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Abstract

Scene graph generation (SGG) methods have histori-
cally suffered from long-tail bias and slow inference speed.
In this paper, we notice that humans can analyze relation-
ships between objects relying solely on context descriptions,
and this abstract cognitive process may be guided by expe-
rience. For example, given descriptions of cup and table
with their spatial locations, humans can speculate possible
relationships < cup, on, table > or < table, near, cup >.
Even without visual appearance information, some impossi-
ble predicates like flying in and looking at can be empiri-
cally excluded. Accordingly, we propose a contextual scene
graph generation (C-SGG) method without using visual in-
formation and introduce a context augmentation method.
We propose that slight perturbations in the position and size
of objects do not essentially affect the relationship between
objects. Therefore, at the context level, we can produce di-
verse context descriptions by using a context augmentation
method based on the original dataset. These diverse context
descriptions can be used for unbiased training of C-SGG
to alleviate long-tail bias. In addition, we also introduce
a context guided visual scene graph generation (CV-SGG)
method, which leverages the C-SGG experience to guide
vision to focus on possible predicates. Through extensive
experiments on the publicly available dataset, C-SGG al-
leviates long-tail bias and omits the huge computation of
visual feature extraction to realize real-time SGG. CV-SGG
achieves a great trade-off between common predicates and
tail predicates.

1. Introduction

SGG is a challenging technology that identifies triplet
relationships < subject, predicate, object > between ob-
jects from images. With the development of artificial intel-
ligence, SGG has gradually become a bridge from image
recognition to image understanding. Scene graphs are an
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indispensable part of complex visual understanding tasks,
such as visual question answering [24], visual grounding
[21] and visual-language navigation [40]. However, the re-
searches [3, 19, 36]on SGG suffer from two insurmount-
able obstacles. The first is the long-tail bias derived from
datasets. More common predicates such as on and near
have more samples than tail predicates such as from and
above, causing the model to prefer to classify the common
predicates. The second is the low-speed inference in prac-
tical applications. Analyzing the predicate between each
objects-pair to generate a scene graph is a quadratic time
complexity problem, making real-time inference difficult.

On the one hand, some SGG methods [3, 26, 31, 34] are
dedicated to solving the long-tail bias. Tang [26] and Chiou
[2] introduce the causal graph and the label frequency to
reason tail predicates and attempt unbiased SGG inference
based on biased training. Li [11] and Desai [3] propose
to optimize label distribution and rebalance category sam-
pling, which realize unbiased SGG training. However, these
methods increase the recall of tail predicates, but inevitably
reduce the recall of common predicates. The current SGG
methods are difficult to consider and balance the recall of
common predicates and tail predicates simultaneously. We
think the internal reason is that there are not enough data
samples for each predicate.

On the other hand, some SGG methods [18, 33] focus
on improving the inference speed of the SGG task. In de-
tail, Yang [33] designs all objects in a fully connected graph
structure and prunes the connections between objects. It
can reduce the time complexity of SGG inference. Liu [18]
transforms the predicate inference into an integral on rela-
tionship affinity fields. Although the time complexity is not
reduced, the computation amount of integral operation is
much less than that of deep learning calculation of visual
features. These methods improve the inference speed, but
sacrifice the recall performance.

We reflect on the human cognitive process of predicate
analysis between objects and discover two overlooked phe-
nomena. First, humans can roughly infer the predicate be-
tween objects based on the context descriptions only includ-
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Figure 1. A. The example of human speculate predicates based on the context description. B. (a) Use software to change objects in the
image to produce fake images; (b) Project object pairs in the fake image to the context level. C. Examples of C-SGG outputs in different
context descriptions. D. Examples of CV-SGG to further analyze high-confidence relationships and possible predicates.

ing categories and positions. In other words, humans can
speculate and analyze possible relationships through con-
text descriptions even without seeing objects. As shown in
Fig.1 A, when humans know the subject man and the ob-
ject bike, they can speculate and analyze which predicates
are possible (’riding’, ’sitting on’ , ’near’) and which predi-
cates are impossible (’wears’, ’flying in’, ’eating’) based on
past experience. Second, when humans analyze the predi-
cate between the objects-pair, the apparent features of the
objects themself are not important. As shown in Fig.1 B
(a), we use adobe photoshop software to move the human
body and replace the style of the glasses, but the relation-
ship <man,wears, glass> remains the same. Therefore,
we argue that context features may be more important than
visual features in rough predicates judgment.

Based on this thought, we weaken the role of vision
in the SGG task and propose a contextual SGG (C-SGG)
method with context augmentation. As we did in Fig.1 B
(a), software such as photoshop can be used to modify the
image by moving the position and replacing the like objects
without changing the predicate. Different from traditional
image augmentation, HSV variation and size scale chang-
ing the entire image, this kind of image modification will
change the shape and position of a certain object. However,
using software to modify images is an extremely complex
task. We project the modified image to the context level,
as shown in Fig.1 B (b), which is the slight translation and
scale of the object position with a cheap cost, and we named
it context augmentation. In our C-SGG method, we only
use context descriptions to predict predicates, and context
augmentation can increase context description samples of
any tail predicate for unbiased training. To some extent,
through the context augmentation, during our training for

C-SGG, there are no two identical context descriptions. In
addition, since there are no visual image features, we do not
need complex computational models. Although it is still
a quadratic time complexity task, the computation amount
per object pair is extremely cheap.

Certainly, the C-SGG lacks the analysis of the visual in-
teraction information between objects. We also propose a
context guided visual SGG method (CV-SGG) to confirm
truth predicates between object pairs further. As shown
in Fig.1 C, C-SGG can roughly analyze the confidence in
the existence of relationships between objects-pairs and the
possible types of predicates. Our CV-SGG focuses on those
high-confidence relationships and the high possible predi-
cates. We use a simple visual model to extract visual fea-
tures and fuse them with contextual features. During the
training, we apply a ReLuL1 function and only calculate
the loss on high possible predicates. In this way, CV-SGG
only pays attention to possible predicates from C-SGG and
ignores impossible predicates. As shown in Fig.1 D, con-
text guided visual SGG is used to boost the truth predicate
and suppress other possible but false predicates.

We validate our methods on the most common SGG
dataset VG [10] and the latest SGG dataset PSG [32]. Our
methods achieve the best balance between common pred-
icates and tail predicates, and accomplish real-time SGG.
The contributions of this paper can be summarized as:

1) Inspired by the human cognitive process, we propose
context augmentation to produce diverse context de-
scriptions at the context level for unbiased training,
which weakens the role of vision.

2) We propose two methods for SGG: C-SGG which only
uses context descriptions and CV-SGG which guides vi-
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sual attention based on C-SGG results.

3) Based on extensive experiments on two SGG datasets
VG and PSG, our methods have obvious advantages in
dealing with long-tail bias and inference speed.

2. Related Works
Traditional research about SGG is also called visual re-

lationship detection. VRD [19] first proposes the SGG task
based on visual object proposals from RCNN [4, 25]. Re-
searchers have gradually realized the importance of SGG
in image understanding, and many subsequent works in-
cluding IMP [30], Motifs [36], VCTree [27] follow this
task. These works respectively introduce message pass-
ing structures, such as IMP [30], MSDN [14], GPS-Net
[17], GB-Net [35], CISC [29], tree structures including VC-
Tree [27] and CogTree [34], graph structures including G-
RCNN [33], KERN [1] and GCN-SGG [39]. Pixels2Graphs
[22] and FCSGG [18] directly predict object pairs and rela-
tionships from images, without relying on RCNN results.
Seq2Seq-RL [20] introduces using the global context and
the seq2seq transformer to estimate the scene graph. SS-
RCNN [28] achieves one-stage SGG through triple query
based on Sparse R-CNN. OpenPSG [32] combines the
panoptic segmentation and the SGG, and uses the trans-
former structure to simultaneously predict panoptic masks
and relationships. However, in these methods, visual fea-
tures always play a dominant role in SGG and context fea-
tures are often used as auxiliary information. For exam-
ple, RelDN [38] predicts the predicate in the spatial, seman-
tics and visual three channels respectively, and designs the
contrastive losses. GPS-Net [17] concats visual features,
class scores and spatial features as node features and pre-
dicts predicates between nodes based on node features. Mo-
tifs [36] has proposed to use the global bounding boxes and
labels for edge prediction, but global context information
cannot effectively deal with long-tail bias, and the infer-
ence speed of bidirectional LSTM is slow. In our methods,
we only use local context and visual features are discarded.
Our methods extract object pairs for contextual augmenta-
tion training, and uses the results of the contextual scene
graph results to guide visual SGG.

In recent years, due to the extreme imbalance of pred-
icate categories in the SGG dataset, some works have fo-
cused on the long-tail bias to improve the performance of
tail predicate predictions. These works can be divided ac-
cording to whether the training is biased or not. For bi-
ased SGG training, extra information is often learned to
help remove bias during inference. TDE [26] proposes the
causal graph and tries to make the model recognize the deep
mean of object features. Cogtree [34] proposes a coarse-to-
fine method and debris from biased predictions, while BPL-
SA [6] introduces the confusion matrix. DLFE [2] proposes

the label frequency estimation and learns the label frequen-
cies in biased training to remove reporting bias.

For unbiased SGG training, additional data processing
steps help the model to train unbiased. PCPL [31] pro-
poses the predicate correlation and enables the model to
distinguish similar predicates, such as ’on’ and ’parked on’.
GFAL [9] introduces the graph density-aware losses for un-
biased training. DT2-ACBS [3] introduces rebalanced sam-
pling strategy and discusses the impact of different sam-
pling strategy on the SGG task. NICE [11] analyzes the
samples in the dataset to optimize more accurate labels and
generate pseudo-labels that are not labeled. IETrans [37]
proposes internal transfer and external transfer to enhance
SGG dataset. BGNN [13] introduces a bipartite graph net-
work with bi-level data sampling that can account for the
overall recall and the mean recall of predicates. We believe
small changes in objects for producing fake images do not
change predicates between objects, so we project fake im-
ages to the context level to increase the number of context
samples. Then we can obtain diverse context samples for
unbiased training of the contextual SGG.

3. Method
Notation. Given an SGG dataset χ, we donate its corre-

sponding images I , bounding box locations B, objects O,
and relationships R. For SGG, giving an image Ii, we can
get a graph Gi, which is made up of a set of bounding box
locations Bi = {bi1, bi2, ...bin}, bij ∈ R4, objects Oi =
{oi1, oi2, ...oin}, relationships Ri = {ri1, ri2, ..., rim}.
Therefore, the task of SGG can be expressed as:

Pr(B,O,R|I) = Pr(B,O|I)Pr(R|B,O, I), (1)

Following previous works [35, 36, 38], Pr(B,O|I) is al-
ways realized with the help of object detection methods
[25], and the SGG task pays more attention to relationships
generation Pr(R|B,O, I).

3.1. Contextual SGG

In our C-SGG, contextual relationships are learned only
from context descriptions. The context descriptions include
objects O and bounding box locations B, and the learned
possible predicate knowledge, which we donate Rc. The
process of SGG from the context descriptions can be ex-
pressed as follows:

Pr(Rc|B,O). (2)

Before C-SGG training, we preprocess the context to
augment the context description. Traditional image aug-
mentation enriches the color and size of the entire image,
but the size and relative position of objects stay unchanged.
For the prediction of predicates between objects, we believe
that the apparent features of the image are not important, but
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Figure 2. Illustration of our C-SGG and CV-SGG methods. We employ other object detection models to obtain categories and bounding
boxes as the context description. For C-SGG, our context augmentation method is used to generate diverse context descriptions and these
context descriptions are input into the simple CKN network to estimate possible predicates. For CV-SGG, the image with masks are input
into the VDN network, then the contextual mask Rmask guide the VDN focus on those possible predicates.

the size of the objects themselves and the positional rela-
tionship between objects are more critical. For example, in
Fig.2, the relationship is <man,wearing, glasses>. The
body of the man may be tall or short, fat or thin. The style
of the glasses may be large or small, and the location of the
glasses may move with the head. However, the predicate
wearing between the man and glasses has never changed.
Therefore, we attempt to produce fake images by changing
the position of the object and replacing the style of the ob-
ject, but it is extremely labor-intensive. At the context level,
the process of producing fake images can be viewed as per-
turbing the position of the bounding box of objects with a
cheap cost.

As shown in Fig.2, we obtain the category and bound-
ing box of the object in the image through the com-
mon object detection algorithm. For the j object in the
i image, the normalized location can be represented as:
bij = [x1ij , y1ij , x2ij , y2ij ]. Then we add random con-
text augmentations to the position, denoted as b̃ij =

[x̃1ij , ỹ1ij , x̃2ij , ỹ2ij ] = [x1ij + ε1, y1ij + ε2, x2ij +
ε3, y2ij + ε4], ε is random augment factor. For the category
of the object oij , we use the glove word2vector model [23]
to convert the category of object oij into semantic word vec-
tor o⃗ij , o⃗ij ∈ R50. The location vector b⃗ij consists of b̃ij ,
b⃗ij = [x̃1ij , ỹ1ij , x̃2ij , ỹ2ij , x̃cij , ỹcij ]×5, b⃗ij ∈ R30. x̃cij
and ỹcij are the center of the bounding box, and we repeat
the location by 5 times to enhance location features. For the

two objects j1 and j2, the final vector of context description
can be expressed:

D⃗ = [o⃗ij1 , b⃗ij1 , o⃗ij2 , b⃗ij2 , b⃗ij1 − b⃗ij2 ], D⃗ ∈ R190. (3)

We construct a simple and effective context knowledge
network (CKN) to generate possible contextual predicates
based on context description vectors D⃗. In detail, we use
three fully connected network layers with a sigmoid layer.
The output dimension of the CKN corresponds to the num-
ber of predicates in the dataset. The loss consists of two
parts, the confidence loss Lckn

conf and the predicate loss
Lckn
rel . Both two loss are calculated by Binary Cross Entropy

(BCE) function. The CKN predicts the likelihood and pos-
sible predicates of relationships between two contextually
described objects. In this way, based on raw data samples
in the dataset, we generate diverse context descriptions for
each predicate through random context augmentations, and
achieve C-SGG through CKN without vision.

3.2. Context Guided Visual SGG

We are able to pick out possible predicates through the
C-SGG, but since no visual information is used, the predic-
tion is empirical. We further propose a CV-SGG, combining
visual and contextual. The process of learning relationships
from CV-SGG can be expressed as:

Pr(Rv|B,O, I,Rc). (4)
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Based on object detection results, we can get the loca-
tion of objects. We make the subject mask and the object
mask according to the location of the object pair. We com-
press the subject mask, the original image and the object
mask together to form visual pair information, and feed it
to the vision differentiation network (VDN). The VDN is
constructed by a ResNet [7] for extracting visual features,
followed by a flattened layer and a fully connected layer
with a sigmoid for predicate prediction.

From C-SGG, the CKN predicts the confidence scores
and possible predicates. We expect that VDN can focus
on possible predicates, ignore impossible predicates (e.g.
< human, above, glass >), and differentiate the truth
predicate relationship Rv based on vision. Based on Rc,
we generate an Rmask for the most possible Nmask predi-
cates. Then we design a ReLuL1 loss including Lvdn

boost and
Lvdn
suppress to boost or suppress Rv .

Lvdn
boost = ReLu(Rc

p=pt −Rv
p=pt + η), (5)

Lvdn
suppress = ReLu(Rv

p ̸=pt −Rc
p ̸=pt + η)×Rmask, (6)

For the truth predicate pt in eq.5, we suppose that visual
understanding Rv can further boost contextual probability
Rc. For the false predicate in eq.6, we suppose the visual
understanding Rv can suppress contextual probability Rc,
and only high possible predicates based on contextual mask
Rmask will be calculated, η is a boost factor. For exam-
ple, in Fig.2, the model learns from the C-SGG that has,
near, wears are high possible predicates under the current
context description which can generate a Rmask. During
CV-SGG, the visual information only focuses on and ana-
lyzes these possible predicates. Just like analysis pattern of
human beings, relationships that are beyond the scope of
empirical cognition are not considered.

During the final inference, context and vision are both
considered:

R = (αRc + (1− α)Rv)×Rmask, (7)

Where α is an empirical factor. The larger α is, the model
more believes in the inherent context experience. The
smaller α is, the model more believes in the visual analysis.
Similarly, only high possible predicates can be imagined in
inference through Rmask.

3.3. Implementation detail

For C-SGG, we perform context description augments
during training. We set the context augmentation factor ε
below 0.05. We also adopt a similar alternating class bal-
anced sampling [3] strategy to make the samples of each
predicate as equal as possible, the difference is that our
samples are enhanced by context descriptions. Even for the
same sample, the context description of the input model af-
ter context augmentation is different. We trained it on an

RTX2070 SUPER with 256 batch size, which only takes up
1.8G GPU memory without visual information. The epoch
is 2000 for 8 hours of training. The initial learning rate is
set to 0.04 and drops during training.

For CV-SGG, the inputs size of VDN are resized to
224×224×5, including two masks and an image. As for
the Rmask, we count the output of C-SGG and find that in
the test samples of the VG dataset, the probability of the
truth predicate being included in the top 3, 5, and 10 possi-
bilities is 89%, 95%, and 98%, respectively, so we set the
Nmask = 10. The boost factor η is set to 0.1, and the em-
pirical factor α is set to 0.7 for balance context experience
and vision analysis. We trained it on an RTX3090Ti with 64
batch size. The epoch is 100 for 60 hours of training. The
initial learning rate is set to 0.002 and drops during training.

4. Experiments

4.1. Dataset and Metrics

We train and evaluate our method on the challenging
SGG dataset VG [10,26]. VG contains approximately 108k
images, with 70% for training and 30% for testing from the
Visual Genome dataset [10]. The relationships include the
most frequent 150 object categories and 50 predicate cate-
gories. In total, the number of original object pair context
descriptions in the VG training set is 342,363. There are
101,843 and 54,317 samples for the common predicates on
and has, while only 121 and 260 samples for the tail predi-
cates playing and across. The task requires outputting the
results of object detection and the scene graph.

We also evaluate our method on the latest SGG dataset
PSG [32]. PSG contains 46697 images for training, and
1989 images for validation and testing from the COCO
dataset [16]. Each image has a corresponding panoptic seg-
mentation label. For relationships, it includes 133 objects
(i.e., things plus stuff) and 56 predicates with appropriate
granularity and minimal overlaps. The number of original
object pair context descriptions in the PSG training set is
261,666. There are 52,974 and 45,032 samples for the most
common predicates on and beside, while only 7 and 8 sam-
ples for the tail predicates falling off and picking. The
task requires outputting the results of panoptic segmentation
and the scene graph.

This paper focuses on the scene graph. We evaluate
our method on two standard SGG tasks: Predicate Clas-
sification (PredCls) and Scene Graph Generation (SGGen).
For PredCls, given the ground-truth objects Ot and loca-
tions Bt (or panoptic segmentation mask M t), we only
need to predict the predicate category of relationships,
P (R|Bt(M t), Ot, I). For SGGen, only given the image
I , we need to generate the scene graph, P (B(M), O,R|I).

The metrics of SGG including Recall@K (R@K) [19],
mean Recall@K (mR@K) [27], Mean@K [11], F@K
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PredCls SGGenMethod R@50/100 mR@50/100 Mean@50/100 F@50/100 R@50/100 mR@50/100 Mean@50/100 F@50/100
IMP [30]CVPR’2017 61.1/63.1 11.0/11.8 36.1/37.4 18.6/19.9 25.9/31.2 4.2/5.3 15.1/18.3 7.2/9.1
FREQ [36]CVPR’2018 60.6/62.2 13.0/16.0 36.8/39.1 21.4/25.5 26.2/30.1 6.1/7.1 16.2/18.6 9.9/11.5
G-RCNN [33]ECCV’2018 64.8/66.7 16.4/17.2 40.6/42.0 26.2/27.4 29.7/32.8 5.8/6.6 17.8/19.7 9.7/11.0
KERN [1]CVPR’2019 65.8/67.6 17.7/19.2 41.2/43.4 27.9/29.9 27.1/29.8 6.4/7.3 16.8/18.6 10.4/11.7
GB-NET [35]ECCV’2020 66.6/68.2 22.1/24.0 44.4/46.1 33.2/35.5 26.3/29.9 7.1/8.5 16.7/19.2 11.2/13.2
BGNN [13]CVPR’2021 59.2/61.3 30.4/32.9 44.8/47.1 40.2/42.8 31.0/35.8 10.7/12.6 20.9/24.2 15.9/18.6
DT2-ACBS [3]ICCV’2021 23.3/25.6 35.9/39.7 29.6/32.7 28.3/31.1 15.0/16.3 22.0/24.4 18.5/20.4 17.8/19.5
PCPL [31]ACM MM’2021 50.8/52.6 35.2/37.8 43.0/45.2 41.6/44.0 14.6/18.6 9.5/11.7 12.1/15.2 11.5/14.4
FCSGG [18]CVPR’2021 41.0/45.0 6.3/7.1 23.7/26.1 10.9/12.3 21.3/25.1 3.6/4.2 12.4/14.7 6.0/7.2
SGTR [12]CVPR’2022 - - - - 24.6/28.4 12.0/15.2 18.3/21.8 16.1/19.8
SS-RCNN [28]CVPR’2022 - - - - 33.5/38.4 8.6/10.3 21.0/24.4 13.7/16.2
Motifs [36]CVPR’2018 65.5/67.2 16.5/17.8 41.0/42.5 26.4/28.1 32.1/36.9 5.5/6.8 18.8/21.9 9.4/11.5
+TDE [26]CVPR’2020 46.2/51.4 25.5/29.1 35.9/40.3 32.9/37.2 16.9/20.3 8.2/9.8 12.6/15.1 11.0/13.2
+CogTree [34]IJCAI’2021 35.6/36.8 26.4/29.0 31.0/32.9 30.3/32.4 20.0/22.1 10.4/11.8 15.2/16.9 13.7/15.4
+DLFE [2]ACM MM’2021 52.5/54.2 26.9/28.8 39.7/41.5 35.6/37.6 25.4/29.4 11.7/13.8 18.6/21.6 16.0/18.8
+BPL-SA [6]ICCV’2021 50.7/52.5 29.7/31.7 40.2/42.1 37.5/39.5 23.0/26.9 13.5/15.6 18.3/21.3 17.0/19.8
+NICE [11]CVPR’2022 55.1/57.2 29.9/32.3 42.5/44.8 38.7/41.3 27.8/31.8 12.2/14.4 20.0/23.1 17.0/19.8
+IETrans [37]ECCV’2022 48.6/50.5 35.8/39.1 42.2/44.8 41.2/44.1 23.5/27.2 15.5/18.0 19.5/22.6 18.7/21.7

VCTree [27]CVPR’2019 65.9/67.5 17.1/18.4 41.5/43.0 27.2/28.9 32.0/36.2 7.2 / 8.4 19.6/22.3 11.8/13.6
+TDE [26]CVPR’2020 47.2/51.6 25.4/28.7 36.3/40.2 33.0/36.9 19.4/23.2 9.3/11.1 14.4/17.2 12.6/15.0
+CogTree [34]IJCAI’2021 44.0/45.4 27.6/29.7 35.8/37.6 33.9/35.9 18.2/20.4 10.4/12.1 14.3/16.3 13.2/15.2
+DLFE [2]ACM MM’2021 51.8/53.5 25.3/27.1 38.6/40.2 34.0/35.9 22.7/26.3 11.8/13.8 17.3/20.1 15.5/18.1
+BPL-SA [6]ICCV’2021 50.0/51.8 30.6/32.6 40.3/42.2 38.0/40.0 21.7/25.5 13.5/15.7 17.6/20.6 16.6/19.4
+NICE [11]CVPR’2022 55.0/56.9 30.7/33.0 42.9/45.0 39.4/41.8 27.0/30.8 11.9/14.1 19.5/22.5 16.5/19.3
+IETrans [37]ECCV’2022 48.0/49.9 37.0/39.7 42.5/44.8 41.8/44.2 23.6/27.8 12.0/14.9 17.4/21.4 15.2/19.4

C-SGG(Ours) 55.2/59.2 32.9/36.0 44.1/47.6 41.2/44.7 26.7/30.5 14.8/17.1 20.8/23.8 19.0/21.9
CV-SGG(Ours) 58.2/62.4 32.6/36.2 45.4/49.3 41.8/45.8 27.8/32.0 14.6/17.0 21.2/24.5 19.2/22.2

Table 1. Comparison results of SOTA SGG methods on the VG dataset. The excellent result of each group has been marked in blue, while
the best result is marked in red.

[37]. R@K calculates the proportion of top-K confident
triplets contained in the ground truth, and each triplet only
counts the highest score predicate. mR@K calculates the
R@K for each predicate category separately. Mean@K is
the arithmetic average of R@K and mR@K. F@K is the
harmonic average of R@K and mR@K. Since there are
more common predicate samples in the dataset, R@K is
more suitable for evaluating the recall of common predi-
cates. While a few tail predicate samples lead to dramatic
influence on mR@K, mR@K is more concerned with the
recall of tail predicates. Mean@K and F@K are proposed to
analyze the balance performance of R@K and mR@K. For
fairness, we use the same evaluation system as TDE [26].

4.2. Evaluation on VG dataset

We first compare our results with the previous SOTA
methods on the VG dataset in Table 1. We roughly divide
previous methods into 3 groups. The first group methods
do not depend on the previous SGG methods, the second
group methods are modifications based on Motifs, and the
third group methods are improvements based on VCTree.

We pay more attention to achieving the balance between
recall R@K and mean recall mR@K, and want to optimize
long-tail bias while maintaining a high overall recall. So
Mean@K and F@K metrics are more critical. The Pred-

Cls task only focuses on predicates based on known objects.
Although our method is not the best in the metrics of R@K
and mR@K, our method can find the optimal balance and
achieve the SOTA result on Mean@K and F@K. Our C-
SGG method has achieved excellent performance without
using vision, while CV-SGG method has further improved
the R@K without reducing the mR@K by using visual in-
formation. FREQ from [36] is a method of generating re-
lationships by statistical frequency without visual informa-
tion. Compared with it, our C-SGG method has obvious ad-
vantages. The SGGen task needs to detect objects and gen-
erate predicates, forming triple relationships. Our method
still achieves SOTA results on balanced metrics Mean@K
and F@K. Our method is based on local context for reason-
ing, and it can flexibly combine different object detection
models to achieve the SGGen task.

For the SGG task, we verify that the apparent features
of objects are not important, and the contextual description
of object categories and locations is sufficient to infer pred-
icates between objects. In Figure 3, we manifest the re-
call for each predicate on the SGGen task by the results
from our CV-SGG and Motifs. From the trend, due to the
long-tail bias, as the occurrences of the predicate category
in the training set decrease, the corresponding recall in the
test set decreases. Motifs with biased training performs bet-
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PredCls SGGenMethod PQ R@20/100 mR@20/100 Mean@20/100 F@20/100 R@20/100 mR@20/100 Mean@20/100 F@20/100
IMP [30]CVPR’2017 40.2 31.9/38.9 9.55/11.6 20.7/25.3 14.7/17.9 16.5/18.6 6.52/7.23 11.5/12.9 9.3/10.4
MOTIFS [36]CVPR’2018 40.2 44.9/52.4 20.2/22.9 32.6/37.7 27.9/31.9 20.0/22.0 9.10/9.69 14.6/15.8 12.5/13.5
VCTree [27]CVPR’2019 40.2 45.3/52.7 20.5/23.3 32.9/38.0 28.2/32.9 20.6/22.5 9.70/10.2 15.2/16.4 13.1/14.0
GPSNet [17]CVPR’2020 40.2 31.5/44.7 13.2/18.4 22.4/31.5 18.6/26.0 17.8/20.1 7.03/7.67 12.4/13.9 10.1/11.1
C-SGG(Ours) 40.2 36.5/46.5 32.5/36.4 34.5/41.5 34.4/40.8 18.1/21.6 16.6/17.8 17.4/19.7 17.3/19.5
PSGTR [32]ECCV’2022 13.9 - - - - 28.4/36.3 16.6/22.1 22.5/29.2 20.9/27.5
PSGFormer [32]ECCV’2022 36.8 - - - - 18.0/20.1 14.8/17.6 16.4/18.9 16.2/18.8
C-SGG*(Ours) 55.4 36.5/46.5 32.5/36.4 34.5/41.5 34.4/40.8 24.0/29.0 24.1/26.3 24.0/27.7 24.0/27.6
CV-SGG*(Ours) 55.4 38.0/49.1 30.0/33.8 34.0/41.5 33.5/40.0 25.3/29.8 23.0/25.8 24.2/27.8 24.1/27.7

Table 2. Comparison results of SOTA SGG methods on the PSG dataset. The excellent results based on the same panoptic segmentation
model has been marked in blue, and the best results has been marked in red. * indicates that using the newer panoptic segmentation
results [15].

ter in common predicates but falls off a cliff in tail predi-
cates. For these tail predicates, our context augmentation
method can evolve different context description samples for
conducting unbiased training, which eliminates long-tailed
bias. In addition, for tail predicate categories, such as says
and flying in, the recall performs well. It is due to the
strong correlation between predicates and object categories,
and our method may learn some fixed collocation from con-
text. For example, the tail predicate flying in always ap-
pears with airplane, and says always appears with sign at
the same time.

4.3. Evaluation on PSG Dataset

We also perform our method on the PSG dataset and the
results are shown in Table 2. For a fair comparison, we di-
vide the previous methods into two groups. The first group
used the same panoptic segmentation results from [32] for
the SGG task. In the second group we substitute the newer
panoptic segmentation results [15] to generate scene graphs
and compare with recent end-to-end models.

Panoptic quality (PQ) [8] is an evaluation metric for
panoptic segmentation, and in the first group, the two-
stage SGG methods all make predictions based on the same
panoptic segmentation results. Due to the PSG dataset be-
ing relatively new, there is almost no research on the long-
tailed bias in the PSG dataset. Our method with cheap con-
text augmentation is optimal on the mR@K, Mean@K and
F@K metrics on the PSG dataset. As for the second group,
the end-to-end methods PSGTR [32] and PSGFormer [32]
estimate panoramic segmentation results and scene graphs
directly from images. Our method is a flexible two-stage
method, in the first stage, we can utilize the SOTA panoptic
segmentation method [15], and the second stage uses our
methods for scene graph inference. From the results, our
CV-SGG can improve on the R@K while slightly decreas-
ing on the mR@K, which is similar to the VG results. In
fact, PSGTR and PSGFormer output both panoramic seg-
mentation and scene graph, and it is difficult to both account
for the PQ of panoptic segmentation and the recall of SGG.

4.4. Model Size and Speed

In our opinion, inference speed is also an important eval-
uation metric for the SGG task. Although current deep-
learning algorithms can achieve object detection in real-
time (FPS>30), no SGG algorithm that can infer in real-
time due to the quadratic time complexity. Our CSGG
method does not need to extract visual features and can be
embedded into the backend of any real-time object detec-
tion method to achieve real-time SGG. Here we choose the
yolov5l [5] model to cooperate with our method for real-
time SGG, and the comparison with the previous method is
shown in Table 3. For a fair comparison in inference speed
[18], we also test these mentioned methods on a RTX2070
SUPER GPU device based on open codes [18, 26, 32].

In terms of model size, C-SGG merely has three fully
connected layers with few model parameters, while yolov5l
has more parameters. As for FPS, C-SGG has great advan-
tages, with the floating point operations (FLOPs) for each
object pair only 0.2M. Even if there are 10000 object pairs
(100 objects) in the image to be detected, only 2 GFLOPs
are required, far less than once image feature extraction.
Our C-SGG method may be the first high-performance SGG
method capable of running in real-time. In table 3, based
on C-SGG, only the most possible 100 object pairs are se-
lected for CV-SGG, which greatly reduces the time com-
plexity and accelerates CV-SGG inference.

4.5. Ablation study

We perform extensive ablation studies to explore in de-
tail the impact of hyperparameter factors in C-SGG and CV-
SGG. For our proposed context augmentation method, we
have studied the influence of the random context augmen-
tation factor ε in Table 4. The larger the ε is, the greater
the change of context description. Too large ε may cause
the model to learn some unreal predicates. We also show
the performance of different boost factors η about ReLuL1
loss in Table 5. For our CV-SGG, ReLuL1 loss can bring
substantial improvement compared with BCE loss, but ex-
tremely large η causes CV-SGG to lose performance on
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Figure 3. SGGen predicate analysis on the VG dataset. The predicate categories are
ordered by the number of samples in the training set. Dotted lines represent trends.

Method #Param
(M) Input Size FPS

IMP 293.9 600×1000 4.05
VCTree 341.8 600×1000 4.24
Motifs 349.8 600×1000 4.00

FCSGG-W32-1S 31.8 512×512 10.3
FCSGG-W48-5S-FPN×2 83.0 640×1024 5.89

PSGFormer 50.4 800×1333 4.52
PSGTR 42.4 800×1333 3.2

Yolov5l+C-SGG 45+0.2 640×640 33.5
Yolov5l+CV-SGG 45+10 640×640 6.4

Table 3. Comparisons of Inference Efficiency.

Model Augment PredCls
R@50/100 mR@50/100 Mean@50/100 F@50/100

C-SGG - 43.8/48.0 31.2/35.6 37.2/41.8 36.4/40.9
C-SGG ε = 0 59.2/61.9 26.3/29.5 42.7/45.7 36.4/40.0
C-SGG ε = 0.01 59.3/62.4 27.8/30.2 43.6/46.3 37.9/40.7
C-SGG ε = 0.05 55.2/59.2 32.9/36.0 44.1/47.6 41.2/44.7
C-SGG ε = 0.1 52.2/56.4 33.8/37.2 43.6/45.1 41.4/45.0

Table 4. Ablation study about augment factor ε on the VG dataset. − indicates no
bounding box locations in C-SGG, and ε = 0 indicates the bounding box locations is
used, but no context augmentation is done.

Model ReLuL1 PredCls
R@50/100 mR@50/100

CV-SGG - 60.2/62.5 23.1/26.4
CV-SGG η = 0.05 57.9/61.5 31.8/35.1
CV-SGG η = 0.1 58.2/62.4 32.6/36.2
CV-SGG η = 0.2 59.3/63.2 27.7/30.1

Table 5. Ablation study about ReLuL1 loss and
boost factor η on the VG dataset. − indicates that
the BCE loss is used.

Model Experience SGGen
R@20/100 mR@20/100 Mean@20/100 F@20/100

CV-SGG* α = 0 25.0/30.1 12.6/13.1 18.8/22.1 16.8/19.2
CV-SGG* α = 0.1 26.2/31.2 14.8/16.3 20.5/23.8 18.9/21.4
CV-SGG* α = 0.3 26.3/31.1 16.3/18.2 21.3/24.7 20.1/23.0
CV-SGG* α = 0.5 25.7/30.2 22.3/24.8 24.0/27.5 23.8/27.1
CV-SGG* α = 0.7 25.3/29.8 23.0/25.8 24.2/27.8 24.1/27.7
CV-SGG* α = 0.9 24.0/28.4 23.3/26.2 23.7/27.3 23.6/27.3

Table 6. Ablation study about empirical factor α on the PSG dataset. When α=1,
CV-SGG is equal to C-SGG.

Model Rmask SGGen
R@20/100 mR@20/100

(C)V-SGG* Nmask = 0 26.0/30.4 16.5/18.2
CV-SGG* Nmask = 3 24.4/29.2 22.8/25.9
CV-SGG* Nmask = 5 24.9/29.8 23.2/25.8
CV-SGG* Nmask = 10 25.3/29.8 23.0/25.8
CV-SGG* Nmask = 20 25.6/30.0 21.6/23.7

Table 7. Ablation study about the contextual mask
Rmask on the PSG dataset. Nmask = 0 means no
context Rmask guidance in the training, CV-SGG
degenerates to visual SGG.

tail predicates. Our CV-SGG considers the final predicate
comprehensively through an empirical factor α. In Table
6, when α is equal to 0, the model only believes in visual
analysis. As α increases, the model more believes in context
experience to judge predicates. We introduce a contextual
mask Rmask to guide visual attention to possible predicates
in CV-SGG. In Table 7, we show the effect of different mask
size Nmask on the performance of CV-SGG. CV-SGG using
Rmask guidance performs better in each predicate recall.

5. Conclusion

In this paper, we consider that visual appearance features
may have an unessential effect on SGG and accordingly
propose a C-SGG method solely using context descriptions.
We notice that slight changes in the size and position of ob-
jects do not dramatically affect predicates between object
pairs. Based on the local context samples of the dataset,
we introduce the context augmentation method to produce
diverse training samples at the context level, realizing unbi-

ased training for C-SGG. Due to removing visual features,
low computational cost allows C-SGG to achieve real-time
SGG. Additionally, we also introduce a CV-SGG method
that guides visual attention to possible predicates based on
C-SGG results. Experiments demonstrate that our context-
focused methods to SGG can alleviate long-tail bias and
improve inference speed. We hope this phenomenon can
inspire the following SGG research.

Limitations. Since our our method significantly weak-
ens the visual information, it is still difficult to discern those
complex predicates such as against and belong to. Be-
sides, we use the local context description of object pairs,
which may cause SGG to lack consideration of the global
scene.
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