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Abstract

The success of existing multi-view clustering relies on
the assumption of sample integrity across multiple views.
However, in real-world scenarios, samples of multi-view
are partially available due to data corruption or sensor
failure, which leads to incomplete multi-view clustering
study (IMVC). Although several attempts have been pro-
posed to address IMVC, they suffer from the following draw-
backs: i) Existing methods mainly adopt cross-view con-
trastive learning forcing the representations of each sam-
ple across views to be exactly the same, which might ig-
nore view discrepancy and flexibility in representations; ii)
Due to the absence of non-observed samples across mul-
tiple views, the obtained prototypes of clusters might be
unaligned and biased, leading to incorrect fusion. To ad-
dress the above issues, we propose a Cross-view Partial
Sample and Prototype Alignment Network (CPSPAN) for
Deep Incomplete Multi-view Clustering. Firstly, unlike ex-
isting contrastive-based methods, we adopt pair-observed
data alignment as ’proxy supervised signals’ to guide
instance-to-instance correspondence construction among
views. Then, regarding of the shifted prototypes in IMVC,
we further propose a prototype alignment module to achieve
incomplete distribution calibration across views. Exten-
sive experimental results showcase the effectiveness of our
proposed modules, attaining noteworthy performance im-
provements when compared to existing IMVC competitors
on benchmark datasets.

1. Introduction

In modern society, data collected for real-world appli-
cations usually stems from different domains, sensors or
feature extractors, which gives rise to multi-view learning
in literature [2, 44]. For instance, an autonomous car may
have diverse sensors, and a movie is typically made up of
images and audio. As an important paradigm of multi-view
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learning, multi-view clustering (MVC) [10,20,21,24,40,47]
divides data by exploiting the consistent and complemen-
tary information across multiple views. The success of ex-
isting multi-view clustering methods heavily relies on the
fully-available data assumption. However, in practical ap-
plications, some views of instances are only partially avail-
able due to unstable sensors and damaged storage media.
When some views are missing [9], the natural alignment
property of same instances across multiple views is de-
stroyed, which may result in insufficient mining of comple-
mentary and consistent information. To handle the incom-
pleteness issue, many incomplete multi-view clustering al-
gorithms IMVC) [15,31,38] with satisfactory performance
have been proposed. Typical strategies are mainly based on
matrix decomposition, incomplete multiple kernel learning
and graph-based methods. Learning more discriminative
consensus representations with incomplete view informa-
tion is crucial to achieve better incomplete multi-view clus-
tering performance. However, conventional IMVC methods
are based on raw features and therefore, the performance
heavily relies on the feature quality.

As deep neural networks [5,8,16,17,25,43] have demon-
strated superior performance in learning high-level repre-
sentations, deep learning has become prevalent in various
fields of computer vision and pattern classification. To
this end, researchers have explored combining deep neu-
ral networks [26, 35] and conventional IMVC methods to
improve clustering performance, and the resulting cluster-
ing method is called Deep Incomplete Multi-View Cluster-
ing (DIMVC) [11,30,37,39,42]. Most existing DIMVC
methods adopt the principle of contrastive learning, treat-
ing different views of the same sample as positive pairs and
their representations should be consistent. Such algorithms
ignore the cross-view alignment correlation of samples and
force instances of different views with unified representa-
tion, which may destroy the flexibility and variety of rep-
resentations. We argue that the essence of IMVC task lies
in discovering structural correspondence between different
views, rather than rigidly and simply enforcing uniform rep-
resentations across each view. In fact, IMVC can be re-

11600



garded as a special case of ’partially-aligned’ multi-view
setting, where the pair-observed data provides supervised
instance-alignment signals.

Moreover, as shown in the Fig. 1, the distribution learned
from the incomplete multi-view data can be biased due to
inadequate multi-view data. Specifically, during the clus-
tering task, flexible representations may cause prototypes
of each cluster to shift and become biased, which we re-
fer to as the Prototype-Shifted Problem (termed PSP). Such
a problem has been demonstrated in the Anchor-Unaligned
Problem [32] for complete multi-view data, and undoubt-
edly has more essential impact on incomplete multi-view
data. At the same time, contrastive-based DIMVC methods
neglect this issue and do not explore relationships among
different instances within the same view, which may further
aggravate PSP. Therefore, it is necessary to match the rela-
tionship between the prototypes among views and perform
clustering task accordingly.

To address the aforementioned issues, we propose a
novel approach termed Cross-view Partial Sample and
Prototype Alignment Network (CPSPAN) for Deep Incom-
plete Multi-view Clustering to perform cross-view partial
sample alignment and solve the prototype-shifted problem.
The framework of CPSPAN is illustrated in Fig. 3. In de-
tail, different from the contrastive learning mode, the cross-
view instance alignment module establishes the view-to-
view correspondence of samples through the pair-observed
data in Fig. 2 between each pair-wise views, so as to mine
the structural information between views. Afterwards, to
address the prototype-shifted problem in incomplete sce-
nario, the prototype alignment module takes one view’s
prototype set as anchors, and solves the permutation ma-
trix between the two sets of prototypes, thereby establish-
ing prototype-to-prototype correspondence based on opti-
mal transport theory. Since prototypes are obtained based
on samples, this module not only calibrates correspon-
dences between cross-view shifted prototypes but also en-
codes the relationships between within-view samples. Ul-
timately, since our model is imputation-free upfront, in or-
der to align the embeddings between views before finally
performing feature fusion and clustering, we build cross-
view structural relationship transfer for missing item impu-
tations.

We summarize the major contributions of our work as
follows,

* We propose a novel deep network to handle IMVC
task, termed as CPSPAN. Differ from existing multi-
view contrastive learning manner, we considers the
IMVC from a novel insight with partially-aligned set-
ting. To this end, CPSPAN optimal maximizes match-
ing alignment between paired-observed data and con-
struct cross-view intersection.

Prototype-Shifted Problem Unaligned Prototypes in IMVC
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Figure 1. An example illustration of shifted prototype across
multi-view caused by incomplete setting. With different missing
status, the prototypes learned by incomplete multi-view data may
be shifted and leads to wrong correspondences.

¢ In order to solve the Prototype-Shifted Problem caused
by incomplete information, CPSPAN proposes to fur-
ther align the prototype sets between different views,
S0 as to mine consistent cross-view structural informa-
tion.

» Extensive experiments have clearly demonstrated the
effectiveness of the proposed cross-view partial sample
and prototype alignment modules and the superiority
over both conventional and deep SOTA methods.

2. Related Work

This section briefly describes the latest research progress
of Incomplete Multi-View Clustering IMVC) and Deep In-
complete Multi-View Clustering (DIMVC).

2.1. Incomplete Multi-view Clustering

The incomplete multi-view clustering problem has at-
tracted extensive attention of researchers in recent years.
Existing methods for incomplete multi-view clustering
mostly fall into three categories: (1) Matrix factorization
based IMVC [6, 9]. Non-negative matrix factorization is
dedicated to mining consensus representations of incom-
plete multi-view data. DAIMC [6] is based on semi-NMF to
obtain consensus information among multiple views. Par-
tial multi-view clustering (PVC) [9] exploits NMF to mine
latent information of incomplete data. (2) Kernel learn-
ing based IMVC [14, 15]. Kernel-based methods aim to
recover the kernel matrix for incomplete multi-view data.
ONKC [14] enhances representability of the optimal ker-
nel and strengthens negotiation between kernel learning and
clustering. (3) Graph learning based IMVC [48,49]. IMG
[49] extends PV C by exploring rich multi-view global struc-
tural information. Nevertheless, traditional IMVC methods
have limitation in exploring the clustering-friendly repre-
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Figure 2. Definition of pair-observed data and unpaired data be-
tween view ¢ and j. Instances that are complete on both view ¢ and
7 are referred as pair-observed data.

sentation of high-dimensional complex data, and they heav-
ily rely on the quality of raw features.

2.2. Deep Incomplete Multi-view Clustering

With the development of deep learning, researchers have
realized the important role of representation learning in
clustering task. The high-level feature mining capability
of deep neural networks has attracted the attention of re-
searchers, resulting in deep models being widely used in in-
complete multi-view clustering tasks. The existing DIMVC
methods can be divided into the following three categories:
(1) Autoencoders-based methods. By extracting feature of
data, the deep autoencoder can learn the consistent repre-
sentation to pad missing data and obtain impressive cluster-
ing performance. Typical methods are [50], [36], [30] and
[12]. (2) GANs-based methods. This kind of approaches
explore the mutual representation between multiple views
by generating adversarial networks and directly produc-
ing missing data [1, 3,27-29]. (3) GCNs-based methods.
GCNs-based methods explore common representations of
multiple views through structural information among them
[33,34]. (4) Contrastive-based methods. The representative
work is [11]. This method completes the missing data and
explores the congruous representation through the compar-
ison between multiple views. However, contrastive-based
methods destroy the flexibility and diversity of represen-
tations and lose complementary information in incomplete
multi-view clustering.

3. Proposed Method

In this section, we first elaborate on the motivations
of our work. Then we comprehensively introduce the
proposed CPSPAN which consists of three jointly learn-
ing modules, namely, incomplete multi-view representation
learning, cross-view partial sample alignment and shifted
prototype alignment module.

Notations. Formally, a multi-view incomplete dataset
{X®) ¢ RN*P21V_ | consists of N instances of V' views.

We denote the samples with complete data as a set {X(”) €
RNv*Doy V. where N, denotes the number of complete
instance in v-th view. As shown in Fig. 2, we utilize
Xl(f’j ) and X,(f’j ) to denote the pair-observed and unpaired

instances respectively. K is the number of clusters.

3.1. Representation Learning Module and Proto-
type Set Generation

Incomplete Multi-view Representation Learning. In
multi-view clustering tasks, deep autoencoders have been
widely used to extract high-level representations of raw fea-
tures [4, 12,22,41,45]. Therefore, we equip each view
with an auto-encoder to learn the clustering-friendly fea-
tures of the respective view. To avoid inaccurate imputation
or padding negatively impacting representation learning, we
only train with the complete instance in each view. In or-
der to avoid instance misalignment between views caused
by missing data, we use resampling method to comple-
ment each view by sampling observed instances on each
view. For the v-th view, an encoder-decoder pair, denoted as
E, and D,, is utilized to obtain the high-level embedding
H), Specifically, the feature extraction process of E; is
expressed as E,(X(®);0v) : X() ¢ RVvxPv 5 HO) ¢
RNv*d_ The process of feature reconstruction of H () by
the decoder D, is formulated as D, (H H®: ;0Y) H®
RNoxd _y X() ¢ RNoXDv where d is the dimension of
the embedding on all views, §¥ and ¢V are the learnable pa-
rameters of autoencoder for the v-th view. Autoencoders are
utilized to project the features of all views into the same di-
mensionality, which enables measuring correspondence be-
tween prototypes of different views in the same dimension.
The reconstruction loss for all views is expressed as
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our model is first pre-trained in the above way, so far it is
still independent on each view.

Prototype Set Generation. In the d-dimensional fea-
ture space of each view, the prototype set of each view

Y
{C}

can be obtained by the following objective:

(@)

where C(") ¢ RE*4 The subsequent cross-view partial
sample alignment and shifted prototype alignment are per-
formed between the features generated by the E, and D, of
each view and the prototype set C¥ generated by Eq. (2).

11602



H®
Partial Sample
Reconstruction

x@®

EDDDQ

o]

Prototype
Generation

I:I
— ) F T .7
X(l)—> - —— Align Align
hgz) v Pxsh? v hgz)
i J

SPA min
pQ,V)

Cross-view Partial Sample
Alignment (CPSA)

b X n®

c® ,P(LV)C(V)HQ
F

Reconstruction

H (V)

y Matching
O l Similarity &) Matrix PV
XW—| By |—— —— cw
X O L c»
) Partial Sample m Prototype Shifted Prototypes Alignment (SPA)
&)

Generation

Figure 3. The framework of our proposed CPSPAN. CPSPAN consists of three modules: incomplete multi-view representation learning
module, cross-view partial sample alignment module (CPSA) and shifted prototype alignment (SPA) module. Specifically, CPSA performs
view-to-view alignment on learned representations of pair-observed instances. SPA explores the optimal matching correspondence between
prototypes so as to align them. Finally, we use the structure embedding imputation strategy to fill in the missing embedding. Ultimately,
we concatenate the complete and filled embedding and then perform kmeans to get the final result.

3.2. Cross-view Partial Sample Alignment

In the context of missing data, the multi-view clustering
method based on contrastive learning leverages V' represen-
tations of the same sample in different views as positive
samples and views of other samples as negative samples.
By doing so, the method forces the representations of dif-
ferent views corresponding to the same sample to converge,
ultimately enabling the learning of consistent information
across views. The commonly used loss function associated
with this method is

(@) p(r)
eg”):_ilog exp (h- h; /7')

r#v t#v VE

1 vV N
La=52 24", “
(r)

where h; ’ is the positive instance of the i-th sample in other
view. 7 is the temperature parameter to control the soft-
ness. After the optimization of the loss function in Eq. (4),
the representation across views are forced to be exactly the
same.

Different from previous methods based on the principle
of contrastive learning, our cross-view instance alignment
module can learn more flexible representations. The repre-
sentations learned by our module are more flexible for two

reasons. One is that the module uses the cosine similarity
to measure the difference between paired data between two
views in the feature space, rather than using the vector inner
product or the Euclidean distance of the vector in the fea-
ture space, which is different from the clustering that pays
more attention to mining the structural information of data.
On the other hand, our method only restricts the represen-
tation of samples in different views to achieve the highest
matching degree, and does not enforce the matching degree
with other samples to be 0. This alignment approach avoids
stretching samples that originally belong to the same cluster
and is better suited to mining structural information.

Note that Xl(f’j ) represents the pair-observed data in view

i and j. The number of instances in Xl(f’j ) is N(i,j)’ and

the corresponding paired embedding of Xz(j’j ) in the feature

space is H(i’j ). We define the difference between the p-th

instance in view ¢ and the g-th sample in view j in H(m )

g _ (7)) )
P = G G
([ |[[[ag ]|

where S(»7) ¢ RNG.»*N.j) is the similarity matrix be-
tween paired embeddings in view ¢ and j.

As mentioned above, we only restrict all elements on the
diagonal of S(*7) to be 1, and do not impose constraints
on other elements of S(*7). We impose this constraint on
paired embedding of each pair-wise views, so the loss func-
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tion of our cross-view instance alignment module can be
defined as
jag(SE) ’
Lio = Z Hdzag(S W) = 1ng

‘2’
=1,V
J—it+1

(6)

3.3. Shifted Prototype Alignment

By matching the prototype-to-prototype correspondence
between each pairwise views, this module calibrates the re-
lationship between samples in a view and the relationship
between prototypes on different views, thereby solving the
prototype-shifted problem and further improving the clus-
tering performance.

Formally, the crucial step of this module is to obtain the
permutation matrix P € RX*X between prototypes of dif-
ferent views. To achieve prototype alignment, we optimize
P as an integer linear programming problem with the objec-
tive of achieving an optimal match between two prototype
sets. Formally,

argmin Tr(DPT),
P

S.t. Pij > O,V(l,j),
P1=1,
PT1=1,

)

where P is a square binary matrix that has exactly one entry
of 1 in each row and column, and O elsewhere. We denote
the permutation matrix between views i and j by P (),
Taking the prototypes C(*) and C®) on view 1 and view 2
as an example, if C®) is aligned to C(V), after finding the
best matching flow P(1-2) between the two, use the permu-
tation matrix P2 to left-multiply C® to align to C(V).
The optimal formula for solving P(1:2) is
2
min ’cﬂ) —p12c® H . ®)
P12 F

In order to make the optimization of the permutation ma-
trix suitable for the derivation mechanism in deep neural
networks, we follow the method in PVC [7] and use the
differentiable substitution of the Hungarian algorithm to es-
tablish the correspondence of prototype sets. Formally,

Q) = ReLU(P1Y), ©
1

Qy = P12 _ (P21 —1)17, (10)
n
1

Q3 =P12 — E1(1TP(172> —17), (11)

where 0, 5 and Q3 project the permutation matrix P (1:2)
to the three constraint sets.
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Figure 4. Visualization of Structure Embedding Imputation Strat-
egy. We build cross-view structure transfer to impute instances
with their close neighbours in latent space.

Following the above optimization process, we can obtain
the permutation matrix and optimally match the prototype
sets between each pairwise views, and the corresponding
loss function is as follows

Loa= Y. Hc(i)_P(i,j)C(j)H
i=1,---,V
j=i+1

2
(12)
F

3.4. Structure Embedding Imputation Strategy

Since our model does not perform imputation during
training, in order to align features between views, we pro-
pose a structure embedding imputation strategy to pad the
missing embedding. Fig. 4 is an example of our imputation
strategy. Specifically, first we calculate the similarity matrix
based on all complete embeddings in the two views respec-
tively. For a missing feature in view 1, we find the nearest
neighbor to its embedding in view 2, and then directly fill
the missing feature with that neighbor’s embedding in view
1.

3.5. The Objective Function

With the above definitions, we propose the following ob-
jective function:

L="Lrec+alic+ ﬁ‘cpav (13)

where L., Li, and L,, are within-view reconstruction
loss for observable instances, cross-view partial sample
alignment loss and shifted prototype alignment loss, respec-
tively. In the experiments, we simply set both balance coef-
ficients to 0.001.

4. Experiments
4.1. Experimental Setting

Datasets and Evaluation Metrics. We conduct exper-
iments on five benchmark multi-view datasets, namely
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Caltech101-7, HandWritten, ALOI-100, YouTubeFacelO
and EMNIST. Details of these data are shown in Table 1 be-
low. In this experiment, we set the missing rate of the each
dataset to [0.1, 0.3, 0.5, 0.7]. To evaluate the validity of the
experiments, we used three widely used evaluation criteria
including accuracy (ACC), normalized mutual information
(NMI),and F-mea.

Table 1. Incomplete multi-view datasets in experiments.

Dataset Samples Clusters  Views Dimensionality
Caltech101-7 1400 7 5 1984/512/928/254/40
HandWritten 2000 10 6 216/76/64/6/240/47

ALOI-100 10800 100 4 77/13/64/125
YouTubeFacel0 38654 10 4 944/576/512/640
EMNIST 280000 10 4 944/576/512/640

Baseline Methods. In experiments, our proposed algo-
rithm is compared with seven state-of-the-art Incomplete
multi-view clustering methods. Best Single-view Spec-
tral Clustering (BSV) [18] fills in missing data by mean
on single view data. PIC [13] strives to find a consen-
sus feature matrix to complement incomplete multi-view
data. AWP [19] complements the missing data between
multiple views through the structural information between
multiple views. CPM-Nets [46] transforms the multi-
view representation learning task into a degenerate pro-
cess to achieve consistency and completion between mul-
tiple views. COMPLETER [!2] learns consistent repre-
sentations through contrastive learning and maximizes the
mutual information between multiple views. DCP [11]
learns consistent representations and complements infor-
mation by maximizing mutual information and minimizing
cross-entropy. DSIMVC [23] dynamically complements
the missing views from the learned semantic neighbors,
solving the multi-view missing problem.

Implementation. Tne proposed CPSPAN is trained with
the PyTorch platform. In the experiments, we set the pre-
training batchsize to 256, the pre-training epoch to 200, and
alignment epoch is 50. For all datasets, the autoencoders for
all views are implemented by MLPs with the same structure,
and the feature dimension in the embedding space is set to
10. The activation function is ReLU. We adopt Adam to op-
timize the deep model, the learning rate in the pre-training
stage is set to 0.0005, and the learning rate in the alignment
stage is set to 0.0001.

4.2. Comparison with State-of-The-Arts

In Table 2 of the paper, our proposed algorithm is com-
pared with seven state-of-the-art methods on three metrics.
From the above chart, we have the following observations:

* QOur proposed model significantly outperforms other
incomplete multi-view clustering algorithms on all
datasets in terms of all metrics. Under the 0.1 miss-
ing rate setting, for all the datasets, our proposed
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Figure 5. Flexibility verification of the cross-view instance align-
ment module. The red lines are the flexible features learned
through our proposed CPSPAN, and the blue lines are the features
learned after changing the loss function to contrastive loss.

method are all significantly higher than the second
best approaches, and outperform the second best by
5.0%, 2.9%, 0.6%, 3.3% and 1.5%, respectively. This
can demonstrate the superiority of our method on all
datasets. Moreover, CPSPAN demonstrates greater
stability as the missing rate varies. For instance, when
the missing rate ranges from 0.1 to 0.7 on HandWrit-
ten, the performance only exhibits a modest 1.7% de-
crease. Similarly, on the EMNIST, where the varia-
tion in the method’s performance is greatest, the drop
is only 6.4%.

e It can be seen that the CPSPAN can still achieve
competitive effect with a high missing rate in the
dataset. When the miss rate is 0.7, the proposed
method is 7.9%, 5.9%, 1.3%, 7.3% and 15.4% higher
than the method with the second highest ACC in the
five datasets, respectively. It can be seen that our pro-
posed method can still achieve impressive results in the
case of a relatively high missing rate, which demon-
strates the stability of CPSPAN.

In conclusion, the above experiments have verified the ef-
fectiveness and stability of our proposed CPSPAN and it is
pivotal to conduct pair-ovserved sample alignment and pro-
totype alignment for IMVC task.

4.3. Flexibility Validation of Cross-view Partial
Sample Alignment

As mentioned in Section 1, our cross-view partial sample
alignment strategy is more flexible than the commonly used
contrastive-based methods, and can learn more clustering-
friendly representation and mine better structural informa-
tion of data. To verify this, we directly replace our pair-
observed sample alignment loss with contrastive loss in Eq.
(4). We validate our idea on both Caltech101-7 and Hand-
Written. From the results in Fig. 5, it can be seen that
our method outperforms contrastive-based approach at any
missing rate, which indicates that our cross-view partial
sample alignment module is more conducive to clustering
representation.
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Table 2. The clustering performance comparisons on five benchmark datasets with varying missing rates. The best results are highlighted
in bold, while the second best results are underlined. ’O/M’ denotes the out-of-memory failure due to the size of the dataset.

Missing rates 0.1 0.3 0.5 0.7

Metrics ACC NMI F-mea| ACC NMI F-mea| ACC NMI F-mea| ACC NMI F-mea

BSV 0.228 0.036 0.246 | 0.284 0.250 0.297 | 0.265 0.210 0.281 | 0.245 0.166 0.268

= PIC 0.656 0.592 0.649 | 0.653 0.619 0.654 | 0.646 0.605 0.641 | 0.644 0.607 0.647
;' AWP 0.779 0.735 0.724 | 0.724 0.677 0.677 | 0.661 0.667 0.636 | 0.772 0.691 0.695
= CPM-Nets 0.832 0.734 0.811 | 0.754 0.652 0.721 | 0.696 0.575 0.693 | 0.611 0.499 0.605
§ COMPLETER | 0.528 0.573 0.499 | 0.500 0.533 0.485 | 0.534 0.557 0.535 | 0.596 0.587 0.585
3 DCP 0.578 0.584 0.552 | 0454 0518 0424 | 0487 0.548 0.443 | 0.172 0.059 0.092
DSIMVC 0.649 0.565 0.642 | 0.629 0.537 0.622 | 0.554 0471 0.549 | 0419 0.343 0.391
CPSPAN 0.882 0.793 0.878 | 0.865 0.768 0.861 | 0.861 0.775 0.856 | 0.851 0.760 0.843

BSV 0.584 0.614 0.522 | 0.532 0.553 0446 | 0482 0.503 0.368 | 0.437 0454 0.292

= PIC 0.779 0.797 0.720 | 0.781 0.792 0.749 | 0.800 0.833 0.783 | 0.802 0.822 0.782
;QE’ AWP 0.708 0.816 0.719 | 0.867 0.880 0.839 | 0.860 0.874 0.834 | 0.858 0.858 0.823
§ CPM-Nets 0.905 0.827 0905 | 0.840 0.754 0.851 | 0.753 0.627 0.770 | 0.663 0.578 0.705
-g COMPLETER | 0.847 0.852 0.833 | 0.610 0.679 0.615 | 0481 0.614 0485 | 0.730 0.730 0.727
£ DCP 0.682 0.793 0.644 | 0.769 0.788 0.765 | 0.670 0.738 0.652 | 0.708 0.742 0.686
DSIMVC 0.797 0.749 0.794 | 0.789 0.731 0.785 | 0.743 0.687 0.738 | 0.656 0.624 0.643
CPSPAN 0934 0.880 0.933 | 0.940 0.888 0.940 | 0936 0.879 0.935 | 0.917 0.847 0.917

BSV 0412 0.741 0.268 | 0.369 0.741 0.237 | 0.322 0.740 0.236 | 0.290 0.742 0.238

PIC 0.698 0.608 0.436 | 0.633 0345 0242 | 0.541 0465 0.365 | 0.351 0.355 0.235

S AWP 0.706 0.785 0.579 | 0.679 0.785 0.568 | 0.674 0.757 0.538 | 0.673 0.757 0.538
E CPM-Nets 0.242 0.529 0.196 | 0.153 0430 0.139 | 0.139 0.346 0.121 | 0.074 0.259 0.059
S COMPLETER | 0.169 0.421 0.143 | 0.174 0.419 0.164 | 0.144 0.384 0.135 | 0.143 0.403 0.173
< DCP 0.272 0.521 0.255 | 0.230 0477 0220 | 0.227 0488 0.221 | 0.213 0.451 0.215
DSIMVC 0.325 0.621 0.209 | 0.306 0.586 0.250 | 0.299 0.572 0.199 | 0.281 0.552 0.230
CPSPAN 0.712 0.864 0.738 | 0.688 0.856 0.654 | 0.709 0.864 0.679 | 0.686 0.859 0.662

BSV oM OM Oo/M oM O/M O/M oM OM Oo/M oM O/M Oo/M

S PIC oM O/M Oo/M oM OM O/M oM O/M Oo/M oM O/M Oo/M
§ AWP oM O/M Oo/M oM O/M Oo/M oM O/M Oo/M oM O/M Oo/M
= CPM-Nets 0.772 0.809 0.753 | 0.740 0.768 0.715 | 0.698 0.702 0.673 | 0.657 0.621 0.633
E COMPLETER | 0.620 0.642 0.605 | 0.653 0.677 0.628 | 0.551 0.563 0.534 | 0.484 0.501 0.470
2 DCP 0.746 0.782 0.725 | 0.659 0.644 0.617 | 0.604 0.577 0.586 | 0.628 0.604 0.572
>~ DSIMVC 0.730 0.762 0.714 | 0.716 0.738 0.689 | 0.683 0.691 0.657 | 0.664 0.695 0.642
CPSPAN 0.805 0.839 0.795 | 0.794 0.802 0.734 | 0.750 0.767 0.729 | 0.741 0.765 0.691

BSV oM O/M Oo/M oM OM Oo/M oM O/M Oo/M oM O/M Oo/M

PIC oM OM Oo/M oM O/M O/M oM OM Oo/M oM O/M Oo/M

5 AWP oM O/M Oo/M oM OM O/M oM O/M O/M oM O/M Oo/M
E CPM-Nets 0.843 0.812 0.837 | 0.776 0.749 0.755 | 0.720 0.688 0.692 | 0.676 0.621 0.649
S | COMPLETER | 0.856 0.827 0.835 | 0.762 0.704 0.711 | 0.650 0.597 0.618 | 0.533 0.485 0.509
= DCP 0.733 0.651 0.720 | 0.675 0.589 0.642 | 0.692 0.556 0.630 | 0.584 0.443 0.528
DSIMVC 0.710 0.672 0.694 | 0.639 0.572 0.597 | 0.585 0.524 0.537 | 0.530 0.472 0.508
CPSPAN 0.871 0.834 0.872 | 0.865 0.828 0.867 | 0.857 0.823 0.844 | 0.830 0.785 0.791

4.4. Stability Analysis of Imputation Strategy

We analyze the stability of the structure embedding im-
putation strategy by verifying it with the ¢-th nearest neigh-
bor method, with ¢ ranging from 1 to 100. The results in-
dicate that although the range of nearest neighbors varies
widely, the performance only drops by less than 5% on both
datasets. This confirms the stability of our method. More
detailed results are provided in the supplementary.

4.5. Parameter Sensitivity Analysis

In order to analyze the effect of the two balance pa-
rameters « and (3 in the loss function on the efficiency of
the algorithm, we perform parameter sensitivity analysis on
Caltech101-7 and HandWritten. We set the values of both
parameters to [le-3, le-2, le-1, lel, 1e2, 1e3]. From the
results in the Fig. 7, we can find that 8 has a greater im-
pact on Caltech101-7, but both parameters have very little

11606



(b) Final Result

(a) Raw Features

(c) Raw Features (d) Final Result

Figure 6. Visualization of Caltech101-7 and HandWritten. **’ indicates the prototype of each cluster.

Table 3. Ablation study on Caltech101-7. We select ACC as the
evaluation metric. In the following table, v’ denotes CPSPAN with
the component.

Components Missing Ratios
Lree Lia Lpa 0.1 0.3 0.5 0.7
v 0.7050 0.6636 0.6286 0.5243
v v 0.8429 0.8243 0.8057 0.8164
v v 1 07757 0.7486 0.7071 0.7093
v v v 108821 0.8650 0.8614 0.8507

Table 4. Ablation study on HandWritten. We select ACC as the
evaluation metric. In the following table, v’ denotes CPSPAN with
the component.

Components Missing Ratios
Lree Lia Lpa 0.1 0.3 0.5 0.7
v 0.8375 0.8115 0.8035 0.7780
v v 0.9065 0.9035 0.8870 0.8600
v v' | 0.8885 0.8600 0.8135 0.8075
v v v 109335 09400 0.9355 0.9170

0

100 - 100
T e g o g o™

(a) Caltech101-7 (b) HandWritten

Figure 7. Sensitivity analysis of « and § for our method over
HandWritten and Caltech101-7 (The missing ratio is 0.5).

impact on HandWritten.

4.6. Ablation Study on Modules

The proposed CPSPAN contains three modules. To fur-
ther verify the importance of each module, we conducted

ablation experiments on Caltech101-7 and HandWritten
datasets. The results are presented in Tables 3 and 4, with
missing rate of [0.1, 0.3, 0.5, 0.7]. Our findings indicate that
both cross-view instance alignment and shifted prototype
alignment modules contribute significantly to the improved
performance of both datasets.

4.7. Visualization

We visualize the clustering effect of CPSPAN on
Caltech101-7 and HandWritten under the setting of 0.5
missing rate. Raw features and the final embedding are
shown in Fig. 6 respectively. From the figure, we can
clearly observe that after the training of our model, the in-
stances from the same cluster become more compact, and
the instances of different clusters are separated far away.
In addition, the visualization results of the prototypes of
each cluster further verify that after the prototype alignment
module, the shifted prototype can be re-estimated and accu-
rately calibrated.

5. Conclusion

In this paper, we propose a novel Cross-view Partial
Sample and Prototype Alignment framework for incomplete
multi-view data termed CPSPAN. Different from other in-
complete multi-view methods, CPSPAN uses pair-observed
data alignment to guide the correspondence reconstruction
between samples. Aiming at the prototype-shifted prob-
lem in incomplete multi-view clustering, we also propose
a shifted prototype alignment module to calibrate the pro-
totype sets across views. Experiments demonstrate the su-
periority of our CPSPAN compared with conventional and
deep IMVC SOTA methods.
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