial relations of 3D objects with viewpoint changes. In this
paper, we present a generic 3D-language pre-training ap-
proach, that tackles multiple facets of 3D-language rea-
soning by learning universal representations. Our learn-
ing objective constitutes two main parts. 1) Context aware
spatial-semantic alignment to establish fine-grained corre-
spondence between point clouds and texts. It reduces rela-
tional ambiguities by aligning 3D spatial relationships with
textual semantic context. 2) Mutual 3D-Language Masked
modeling to enable cross-modality information exchange.
Instead of reconstructing sparse 3D points for which lan-
guage can hardly provide cues, we propose masked pro-
posal reasoning to learn semantic class and mask-invariant
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representations. Our proposed 3D-language pre-training
method achieves promising results once adapted to vari-
ous downstream tasks, including 3D visual grounding, 3D
dense captioning and 3D question answering. Our codes
are available at https://github.com/leolyj/3D-VLP

1. Introduction
3D Vision and Language (3D V+L) reasoning aims to

jointly understand 3D point clouds and their textual descrip-

tions. It lies at the intersection of 3D visual understand-

ing and natural language processing, and plays an impor-

tant role in applications e.g., Metaverse, AR/VR and au-

tonomous robots. 3D V+L reasoning has recently gained

significant research interest, with multiple works tackling

3D visual grounding [1, 8, 33, 59], 3D dense captioning

[11, 23, 58] and 3D question answering [3, 51, 54].

Despite promising progress made towards solving 3D vi-

sual reasoning tasks, the existing approaches are highly spe-

cialized and task specific. This is in contrast to multi-modal

reasoning from RGB images, where the dominant approach

is to pre-train a generic model on large scale image-text

paired data, and then adapt this model for multiple down-

stream tasks. The pre-training step enables learning highly

transferable and generic cross-modality representations via
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techniques such as image-text feature alignment [21,41] and

masked signal reconstruction [10,28]. For RGB images, the

transfer learning from pre-trained Vision-Language models

achieves impressive results on numerous downstream tasks

(e.g., image-text retrieval [28, 49], visual question answer-

ing [46,47] and image captioning [17,48]). However, due to

unique challenges posed by irregular and unstructured point

cloud data, 3D-language pre-training to learn a unified rep-

resentation space, that can be transferred across tasks, has

not yet been investigated in the existing literature.

As point clouds have different characteristics from 2D

images, 3D-Language Pre-training (3D-LP) poses multiple

unique challenges: 1) Available 3D-language samples are

limited. Compared to image-text samples that can be web

crawled, the existing pairwise point cloud and language

samples are much scarce. 2) Point clouds are naturally

unstructured. Unlike 2D images having pixels densely ar-

ranged in regular grids, point clouds are highly sparse and

irregularly distributed. 3) The spatial relations between 3D

objects are complex, as they are not restricted to a 2D plane,

and introduce ambiguities with viewpoint changes.

In this paper, we propose a 3D-language pre-training

approach that aims to establish fine-grained interactions

between point clouds and their textual descriptions, thus

learning universal multi-modal features for various 3D V+L

tasks, as illustrated in Fig 1. First, to bridge the distribution

discrepancy between 3D geometric features and their text

semantics, we propose a Context aware Spatial-semantic

Alignment (CSA) strategy (Sec. 3.2). Different from the

global contrastive learning in image-text, we align point

cloud and language features from semantic and contextual

perspectives separately, so that the spatial context between

3D objects and the semantic context in the language are

simultaneously considered to overcome relational ambigu-

ity. We further introduce Mutual 3D-Language Masked

modeling (M3LM) (Sec. 3.3) that reconstructs the masked

parts and enable meaningful cross-modal information ex-

change to enhance the feature of both modality. Due to

the irregular structure and variable (unfixed) number of 3D

points, existing masking methods that reconstruct raw in-

put signal are not suitable to learn effective representation

for point clouds. We propose to reconstruct the semantic

class and high-level features of masked 3D objects by tak-

ing complementary information from language, which gives

the model more meaningful objective than merely recon-

structing the xyz of points. In our approach, we predict

the semantic class of masked 3D objects and reconstruct

momentum-distilled encoded features for the unmasked in-

put. We jointly train the 3D-language model with our

proposed multi-task learning objectives to learn and se-

mantically align multi-modal features that generalize well

across tasks. Through experiments on various downstream

3D V+L tasks, we demonstrate the versatility of our pro-

posed 3D-language pre-training for three different tasks on

ScanRefer [8], Scan2Cap [11] and ScanQA [3] benchmark

datasets. Our main contributions are:

• We propose a pre-training method to learn transfer-

able 3D-language representations to solve 3D visual

grounding, 3D dense captioning and 3D question an-

swering from a unified perspective.

• In order to jointly train point cloud and language

encoders, we propose context-aware 3D-language

alignment and mutual masked modeling strategies,

which ensure that the learned multi-modal features are

semantically-aligned and complement each other.

• We consistently surpass existing task-specific meth-

ods on ScanRefer [8] (+2.1 Acc@0.5), Scan2Cap [11]

(+5.5 CIDEr@0.5) and ScanQA [3] (+1.3 EM@1)

benchmark datasets, achieving new state-of-the-arts.

2. Related Work
2.1. 3D Vision and Language Reasoning

3D Visual Grounding. As one of the earliest investigated

3D V+L task, visual grounding on 3D point clouds has at-

tracted a wide research interest [1, 6, 8, 19, 20, 30, 33, 53, 59,

61]. [8] is the first work to introduce the 3D visual ground-

ing task with ScanRefer dataset, aiming to localize objects

in the scene using language. ReferIt3D [1] also released

two datasets similar to ScanRefer, i.e., Nr3D and Sr3D,

in which object bounding box labels are given and local-

ization is no more required. Most existing methods solve

3D visual grounding by extracting proposals that are then

matched with textual descriptions. Detection-based meth-

ods [6,19,53,61] apply 3D detectors (e.g., VoteNet [39]) to

encode object proposals and match with language through

fusion transformer. Segmentation-based methods [18, 59]

extract object instances by segmentation backbone (e.g.,

PointGroup [22]), and learn the relationships between in-

stance candidates and referring text. Recently [33] pro-

poses a single-stage method 3D-SPS, which progressively

fuses word and point features to select text-relevant key-

points to predict the referring bounding boxes. Different

from above, [20, 57] propose to solve 3D visual grounding

by aligning all mentioned object phrases with correspond-

ing bounding boxes. However, they require extra object

name information for the implementation of their method.

3D Dense Captioning. The captioning task is studied after

3D visual grounding, with the release of Scan2Cap dataset

[11], where a model learns contextual relationships between

object proposals with a graph module and decodes descrip-

tive tokens for each object. [23] improves the graph module

by progressively encoding multi-order relations. To better

utilize 2D knowledge, [58] transfers color and texture from

2D images to 3D proposals in a teacher-student paradigm.
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3D Question Answering. Recently, 3D Question An-

swering (3D-QA) on point clouds has been explored in

[3,34,51,54]. On the ScanQA dataset [3], the 3D-QA task is

defined as predicting the answer text as well as the question-

related 3D bounding box. [3] proposes a transformer-based

network to fuse 3D proposals with the question text embed-

dings and then generate answer from the fused features.

While the above 3D vision-language tasks have wit-

nessed impressive research progress, the developed ap-

proaches are highly specialized and only work for the con-

sidered task. Developing a general-purpose solution capa-

ble of tackling multiple facets of 3D visual-language rea-

soning in a unified manner still remains unresolved. [6]

shows that 3D visual grounding and dense captioning are

mutually beneficial to each other and can be solved jointly.

In this work, we go beyond and develop a generic approach,

where a 3D vision-language model is trained to capture the

intrinsic correlations between point clouds and language, to

learn representations that can transfer across multiple tasks.

2.2. Vision-Language Pre-training

Learning a unified embedding space via Vision-

Language Pre-training (VLP) [10,25,28,32,43] has recently

gained significant attention. ALIGN [21] and CLIP [41] ap-

ply contrastive objectives on massive web-crawled image-

text pairs to obtain a joint embedding space for vision and

language. [27] propose to align paired image and text fea-

tures with contrastive loss and then fuse them for cross-

modal reasoning. Following this approach, [52] proposes

a triple contrastive learning approach to additionally model

intra-modal relationships, and [13] learns a codebook to

bridge the modality gap for better alignment. For RGB

images, these pre-trained models show remarkable perfor-

mance once adapted to various downstream V+L tasks.

Despite astounding progress witnessed in VLP for RGB

images [10,25,28,32,43], learning a unified cross-modality

embedding space for 3D-language remains an open research

problem, largely because of the unique challenges posed

by the lack of paired 3D-language data, sparse and un-

ordered nature of the 3D point clouds, and complex rela-

tionships between objects in 3D where the textual descrip-

tion may change with viewpoints. [60] transfers knowledge

from CLIP [41] to 3D, however, since CLIP uses global

contrastive learning, [60] can only do object-level reason-

ing. We directly pre-train on point clouds and texts to

achieve more fine-grained scene-level understanding.

2.3. Mask-based Representation Learning

Self-supervised learning by reconstructing a masked por-

tion of the input has emerged as a powerful tool across

multiple domains. In the field of natural language pro-

cessing (NLP), BERT [24] and its variants [31] have

achieved remarkable generalization ability to a variety of

tasks through masked language modeling (MLM). Once

extended to visual understanding, masked auto-encoder

(MAE) [15, 35, 36] and BERT-like masked image model-

ing (MIM) [5, 50, 55] have shown their promises. Further,

conditional MLM [10, 28] and masked multi-modal model-

ing [7, 14, 16, 26, 42, 62] have developed masking based re-

construction schemes to learn multi-modal features in VLP.

However, multi-modal masked reasoning is only explored

in the context of RGB images, and not for point clouds. In

this work, we investigate multi-modal masked learning on

language and point clouds to mine mutual complementary

information between 3D geometry and semantics.

3. Methodology
3.1. Model Architecture

As shown in Fig. 2, our model for 3D-language pre-

training mainly consists of three parts: point cloud encoder,

language encoder and cross-modal fusion decoder.

Point cloud encoder. The point cloud encoder is used

to extract object proposal features. We first use VoteNet

[39] with PointNet++ [40] backbone to encode and ex-

tract M object proposals from the input point cloud C ∈
R

N×(3+D), which represents N points with their 3D coor-

dinates and D-dim auxiliary feature (color, normal vectors

etc.) The encoded object proposal features P ∈ R
M×Dp

will be used to predict M 3D bounding-boxes by a detection

head. Motivated by [6], we subsequently feed P ∈ R
M×Dp

into a transformer-based relation module to enhance the

contextual relationships between objects. The resulting en-

hanced proposal features are Fp ∈ R
M×Dp .

Language encoder. We encode the input textual descrip-

tion T = {wi}Li=1 with GloVe [38] to obtain word repre-

sentation W ∈ R
L×300, where L is the number of words

in a sentence. W is then fed into a GRU cell to model

word contextual relationships. We can obtain word features

Fw = {wi}Li=1 ∈ R
L×Dw and sentence feature s ∈ R

Dw .

s is then used to predict the target object class of T .

Cross-modal fusion decoder. The encoded language and

object features are fused through H layers of connected

cross-attention [44] blocks, discussed in Sec. 3.3.

3.2. Context aware Spatial-semantic Alignment

Since the 3D object features and language features are

extracted separately, they reside in their own spaces and di-

rectly fusing them leads to ambiguities. Different from tra-

ditional image-text contrastive learning which only achieves

global feature alignment, 3D point clouds require more fine-

grained cross-modality interaction, due to complex spatial

relations between objects in a 3D scene. To this end, we

propose a context aware spatial-semantic alignment (CSA)

strategy that aligns 3D object and language features from

semantic and contextual perspectives, as shown in Fig. 3.
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Figure 3. Illustration of CSA (Sec. 3.2) module that aligns 3D and

language features from both semantic and contextual perspectives.

Semantic-level Alignment (SA). We align the object pro-

posal features P and word features Fw belonging to the

same semantic category. For instance, given a sentence “the
chair in front of table”, and paired point cloud as input, and

object proposal feature p classified as “Chair”. Then we

align p with the word feature w located in the position of

word “chair”. We apply a contrastive loss on P and Fw to

achieve the semantic-level cross-modality alignment:

LSA = − 1

N

N∑
k=1

Lk∑
i=1

[
log

exp
(
pk ·wk

i /τ
)

∑N
n=1

∑Lk

j=1 exp
(
pk ·wn

j /τ
)
]
,

(1)

where N and Lk are the training batch size and the total

number of words in batch k. pk and wk
i are from a paired

input and they belong to the same semantic class. τ is the

temperature parameter. At this stage, we align the object

proposal feature before attending to its surrounding objects,

which can be considered as the non-contextual alignment.

Next, we introduce our context-level alignment strategy.

Contextual Alignment (CA). During feature encoding, a

relation module and a GRU cell are respectively used to

model the contextual relationship within each modality.

Even though the features of individual objects are semanti-

cally aligned with linguistic features, 3D contextual features

may still introduce ambiguities with linguistic features after

relational learning due to complex spatial relations between

3D objects. Since the contextual words in the sentence de-

scribe the relation of the referring objects, they can provide

cues for the point cloud encoder to learn better spatial con-

text. So we further align the enhanced proposal features Fp

and sentence features s to achieve contextual alignment:

LCA = − 1

N

N∑
k=1

[
log

exp
(
fkp · sk/τ)∑N

n=1 exp
(
fkp · sn/τ)

]
, (2)

where sk is the sentence feature in batch k, and fkp is the

referred object feature from Fp. Our final loss for the CSA

module is given by LCSA = LSA + LCA.

3.3. Mutual 3D-Language Masked Modelling

After aligning object features with corresponding lin-

guistic features, they are fused and then used for joint V+L

reasoning. To enable meaningful bidirectional interaction

between language and point clouds, as shown in Fig. 4, we

propose mutual 3D-language masked modeling (M3LM),

that masks both 3D proposals and text to jointly learn mu-

tual complementary spatial and semantic information.

3D-Language Mutual masking. We jointly mask the pre-

dicted 3D proposals P and the word representations W be-

fore cross-modal fusion. Specifically, we randomly mask

out 75% of the 3D proposals and feed the remaining visible

proposal features P̂ to the transformer encoder of the rela-

tion module. After relational learning, the encoded visible

object features are given by F̂p. For the language, we ran-

domly mask out 20% of words and replace the masked part
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ing cross-modal complementary information.

with the “unk” token to obtain Ŵ. Then after GRU cell,

they are encoded as masked word features F̂w.

Masked Proposal Modeling (MPM). Before feeding F̂p

to the fusion decoder, we concatenate mask tokens M with

the visible object features to obtain the full token sets, sim-

ilar to MAE [15]. The full token sets Ŝp = concat(F̂p,M)
for decoder are also added with positional embeddings ep,

to incorporate the locations of the proposals and masks in

the 3D scene. We calculate positional embedding for each

token by applying a linear layer on its 27-dim predicted 3D

box center and corner coordinates. This preserves the spa-

tial relationship between the mask and visible objects and

enables masked reasoning based on language.

In the cross-modal fusion decoder, the cross-attention

between masked proposal features and word features is cal-

culated to obtain the fused feature F̂pw for all proposals:

F̂pw = CrossAtt
(
Ŝp + ep,Fw,Fw

)
, (3)

where Fw denotes the word features for input text. After the

fusion process, F̂pw is used to predict the semantic class of

the masked objects. However, we notice information bias
exists between input point cloud and text i.e., each of input

text only describes a certain spatial relation about the refer-

ring object in the scene. While predicting masked objects,

the textual description can hardly provide complementary

information if the location of mask is away from the de-

scriptive region. As the correspondence between input text

and the referring object is given, we propose to only calcu-

late loss for the text-relevant masks Mt. Specifically, for

each mask, if the Intersection-over-Union (IoU) between its

predicted box and ground-truth box of the text is higher than

0.25, it is considered as text-relevant. In addition to the se-

mantic class reasoning for text-relevant objects, we also en-

courage all the masks to learn intrinsic representation that

are robust to masking. To this end, we force the masked pro-

posals after relational learning and cross-modal fusion to be

consistent with them in the unmasked branch. Specifically,

the unmasked branch is momentum-updated by the expo-

nential moving average (EMA) on masked branch without

requiring gradient updates, and the full sets of proposals are

fed to it. Then an L1 loss is defined between the output fea-

tures of masked branch and unmasked branch. The MPM

loss includes the Cross-Entropy loss for the text-relevant

mask predictions fp(Mt) and L1 loss for all masks:

LMPM = CE (fp(Mt),Mgt) + L1

(
F̂pw, Ḟpw

)
, (4)

where Mgt are the ground-truth classes for masked objects,

and Ḟpw denotes fused features from the unmasked branch.

Masked Language Modeling (MLM). We also predict the

masked words conditioned on corresponding point cloud

and unmasked part of the sentence. The masked word fea-

tures F̂w are fused with proposal features Fp by:

F̂wp = CrossAtt
(
F̂w,Fp,Fp

)
, (5)

where F̂wp denotes the word features after fusing with pro-

posal feature and is used to predict the vocabulary probabil-

ity fw(F̂w). The MLM loss is calculated as:

LMLM = CE
(
fw(F̂w), yw

)
, (6)

where yw are ground-truth language token labels for masks.

The total loss of mutual 3D-language masked modeling is

given by LM3LM = LMPM + LMLM.

3.4. Training Strategy

We jointly train the point cloud encoder with a detec-

tion loss Ldet as in [6]. For the language encoder, to pre-

dict object class, the language classification loss Llang is

used for supervision. We also include the object-language

matching task to predict which one of the detected bound-

ing boxes matches the textual description, by using a cross-

entropy loss Lmatch. The overall pre-training loss is the

weighted sum of all these losses: Lpre = Ldet+0.3Llang+
0.3Lmatch+5LCSA+0.2LM3LM, where the weights are em-

pirically set to balance the order of magnitude. During fine-

tuning stage, we disable LM3LM and add the task-specific

loss with rest of the Lpre. Note that the cross-modal fusion

decoder is only used for M3LM during pre-training and is

replaced with a light-weight structure as per the final task.

4. Experiments
4.1. Settings and Implementation Details

3D Visual Grounding. We use ScanRefer [8] dataset for

visual grounding evaluations. It includes 51, 583 descrip-

tions of 11, 046 objects, which are from 800 scenes of
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Table 1. Comparison of 3D visual grounding results on ScanRefer [8] dataset. We report accuracy (Acc) under 0.25 and 0.5 IoU, which

is calculated between predicted and ground-truth 3D bounding boxes. Compared with highly specialized methods, our approach achieves

consistent gains across different experimental settings. The best and second best results are in bold and underlined.

Method Publication Data
Unique Multiple Overall

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Validation Set
ScanRefer [8] ECCV2020 3D only 67.64 46.19 32.06 21.26 38.97 26.10
InstanceRefer [59] ICCV2021 3D only 77.45 66.83 31.27 24.77 40.23 32.93
3DVG-Transformer [61] ICCV2021 3D only 77.16 58.47 38.38 28.70 45.90 34.47
3DJCG [6] CVPR2022 3D only 78.75 61.30 40.13 30.08 47.62 36.14
3D-SPS [33] CVPR2022 3D only 81.63 64.77 39.48 29.61 47.65 36.43
Ours 3D only 79.35 62.60 42.54 32.18 49.68 38.08
ScanRefer [8] ECCV2020 2D+3D 76.33 53.51 32.73 21.11 41.19 27.40
InstanceRefer [59] ICCV2021 2D+3D 77.45 66.83 31.27 24.77 40.23 32.93
3DVG-Transformer [61] ICCV2021 2D+3D 81.93 60.64 39.30 28.42 47.57 34.67
3DJCG [6] CVPR2022 2D+3D 83.47 64.34 41.39 30.82 49.56 37.33
3D-SPS [33] CVPR2022 2D+3D 84.12 66.72 40.32 29.82 48.82 36.98
D3Net [9] ECCV2022 2D+3D - 70.35 - 30.05 - 37.87
Ours 2D+3D 84.23 64.61 43.51 33.41 51.41 39.46

Online Benchmark
ScanRefer [8] ECCV2020 2D+3D 68.59 43.53 34.88 20.97 42.44 26.03
3DVG-Transformer [61] ICCV2021 2D+3D 75.76 55.15 42.24 29.33 49.76 35.12
InstanceRefer [59] ICCV2021 3D only 77.82 66.69 34.57 26.88 44.27 35.80
BUTD-DETR [20] ECCV2022 3D only 78.48 54.99 39.34 24.80 48.11 31.57
3DJCG [6] CVPR2022 2D+3D 76.75 60.59 43.89 31.17 51.26 37.76
D3Net [9] ECCV2022 2D+3D 79.23 68.43 39.05 30.74 48.06 39.19
Ours 2D+3D 81.37 62.41 45.44 33.17 53.49 39.72

ScanNet [12]. To jointly evaluate the performance of de-

tection and grounding, we report the grounding accuracy

with different IoU scores s between predicted and ground

truth bounding boxes, denoted as Acc@sIoU. Following

previous works [6, 8, 33, 59, 61], we use Acc@0.25IoU and

Acc@0.5IoU as the main evaluation metrics for 3D visual

grounding. The accuracy is reported on “unique” and “mul-

tiple” categories. If there is only a single object of a class in

the scene, it is regarded as “unique”, otherwise “multiple”.

We also report overall accuracy of all samples.

3D Dense Captioning. We follow Scan2Cap [11] for the

evaluations on dense captioning. Scan2Cap dataset is based

on ScanRefer [8], with descriptions longer than 30 tokens

truncated, and two special tokens [SOS] and [EOS] added

to the start and end of each description. We use the metrics

CIDEr [45], BLEU [37], METEOR [4] and ROUGE-L [29],

which are briefly denoted by C, B-4, M and R, respectively.

Similar to grounding, the above metrics m for captioning

are also calculated with different IoU scores as m@kIoU =
1
N

∑N
i=1 miui, where ui ∈ {0, 1} is set to 1 if the IoU score

for the i-th detected box is greater than k, and 0 otherwise.

3D Question Answering. ScanQA [3] is a recently pro-

posed dataset for 3D question answering on point clouds.

It collects 41, 363 questions and 58, 191 free-form answers

for the ScanNet [12]. We follow [3] and adopt exact

matches EM@K as the evaluation metric, which means

the percentage of predictions in which the top-K predicted

answers match with any one of the ground-truth answers.

Since some of the questions can be answered with multiple

expressions, we also report captioning metrics CIDEr [45],

BLEU [37], METEOR [4], ROUGE-L [29] and SPICE [2].

Implementation Details. All experiments are conducted

using a single NVIDIA A10 24GB GPU. We pre-train our

model on ScanRefer [8] dataset for 150 epochs, and then

fine-tune it for 100, 50 and 50 epochs, respectively, for 3D

visual grounding, 3D dense captioning and 3D question an-

swering. We follow [6, 8, 11, 33] to evaluate grounding and

captioning using “3D only” and “2D + 3D” inputs, where

“3D only” means the input includes “xyz + normals + RGB”

and “2D + 3D” means “xyz + normals + multiviews”, where

“multiviews” are the 128-dim image features extracted as

in [8]. See Appendix-A for other details.

4.2. Experimental Results

3D Visual Grounding. Tab. 1 compares different ap-

proaches on 3D visual grounding. We observe that the over-

all accuracies (i.e., Acc@0.25 and Acc@0.5) of our method

are higher than existing methods. Compared with 3DJCG

[6], we achieve ∼2.2% and 2.0% improvement on the Scan-

Refer online benchmark in terms of overall Acc@0.25 and

Acc@0.5 respectively. Consistent gains are seen on the val-

idation set. Notably, our gains are more pronounced for

“multiple” and “overall” than “unique”, suggesting that our

approach understands complex 3D scenes better, benefiting

from the well-explored cross-modal contextual and mutual

complementary information during the pre-training stage.
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Table 2. Comparison of 3D dense captioning results on Scan2Cap [11] dataset. All the listed methods adopt VoteNet [39] as the 3D

detector. We report CIDEr (C) [45], BLEU-4 (B-4) [37], METEOR (M) [4] and ROUGE-L (R) [29] under 0.25 and 0.5 IoU of predicted

bounding box. The best and second best results are in bold and underlined.

Method Publication Input C@0.25 B-4@0.25 M@0.25 R@0.25 C@0.5 B-4@0.5 M@0.5 R@0.5

Scan2Cap [11] CVPR2021 3D only 53.73 34.25 26.14 54.95 35.20 22.36 21.44 43.57
X-Trans2Cap [58] CVPR2022 3D only 58.81 34.17 25.81 54.10 41.52 23.83 21.90 44.97
MORE [23] ECCV2022 3D only 58.89 35.41 26.36 55.41 38.98 23.01 21.65 44.33
3DJCG [6] CVPR2022 3D only 60.86 39.67 27.45 59.02 47.68 31.53 24.28 51.08
Ours 3D only 64.09 39.84 27.65 58.78 50.02 31.87 24.53 51.17
Scan2Cap [11] CVPR2021 2D + 3D 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.48
X-Trans2Cap [58] CVPR2022 2D + 3D 61.83 35.65 26.61 54.70 43.87 25.05 22.46 45.28
MORE [23] ECCV2022 2D + 3D 62.91 36.25 26.75 56.33 40.94 22.93 21.66 44.42
D3Net(CIDEr+lis.) [9] ECCV2022 2D + 3D - - - - 47.32 24.76 21.66 43.62
3DJCG [6] CVPR2022 2D + 3D 64.70 40.17 27.66 59.23 49.48 31.03 24.22 50.80
Ours 2D + 3D 70.73 41.03 28.14 59.72 54.94 32.31 24.83 51.51

Table 3. Comparison of 3D question answering results on ScanQA [3] dataset. We report EM@1 and EM@10 with additional captioning

metrics to jointly reflect the accuracy of the predicted answer. The best and second best results are in bold and underlined.

Method Split EM@1 EM@10 BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr SPICE

VoteNet [39] + MCAN [56]

Validation set

17.33 45.54 28.09 16.72 10.75 6.24 29.84 11.41 54.68 10.65
ScanRefer [8] + MCAN [56] 18.59 46.76 26.93 16.59 11.59 7.87 30.03 11.52 55.41 11.28
ScanQA [3] 20.28 50.01 29.47 19.84 14.65 9.55 32.37 12.60 61.66 11.86
Ours 21.65 50.46 30.53 21.33 16.67 11.15 34.51 13.53 66.97 14.18
VoteNet [39] + MCAN [56]

Test w/ objects

19.71 50.76 29.46 17.23 10.33 6.08 30.97 12.07 58.23 10.44
ScanRefer [8] + MCAN [56] 20.56 52.35 27.85 17.27 11.88 7.46 30.68 11.97 57.36 10.58
ScanQA [3] 23.45 56.51 31.56 21.39 15.87 12.04 34.34 13.55 67.29 11.99
Ours 24.58 55.97 33.15 22.65 16.38 11.23 35.97 14.16 70.18 12.71
VoteNet [39] + MCAN [56]

Test w/o objects

18.15 48.56 29.63 17.80 11.57 7.10 29.12 11.68 53.34 10.36
ScanRefer [8] + MCAN [56] 19.04 49.70 26.98 16.17 11.28 7.82 28.61 11.38 53.41 10.63
ScanQA [3] 20.90 54.11 30.68 21.20 15.81 10.75 31.09 12.59 60.24 11.29
Ours 21.56 53.89 31.48 23.56 19.62 15.84 31.79 13.13 63.40 12.53

On the “unique” category, the methods [9, 59] using Point-

Group [22] achieve higher Acc@0.5, as it predicts better

bounding boxes. However, our method achieves the best

performance of all VoteNet-based approaches.

3D Dense Captioning. For 3D dense captioning, we add

a captioning head following 3DJCG [6] and fine-tune the

network with additional captioning loss. From results in

Tab. 2, our method outperforms other approaches that

adopt VoteNet as the detector. Notably, we get signifi-

cant improvements of CIDEr [45] for 3D dense captioning.

We achieve 6.0% and 5.4% improvement in C@0.25 and

C@0.5 compared with 3DJCG [6], suggesting that our gen-

erated descriptions are more in line with human consensus.

It indicates that compared with the joint training strategy of

3DJCG, our proposed pre-training strategy helps the model

learn generic 3D-language features, resulting in more accu-

rate and consensual textual descriptions for 3D point clouds.

3D Question Answering. To evaluate our pre-trained

model on 3D question answering, we follow [3] to add

a 3D-language fusion module with an answer classifica-

tion head to replace the cross-modal fusion module. In

Tab. 3, the quantitative comparison shows our method sur-

passes existing models on both EM and captioning met-

rics. Note that the textual input of 3D-QA is a question,

which is distinct from the referring expression of ground-

ing. Our method still benefits the 3D question-answering

task as the learned multi-modal features after pre-training

are semantically-aligned and enhanced in granularity.

4.3. Ablation Study

Effectiveness of pre-training tasks. We analyze con-

tributions of different pre-training objectives in Tab. 4.

Here, “train from scratch” means directly training on the

downstream task without pre-training. We gradually add

our objectives i.e. semantic-level alignment (SA), contex-

tual alignment (CA), masked proposal modeling (MPM)

and masked language modeling (MLM). We enumerate the

main metrics for 3D visual grounding, 3D dense captioning

and 3D question answering. Tab. 4 shows the proposed pre-

training objectives progressively improve downstream per-

formance. Notably, MPM and SA achieve the most signif-

icant gains on Acc@0.25 (+0.94) and Acc@0.5 (+1.09) re-

spectively, which indicate the effectiveness of our alignment

and masked modeling in 3D-LP. Fig. 5 qualitatively shows

our pre-training yields more accurate localization, caption

and answer results than training from scratch.

Reconstruction objective in MPM. In the MPM of mutual

3D-language masked modeling (Sec. 3.3), we predict the
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Table 4. Ablation on our proposed pre-training objectives. We compare training from scratch by progressively adding different pre-training

objectives to evaluate their effect. The performances of each method on three downstream tasks are shown.

Method
CSA M3LM 3D Visal Grounding 3D Dense Captioning 3D-QA

SA CA MLM MPM Acc@0.25 Acc@0.5 C@0.5 B-4@0.5 M@0.5 R@0.5 EM@1 EM@10

Train from scratch 50.04 37.01 49.17 30.50 24.06 50.07 20.32 49.41
+ SA � 50.19 38.10 51.26 30.50 24.48 50.75 20.86 50.29
+ CA � 50.22 37.63 51.59 30.23 24.32 50.29 20.78 50.01
+ CSA � � 50.33 38.20 52.11 30.42 24.53 50.19 21.01 50.34
+ CSA + MLM � � � 50.81 38.91 51.25 31.13 24.42 50.96 21.28 50.46
+ CSA + MPM � � � 51.27 39.12 53.59 30.97 24.54 51.08 21.24 50.49
+ CSA + M3LM � � � � 51.41 39.46 54.94 32.31 24.83 51.51 21.65 50.54

(a) 3D visual grounding on ScanRefer [8] (b) 3D dense captioning on Scan2Cap [11]

Ground Truth
This is a blue and white picture. 
The picture is above the sink.

Ours w/ pre-training
This is a white picture. It is 
above the sink.

Train from scratch
This is a white soap dispenser. 
It is above the sink.

(c) 3D question answering on ScanQA [3]

Question:
What is next to a black 
couch in a room?

Ground Truth
coffee table

Ours w/ pre-training
coffee table

Train from scratch
couch

Description:
The chair is the only chair 
in the middle of the room. 

Description:
This is a rectangular tv. It 
is above a small thin table.

Figure 5. Visual comparison on three downstream 3D V+L tasks. Blue, red and green represent the ground-truth label, results of training

from scratch and ours with complete pre-training objectives, respectively.

Table 5. Ablation on reconstruction objectives for MPM.

Reconstruction objective Acc@0.5

None 38.20
Raw points (xyz) 38.18
Raw points (xyz + RGB) 38.35
Proposal class 38.52
Text-relevant proposal class 38.85
Text-relevant proposal class + masked feature 39.12

38.91
38.69

39.06
39.29 39.46

38.93
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Figure 6. Performance curve with different proposal mask ratio.

semantic class of text-relevant masked proposals and con-

strain the consistency of fused feature after masking. And it

is different from the common approaches (e.g., MAE [15])

that reconstruct raw pixel value of input image. We con-

duct experiments to compare the effects of different recon-

struction objectives for 3D point clouds. As shown in Tab.

5, reconstruction of raw points (i.e. xyz or xyz + RGB, see

Appendix-A for implementation details) leads to unsatisfac-

tory results, while reconstruction of semantic class is ben-

eficial, indicating our MPM is more suitable for unstruc-

tured point clouds. With the additional text-relevant filter-

ing strategy and momentum-distilled masked feature recon-

struction, our method achieves the best performance.

Influence of mask ratio. The ratio of masked tokens in full

token sets is an important parameter in mask-based repre-

sentation learning. Fig. 6 illustrates the trend in Acc@0.5

with different proposal mask ratio Rp. We found the fine-

tuning performance benefits from relative high proposal

mask ratio, and the best result is obtained in Rp = 75%. We

analyse it is because the large information redundancy in

predicted proposals since an object can be encoded by mul-

tiple proposals. However, when Rp is too large (> 75%),

the performance drops as the visible proposals are too few.

5. Conclusion
In this work, we present a 3D point cloud and lan-

guage pre-training framework to learn universal representa-

tion that transfers well across multiple 3D V+L tasks. Our

method jointly trains point cloud and language encoders

with context-aware alignment and mutual masked modeling

to achieve fine-grained 3D-language interaction. With ex-

tensive experiments, we verify the effectiveness of our pro-

posed method. And the learned multi-modal 3D-language

features, once evaluated on multiple 3D V+L benchmarks,

consistently surpass existing task-specific methods. In

the future work, with the availability of large-scale 3D-

language data, we will explore the scalability and and cross-

domain generalization of our approach.
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