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Abstract

The exclusive properties of RAW data have shown great
potential for low-light image enhancement. Neverthe-
less, the performance is bottlenecked by the inherent lim-
itations of existing architectures in both single-stage and
multi-stage methods. Mixed mapping across two differ-
ent domains, noise-to-clean and RAW-to-sRGB, misleads
the single-stage methods due to the domain ambiguity.
The multi-stage methods propagate the information merely
through the resulting image of each stage, neglecting the
abundant features in the lossy image-level dataflow. In this
paper, we probe a generalized solution to these bottlenecks
and propose a Decouple aNd Feedback framework, abbre-
viated as DNF. To mitigate the domain ambiguity, domain-
specific subtasks are decoupled, along with fully utilizing
the unique properties in RAW and sRGB domains. The fea-
ture propagation across stages with a feedback mechanism
avoids the information loss caused by image-level dataflow.
The two key insights of our method resolve the inherent
limitations of RAW data-based low-light image enhance-
ment satisfactorily, empowering our method to outperform
the previous state-of-the-art method by a large margin with
only 19% parameters, achieving 0.97dB and 1.30dB PSNR
improvements on the Sony and Fuji subsets of SID.

1. Introduction
Imaging in low-light scenarios attracts increasing atten-

tion, especially with the popularity of the night sight mode
on smartphones and surveillance systems. However, low-
light image enhancement (LLIE) is a challenging task due
to the exceptionally low signal-to-noise ratio. Recently,
deep learning solutions have been widely studied to tackle
this task in diverse data domains, ranging from sRGB-based
methods [14,15,21,40] to RAW-based methods [2,7,35,47].
Compared with sRGB data, RAW data with the unpro-
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Figure 1. Thumbnail of different RAW-based low-light image en-
hancement methods. (a) Single-stage method. (b) Multi-stage
method with intermediate supervision. (c) The proposed DNF.

cessed signal is unique in three aspects that benefit LLIE:
1) the signal is linearly correlated with the photon counts
in the RAW domain, 2) the noise distributions on RAW im-
ages are tractable before the image signal processing (ISP)
pipeline [33], and 3) the higher bit depth of RAW format
records more distinguishable low-intensity signals.

The pioneering work SID [2] proposed a large-scale
paired dataset for RAW-based LLIE, igniting a renewed
interest in data-driven approaches. As shown in Fig. 1,
one line of work [2, 5, 12, 13, 22, 42] focuses on designing
single-stage network architectures, and another [4,7,35,47]
exploits the multi-stage networks for progressive enhance-
ment. Despite the great performance improvement, both
architectures are still bottlenecked by inherent limitations.
First, current single-stage methods force neural networks to
learn a direct mapping from noisy RAW domain to clean
sRGB domain. The mixed mapping across two different
domains, noisy-to-clean and RAW-to-sRGB, would mis-
lead the holistic enhancement process, leading to the do-
main ambiguity issue. For example, the tractable noise in
RAW images would be mapped to an unpredictable distri-
bution during color space transformation. Therefore, shift-
ing colors and unprocessed noises inevitably appear in the
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final results. Second, existing multi-stage methods com-
pose the pipeline by cascaded subnetworks, each of which
is responsible for gradual enhancement based on the out-
put image of the last stage. Under their designs with the
image-level dataflow, only images are propagated forward
across multiple stages, and the later stage only obtains in-
formation from the result of the previous stage. Meanwhile,
every subnetwork in each stage may incur information loss
due to the downsampling operation or the separate objective
function [41]. Consequently, the suboptimal performance is
bound up with the lossy image-level dataflow. The error is
propagated, accumulated, and magnified along with stages,
finally failing to reconstruct the texture details.

To exploit the potential of RAW images for LLIE, a gen-
eralized pipeline is expected, which transcends the above
two limitations. Specifically, neural networks ought to uti-
lize the aforementioned merits in different domains [7],
rather than being confused by the domain ambiguity. Ac-
cording to the unique properties of the RAW and sRGB
domains, it is essential to decouple the enhancement into
domain-specific subtasks. After exploring the linearity and
tractable noise in the RAW domain, the color space trans-
formation from RAW domain to sRGB domain can be per-
formed deliberately without noise interference. Besides,
the pipeline cannot hinder communication across stages, in-
stead of the image-level dataflow that merely allows a small
portion of lossy information to pass through. Due to the di-
verse subtasks, the intermediate feature of each level tends
to be complementary to each other [20, 46]. Meanwhile,
multi-scale features preserve texture and context informa-
tion, providing additional guidance for later stages [41].
Hence, the features in different stages are required to prop-
agate across dataflow, aggregating the enriched features and
sustaining the intact information. The domain-specific de-
coupling, together with the feature-level dataflow, facilitates
the learnability for better enhancement performance and re-
tains the method’s interpretability.

Based on these principles, we propose a Decouple aNd
Feedback (DNF) framework, with the following designs
tailored for RAW-based LLIE. The enhancement process is
decoupled into two domain-specific subtasks: denoising in
the RAW domain [30, 33, 45, 48] and the color restoration
into the sRGB domain [8, 28, 39], as shown in Fig. 1(c).
Under the encoder-decoder architecture commonly used in
previous works [27], each module in the subnetwork is de-
rived from the exclusive properties of each domain: the
Channel Independent Denoising (CID) block for RAW de-
noising, and the Matrixed Color Correction (MCC) block
for color rendering. Besides, instead of using the inaccurate
denoised RAW image, we resort to the multi-scale features
from the RAW decoder as denoising prior. Then, the fea-
tures are flowed into the shared RAW encoder by proposed
Gated Fusion Modules (GFM), adaptively distinguishing

the texture details and remaining noise. After the Denois-
ing Prior Feedback, signals are further distinguished from
noises, yielding intact and enriched features in the RAW do-
main. Benefiting from the feature-level dataflow, a decoder
of MCC blocks could efficiently deal with the remaining
enhancement and color transformation to sRGB domain.

The main contributions are summarized as follows:
• The domain-specific task decoupling extends the uti-

lization of the unique properties in both RAW and
sRGB domains, avoiding domain ambiguity.

• The feature-level dataflow empowered by the Denois-
ing Prior Feedback reduces the error accumulation and
aggregates complementary features across stages.

• Compared with the previous state-of-the-art method,
the proposed method gains a significant margin
improvement with only 19% parameters and 63%
FLOPs, e.g. 0.97dB PSNR improvement on the Sony
dataset of SID and 1.30dB PSNR improvement on the
Fuji dataset of SID.

2. Related Work

2.1. RAW-based Low-Light Image Enhancement

RAW images have been widely explored for image en-
hancement under extremely low-light conditions, owing to
their unique properties, as we mentioned in Sec. 1. As
shown in Fig. 1, RAW-based methods generally involve
two categories by whether there is intermediate supervi-
sion: single-stage and multi-stage. Single-stage meth-
ods [2, 5, 12, 13, 22, 42] intend to force the deep neural
network to learn a direct mapping from noisy RAW do-
main to clean sRGB domain. Multiple attempts have been
adopted for better performance, including similarity and
perceptual loss [42], residual learning [22], multi-scale fea-
tures [5], and lightweight [12, 13]. However, the above
single-stage methods often fail to recover texture details due
to the domain ambiguity. Multi-stage methods [4,7,35,47]
are raised for solving the limitation of the single-stage
method. With intermediate supervision on the sRGB do-
main, EEMEFN [47] and LDC [35] reconstructed detail
in the second stage. Intermediate supervision on different
domains is used for different purposes, e.g. RAW domain
for decoupling [7], monochrome domain for low-light in-
formation complementation [4]. However, all the existing
multi-stage methods share the same architecture, i.e. cas-
caded encoder-decoders [27]. Their image-level dataflow
induces an error accumulation across stages. Our proposed
method differs from existing methods in two aspects. 1)
A domain-specific decoupled architecture is employed for
fully utilizing the properties of RAW and sRGB format. 2)
A feature-level feedback architecture is employed to handle
the error accumulation of the image-level dataflow.
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Figure 2. Overview of the proposed DNF. Our DNF contains three main components: 1) an RAW encoder and an RAW decoder that
performs the denoising in the RAW domain with auxiliary supervision on the RAW image output, 2) gated fusion modules (GFMs) that
handle the feedback features, and 3) an sRGB decoder that performs color space transformation and outputs the final result.

2.2. Decouple Mechanism

Decouple mechanism aims to divide the original task
into several simpler subtasks, then conquer them explic-
itly. With proper decoupling, neural network can easier
converge, resulting in better performance. Li et al. [18]
decoupled the extrapolation task into bounding-box lay-
out generation, segmentation layout generation, and im-
age generation. Reasonable decoupling reduced the domain
gap between text and image by two footholds, bounding-
box and segmentation layout. Recent works on inpaint-
ing [16, 25, 26] aim to decouple the inpainting task into
structure and texture reconstruction for a better result. In
high-level task [11], decoupling the domain adaptation task
into feature distribution alignment and segmentation gains a
performance improvement. We implement this mechanism
through domain-specific task decoupling, which decouples
the LLIE task into RAW denoising and color restoration.

2.3. Feedback Mechanism

The feedback mechanism enables the network to access
the grasp from previous states. This idea has been applied
in many tasks, e.g. classification [37], super-resolution [17,
19], and point cloud completion [36]. With the feedback
mechanism involved, Li et al. [19] employed a curriculum
learning strategy for gradual restoration. Yan et al. [36] in-
tended to enrich the low-resolution features with the high-
resolution ones using feedback mechanism. All the existing
methods applied the feedback mechanism for progressively
fulfilling a sole task, which differs from our method. Our
feedback mechanism enables our network to communicate
between two different subtasks, also in diverse domains.

3. Methodology

As shown in Fig. 2, the proposed decouple and feedback
framework consists of two stages, RAW denoising and color
rendering, to progressively enhance the low-light RAW im-
ages. Given an input image Xraw, after multiplying the
pre-defined amplification ratio [2], the amplified image X
is first denoised by the encoder Eraw and decoder Draw

in the RAW domain. Then, instead of using the inaccurate
Ŷraw for color rendering, we feed the denoising features
Fdn from Draw back to E′

raw, further distinguishing sig-
nals with denoising priors, and composing enriched features
in RAW domain. Finally, the sRGB decoder Drgb takes the
multi-scale features in RAW domain to render the final out-
put Ŷrgb in the sRGB domain.

Specifically, a shared encoder Eraw and two decoders
(Draw and Drgb) are specially designed for the subtasks
decoupled by Domain-Specific Task Decoupling with task-
specific blocks (Sec. 3.1). The Channel Independent De-
noising (CID) block is introduced to learn the tractable and
independent noise distribution in different color channels
in the RAW domain. In accordance with the definition of
the color space, a Matrixed Color Correction (MCC) block
accomplishes the remaining enhancement into the sRGB
domain using the global matrix transformation. Besides,
we incorporate a Denoising Prior Feedback mechanism to
avoid error accumulation across stages. With the denoising
features Fdn extracted from the RAW decoder, the RAW
encoder enriches the shallow features with high-frequency
information. Furthermore, a Gated Fusion Module (GFM)
is proposed with gated mechanism [17] for adaptively ex-
ploring the details buried in the noise (Sec. 3.2).
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Figure 3. Detailed architectures of proposed task-specific blocks and the fusion module: (a) Channel-Independent Denoising (CID) Block,
(b) Matrixed Color Correction (MCC) Block, and (c) Gated Fusion Module (GFM).

3.1. Domain-Specific Task Decoupling
We propose Domain-Specific Task Decoupling for han-

dling the domain ambiguity caused by the mixed mapping
of noisy-to-clean and RAW-to-sRGB. The chasm between
noisy RAW and clean sRGB domain makes it difficult for
the network to learn the direct mapping across the two do-
mains. Thus, we propose to involve intermediate supervi-
sion on clean RAW domain between the chasm for easing
the difficulty in directly learning the mixed mapping. By the
intermediate supervision on clean RAW domain, we can: 1)
decouple the enhancement into RAW denoising and color
restoration, 2) fully utilize the property, that is, noise dis-
tribution is tractable on RAW images for denoising, and 3)
reduce the noise interference during color restoration, re-
sulting in less color shifting.
Denoising in RAW Domain. As shown in Fig. 2, we
stack multiple channel-independent denoising (CID) blocks
to implement the RAW encoder Eraw and the RAW decoder
Draw. The design of a CID block is based on the follow-
ing two prior knowledge: 1) low-light images with RAW
format suffer from the signal-independent noise which fol-
lows a zero-mean distribution [9, 33], and 2) the noise dis-
tribution tends to be independent across channels as the
signals of different channels are inherently less correlated
in RAW domain [24, 34]. Thus, we need burst observa-
tions on nearly the same signals (adjacent pixels) to remove
the interference of the zero-mean noise. Also, preventing
channel-wise information exchange during denoising is in-
dispensable for handling channel-independent noise distri-
bution. According to the above discussions, we introduce
depth-wise convolution with a large kernel for denoising in
the CID block. The detailed structure of the CID block is
shown in Fig. 3 (a). To be specific, for the input feature
Fin, the output feature Fout after the channel-independent
denoising block can be formulated as:

Fout = MLP(DConv7(Fin)) + Fin, (1)

where DConv7 is a depth-wise convolution with 7 × 7 ker-
nels. MLP is implemented by two point-wise convolutional
layers and a GELU [6] non-linearity function. Also, a resid-
ual switch is set to perform two different functionalities
with a weight-sharing CID block, detailed in Sec. 3.2.
Color Correction for RAW-to-sRGB. Matrix transfor-
mation is commonly employed in the canonical ISP
pipelines [23]. Due to the globally shared settings, such
as environmental illumination and color space specifica-
tions, the colors of an image are mainly enhanced or con-
verted to another color space through a channel-wise ma-
trix transformation. Following this principle, we intro-
duce a Matrixed Color Correction (MCC) block to perform
global color enhancement as well as local refinement, as
shown in Fig. 3 (b). For the sRGB decoder Drgb, we stack
multiple MCC blocks for color correction. The design of
this block benefits from recent advances in transposed self-
attention [38]. The global receptive field and channel-wise
operation of it fits color correction in canonical ISP well.
Given the input source feature Fsource ∈ RC×H×W , the
vectors of query Q ∈ RC×HW , key K ∈ RC×HW , and
value V ∈ RC×HW are first generated through the projec-
tion with a 1 × 1 convolutional layer followed by a 3 × 3
depth-wise one and a flatten operation. Then, the transfor-
mation matrix M ∈ RC×C is obtained by matrix multipli-
cation. This procedure can be formulated as:

Q,K, V = Flatten(DConv3(PConv(Fsource))), (2)

M = Softmax(Q ·KT /λ), (3)

where a scaling coefficient λ is applied for numerical sta-
bility. Then, the color vector V is transformed by the ma-
trix M , performing color space conversion in feature-level.
The target feature after color transformation can be obtained
by Ftarget = M · V . As a complement to the global ma-
trix transformation, we use a depth-wise convolution and a
point-wise convolution to refine the local details further.

18138



3.2. Denoising Prior Feedback

In previous RAW-based methods [4, 7, 35, 47], a por-
tion of high-frequency content is erroneously identified as
noises in the process of enhancement, severely deteriorat-
ing the final results with detail loss and resulting in a lossy
dataflow. To avoid the lossy image-level dataflow of ex-
isting multi-stage methods, we propose a Denoising Prior
Feedback mechanism with feature-level information propa-
gating. We denote Fdn = {F 1

dn, F
2
dn, ..., F

L
dn} as a set of

denoising features extracted from the RAW decoder Draw,
where L denotes the number of stages. Each element of
Fdn mainly contains the information of the final noise es-
timation at different scales in the RAW domain. Specif-
ically, these features make noises more distinguished and
serve as a guidance for further denoising. Through rerout-
ing the set of denoising features Fdn to the corresponding
stages of the RAW encoder with multiple feedback con-
nections [1, 19, 29], the encoder gradually generates better
denoising features with the last estimation for further en-
hancement. Thus, the sRGB decoder Drgb can concentrate
more on color correction. The feedback pipeline is shown
in Fig. 2 and can be formulated as:

Fdn = Draw(Eraw(X)), Frdn = E′
raw(X,Fdn), (4)

where Frdn denotes the refined denoising feature that will
be forwarded to the sRGB decoder. E′

raw denotes the RAW
encoder that not only contains the weights of Eraw but is
equipped with L gated fusion modules (GFMs). Each GFM
is responsible for handling one feedback feature from Fdn.
Gated Fusion Modules. The GFM is designed to adap-
tively fuse the feedback noise estimation with initial de-
noising features with a gated mechanism [17]. During fea-
ture gating, we expect that the helpful information is adap-
tively selected and merged along both spatial and channel
dimensions. For efficiency, we use a point-wise convolution
and a depth-wise convolution [3] to aggregate the channel
and local content information, respectively. Then, we split
the mixed feature along the channel dimension into two
chunks, i.e., F l

gate and F l
con. After activated by a GELU

non-linearity function, F l
gate gates F l

con through point-wise
multiplication. We achieve both spatial and channel adapt-
ability by this gating mechanism. The detailed structure of
the GFM is shown in Fig. 3 (c). The operations at the l-th
(l ∈ {1, 2, ..., L}) stage can be formulated as:

F l
gate, F

l
con = DConv3(PConv([F l

raw, F
l
dn])), (5)

F l
fuse = PConv(F l

con ⊙ GELU(F l
gate)) + F l

raw, (6)

where DConv3 and PConv represent depth-wise convolution
with the kernel of 3 × 3 and a point-wise convolution, re-
spectively. ⊙ denotes the hadamard product. F l

raw is the
feature obtained after the l-th upscaling layer in the origi-
nal RAW encoder. F l

f is the corresponding fused feature.

Color Restoration StageRAW Denoising Stage

w
 R

SM
w

/o
 R

SM

Figure 4. Feature visualization of the shared RAW encoder with
or without RSM (Zoom-in for best view).

A point-wise convolution performs channel mixing on this
fused feature. The mixed feature is fed to the next CID
block in the RAW encoder for further refinement.
Residual Switch Mechanism. We only keep the global
shortcut at the denoising stage in RAW domain for better
denoising [22, 43], while removing it at the color restora-
tion stage to avoid the ambiguous connection between noisy
RAW domain and clean sRGB domain, as shown in Fig. 2.
Thus, the encoder is required to perform noise estimation
when denoising, however, to reconstruct the signal during
color restoration. Toward the two contradicting functional-
ities in a single encoder, we propose a simple yet effective
Residual Switch Mechanism (RSM), as shown in Fig. 3 (a),
empowering the CID blocks in the shared RAW encoder
to yield two contradict features: noise and signal. At the
denoising stage with global residual connection, the local
residual shortcuts are switched off to estimate the noise.
On the contrary, the local residuals are triggered on at the
rendering stage, counteracting the noise with the original
feature on the shortcut, and finally reconstructing the sig-
nal. As shown in Fig. 4, the CID block of the shared RAW
encoder is able to yield two different features at differ-
ent stages with RSM. However, without RSM, the weight
sharing CID block failed to distinguish noise and signal at
the color restoration stage, resulting in ambiguous features.
The remaining noise bottlenecks the color correction proce-
dure and introduce the domain ambiguity again.

3.3. Training Objectives

To sequentially fulfill the RAW denoising and color
restoration subtasks decoupled by the domain-specific task
decoupling, we introduce two different supervision on dif-
ferent domains, i.e. clean RAW and clean sRGB. The
ground truth is the clear RAW image Yraw. We denote the
output RAW image of the denoising decoder as Ŷraw. The
loss function of our network is:

L =
∥∥∥Yraw − Ŷraw

∥∥∥
1
+

∥∥∥Yrgb − Ŷrgb

∥∥∥
1
, (7)
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Table 1. Quantitative results of RAW-based LLIE methods on the Sony and Fuji subsets of SID [2]. The best result is in bold whereas the
second best one is in underlined. Metrics with ↑ and ↓ denote higher better and lower better, respectively. Methods with * indicate that
the model is trained and inference with a downsampled resolution, and we manually upsample the results to the original resolution during
testing. Methods with # indicate that the model is trained and inferenced with only the images of small digital gains (×100) on the SID
datasets. “-” indicates the result is not available.

Category Method Params. FLOPs Sony Fuji

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Single-Stage

SID [2] 7.7 M 48.5 G 28.96 0.787 0.356 26.66 0.709 0.432
DID [22] 2.5 M 669.2 G 29.16 0.785 0.368 - - -
SGN [5] 19.2 M 75.5 G 29.28 0.790 0.370 27.41 0.720 0.430

LLPackNet [12] 1.2 M 7.2 G 27.83 0.755 0.541 - - -
RRT [13] 0.8 M 5.2 G 28.66 0.790 0.397 26.94 0.712 0.446

Multi-Stage

EEMEFN [47] 40.7 M 715.6 G 29.60 0.795 0.350 27.38 0.723 0.414
LDC* [35] 8.6 M 124.1 G 29.56 0.799 0.359 27.18 0.703 0.446
MCR# [4] 15.0 M 90.5G 29.65 0.797 0.348 - - -
RRENet [7] 15.5 M 96.8 G 29.17 0.792 0.360 27.29 0.720 0.421

Ours 2.8 M 57.0 G 30.62 0.797 0.343 28.71 0.726 0.391

where Yrgb is the ground truth sRGB image. It is worth
noticing that only L1 loss is employed for both RAW su-
pervision and sRGB supervision in our method, instead
of blending complex loss functions like previous methods
[7, 30, 32, 42, 47]. Training details and detailed network ar-
chitectures can be found in the supplementary material.

4. Experiments and Analysis

4.1. Datasets and Evaluation Metrics

We have benchmarked our proposed DNF on two dif-
ferent RAW-based LLIE datasets, i.e. the See-In-the-Dark
(SID) [2] dataset and Mono-Colored Raw Paired (MCR) [4]
dataset. The SID [2] dataset contains 5094 extremely low-
light RAW images with corresponding normal-light refer-
ence images taken by two cameras: Sony A7S2 with Bayer
sensor and a resolution of 4240 × 2832, and Fuji X-T2
with X-Trans sensor and a resolution of 6000 × 4000. The
exposure time of the low-light image varies from 0.1s to
0.033s, and the reference images are captured 100 to 300
times longer than the exposure time of the low-light im-
ages. Noted that the long-short pairs of three scenes are mis-
aligned in the test set of Sony subsets, so we discard these
images during the testing stage following previous methods
[22, 47]. For fair comparisons, all the compared methods
are evaluated under the same settings. The MCR [4] dataset
contains 4980 images with a resolution of 1280 × 1024 for
training and testing, including 3984 low-light RAW images,
498 monochrome images, and 498 sRGB images. With two
different kinds of scenes, indoor and outdoor, different ex-
posure times are set, 1/256s to 3/8s for indoor scenes and
1/4096s to 1/32s for outdoor scenes. However, no ground
truth in RAW format is provided, which is indispensable

Table 2. Quantitative results of RAW-based LLIE methods on the
MCR dataset [4]. The best result is in bold whereas the second
best one is in underlined. Metrics with ↑ and ↓ denote higher better
and lower better, respectively.

Category Method PSNR↑ SSIM↓

Single-Stage

RRT [13] 25.74 0.851
SGN [5] 26.29 0.882
DID [22] 26.16 0.888
SID [2] 29.00 0.906

Multi-Stage
LDC [35] 29.36 0.904
MCR [4] 31.69 0.908

Ours 32.00 0.915

for training our method. Thus, we select images with the
longest exposure time of each scene as the RAW ground
truth. Also, the monochrome images are not taken into
account in our DNF. We regard PSNR, SSIM [31], and
LPIPS [44] as the quantitative evaluation metrics for pixel-
wise, structural, and perceptual assessment, respectively.

4.2. Comparison with State-of-the-Art Methods

We evaluate our DNF on two subsets, Sony and Fuji,
of the SID [2] and MCR [4] datasets, and compare it with
state-of-the-art RAW-based LLIE methods, including the
single-stage methods, SID [2], DID [22], SGN [5], LLPack-
Net [12], and RRT [13], as well as the multi-stage methods,
EEMEFN [47], LDC [35], RRENet [7], and MCR [4].

Quantitative Evaluation. As shown in Tab. 1 and
Tab. 2, our method outperforms the previous state-of-the-
art method by a large margin. On the SID dataset, our
DNF yields the best PSNR and LPIPS scores, achieving
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(a) Input (b) SGN [2] (c) EEMEFN [47] (d) LDC [35] (e) MCR [4] (f) Ours (g) GT
Figure 5. Visual comparisons between our DNF and the state-of-the-art methods (Zoom-in for best view). We amplified and post-processed
the input images with an ISP for visualization [2].

0.97 dB and 1.30 dB improvements in PSNR, as well as
0.005 and 0.023 improvements in LPIPS than the second-
best method on the Sony and Fuji subsets, respectively.
Note that LDC [35] and MCR [4] are trained and tested
in different schemes 1 which might lead to a better perfor-
mance. Regarding the complexity, our DNF has notably
fewer parameters and FLOPs than the current best methods
(i.e., MCR and EEMEFN). Our network uses 1/5 and 1/15
fewer parameters, as well as 3/5 and 1/13 fewer FLOPs than
MCR and EEMEFN, respectively. On the MCR dataset, our
method achieves the best PSNR and SSIM scores as shown
in Tab. 2, exceeding the previous state-of-the-art method
0.31dB and 0.07 with fewer parameters and FLOPs.

Qualitative Evaluation. Fig. 5 and Fig. 6 show the qual-
itative results on the SID [2] dataset. It can be seen that
the results enhanced by the compared methods suffer from
severe content distortions and artifacts due to their limited
denoising capability. In addition, benefiting from the decou-
ple and feedback architecture, colors are transformed and
enhanced more accurately without noise interference, there-
fore exhibiting better color consistency together with more
realistic and vivid color rendering. Our method succeeds
in suppressing the intensive noises, as well as preserving
rich texture details. Qualitative comparisons on the MCR
dataset can be found in the supplementary material.

4.3. Ablation Studies

We conduct extensive ablation studies on proposed DNF.
All experiments are performed on the SID [2] Sony subset.

Domain-Specific Task Decoupling. To better evaluate the
impact of our Domain-Specific Task Decoupling, we in-
volve different kinds of intermediate supervision on our de-
noising decoder, as shown in Tab. 3. 1) Without supervi-
sion (w/o Sup.) fails to feedback the denoising prior back

1The LDC is trained and tested on downsampled images, as well as
the MCR is trained and tested only on the images with small digital gains
(×100). We keep the settings exactly the same with their implementations.

Input LDC [35] SID [2] SGN [5]

GT Ours EEMEFN [47]

Input LDC [35] SID [2] SGN [5]

GT Ours EEMEFN [47]

Figure 6. Visual comparisons between our DNF and the state-of-
the-art methods. In comparison to the state-of-the-art methods, our
method achieves better texture preservation and color recovery.

to the shared RAW encoder with a 0.14dB drop on PSNR.
2) sRGB supervision (sRGB Sup.) decouples the main
task into first-stage enhancement and detail reconstruction,
like [35, 47]. The first-stage enhancement suffers from the
domain ambiguity caused by directly learning from noisy
RAW to clean sRGB domain, resulting in a 0.42dB drop on
PSNR. The comparison between the sRGB Sup. and w/o
Sup. (0.28dB↓) denotes that the domain ambiguity severely
bottlenecks the performance of the network.

Denoising Prior Feedback. To validate the effectiveness of
our framework based on the feedback mechanism, we first
examine the single-stage and multi-stage (two-stage like
most of the existing methods [4, 7, 35, 47]) variants of our
framework in Tab. 3. 1) Single-stage variant by directly cas-
cading RAW encoder and sRGB decoder results in 0.46dB
drop on PSNR. 2) Multi-stage variant simply cascades two
UNets [27] equipped with CID blocks and MCC blocks, re-
spectively. The lossy image-level dataflow deteriorates the
performance severely, with a 0.30dB drop on PSNR.
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Table 3. Ablation study on the deouple and feedback framework.
Sup. denotes the supervision of the denoising decoder.

Module Replacement PSNR SSIM

RAW Sup. w/o Sup. 30.48 0.795
sRGB Sup. 30.20 0.796

Feedback Single-Stage 30.16 0.792
Mulit-Stage 30.32 0.795

GFM
Conv 30.40 0.795

w/o Gate 30.35 0.794
SKFF [40] 30.37 0.795

Original 30.62 0.797

(a) Input (b) Single-Stage (c) Multi-Stage

(d) w/o Sup. (e) sRGB Sup. (f) DNF
Figure 7. Visual comparisons between our DNF and ablated mod-
els (Zoom-in for best view). blue, red, green boxes represent re-
maining noise, detail loss, and color shifts, respectively.

Gated Fusion Module. Three other fusion modules are
adopted: traditional convolutional layer (0.22dB↓), depth-
wise convolution without a gating mechanism (0.27dB↓),
and SKFF [10, 40] module (0.25dB↓), specialized for fea-
ture fusion. Our method enjoys the best performance due to
the pixel-wise selection provided by the gated mechanism.

Residual Switch Mechanism. As shown in Tab. 4, compar-
ing without any residual shortcuts at all, leveraging a global
residual shortcut increases the performance (0.06dB↑).
However, the global shortcut at the color restoration stage
would limit the performance by introducing the domain am-
biguity (0.03dB↓). The experiments with or without all of
the local shortcuts introduce functional contradiction, thus
resulting in varying degrees of performance degradation
(0.33dB↓ and 0.30dB↓, comparing with DNF). Compared
with another approach to implement the residual switch
mechanism: switch on when denoising or switch off during
color restoration, the local shortcut of the CID block during
the color restoration provides more information about the
image content, thus resulting in higher performance.

Comparison with Other Feature-level Dataflow. As
shown in Tab. 5, our model yields the best performance
compared with a feature-level dataflow multi-stage frame-
work, which validates the effectiveness of residual switch

Table 4. Ablation study on the residual mechanism of CID block.
Global and Local represent the global residual shortcut between
encoder and decoder and the local shortcut in the CID block, re-
spectively. RAW and sRGB represent the RAW denoising stage
and color restoration stage, respectively. The last row represents
the implementation and performance of our proposed DNF.

Global Local PSNR SSIM
RAW sRGB RAW sRGB

30.26 0.794
✓ 30.32 0.795
✓ ✓ 30.29 0.794
✓ ✓ 30.48 0.794
✓ ✓ ✓ 30.29 0.794
✓ ✓ 30.62 0.797

Table 5. Comparison with other feature-level dataflow. Multi-
Stage* represents a feature-level multi-stage framework.

Method w/o RSM DNF Multi-Stage*

PSNR 30.32 30.62 30.46
SSIM 0.794 0.797 0.796

mechanism (RSM). The feature-level multi-stage frame-
work preserves the gated fusion modules but involves two
different RAW encoders. The results show that a weight-
sharing encoder can perform two different functionalities
with our proposed RSM. Also, the two complementary
functionalities, noise estimation and signal reconstruction,
complement each other for achieving a better performance.

5. Conclusion

In light of the exclusive properties in RAW format, we
propose a decouple and feedback framework for the RAW-
based LLIE. As a generalized pipeline, the proposed DNF
overcomes the inherent limitations of previous methods.
The Domain-Specific Task Decoupling eliminates the do-
main ambiguity incurred by the single-stage methods, and
the Denoising Prior Feedback supersedes the multi-stage
methods that are with the lossy image-level dataflow. Sig-
nificant performance and extensive experiments show the
superiority of the proposed framework as well as the great
potential for low-light image enhancement of RAW images.

Limitations. One remaining limitation in the proposed
framework, also shared with most of the existing meth-
ods, is that the amplification ratios of the input images are
pre-defined according to the exposure time. Under the ex-
tremely low-light condition, estimating the normal illumi-
nation is essential and difficult in the real-world scenarios.
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