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Figure 1. (A): a photo (credit David Clapp) with an off-centered principal point due to cropping. (B), (C): assuming traditional pinhole
model with principal point at the center, as used by [10, 24, 29], there is no way to correctly represent both up directions (wrong in B)
and horizon (wrong in C). (D): Our proposed Perspective Fields model correctly models the Up-vectors (arrows) aligned with gravity, and
Latitude values (contour line: −π/2 π/2) with 0◦ on the horizon. We can further recover camera parameters Roll −0.5◦, Pitch
1.7◦, FoV 64.6◦ and principal point at × from the prediction.

Abstract

Geometric camera calibration is often required for ap-
plications that understand the perspective of the image. We
propose Perspective Fields as a representation that mod-
els the local perspective properties of an image. Perspec-
tive Fields contain per-pixel information about the cam-
era view, parameterized as an Up-vector and a Latitude
value. This representation has a number of advantages; it
makes minimal assumptions about the camera model and
is invariant or equivariant to common image editing op-
erations like cropping, warping, and rotation. It is also
more interpretable and aligned with human perception. We
train a neural network to predict Perspective Fields and
the predicted Perspective Fields can be converted to cali-
bration parameters easily. We demonstrate the robustness
of our approach under various scenarios compared with
camera calibration-based methods and show example ap-
plications in image compositing. Project page: https:

//jinlinyi.github.io/PerspectiveFields/

* Work partially done during internship at Adobe.

1. Introduction

Take a look at the left-most photo in the teaser (Fig. 1-
A). Can you tell if the photo is captured from an everyday
camera and if it has been geometrically edited? The horizon
location at the bottom of the image and the parallel vertical
lines of the buildings do not follow a typical camera model:
The horizon at the bottom of the image indicates the cam-
era was tilted up (pitch ̸= 0), but this would instead pro-
duce converging vertical lines in the image due to perspec-
tive projection (Fig. 1-B). Alternatively suppose the camera
has 0 pitch, preserving the vertical lines of the buildings,
the horizon line would instead be in the middle of the image
(Fig. 1-C). This contradiction is explained by the shift of the
photo, yielding a non-center principal point, and breaking a
usual assumption of many camera calibration systems.

Many single-image camera calibration works make use
of a simplified pinhole camera model [22] that assumes a
centered principal point [10,24,29] and is parameterized by
extrinsic properties such as roll, pitch, and intrinsic proper-
ties such as field of view. However, estimating the calibra-
tion of a camera is challenging for images in the wild since
they are captured by various types of cameras and lenses.
Moreover, like the example in Fig. 1, the images are often
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cropped [15] or warped for aesthetic composition, which
may shift the image center.

In this work, we propose Perspective Fields, an over-
parameterized per-pixel image-based camera representa-
tion. Perspective Fields consist of per-pixel Up-vectors and
Latitude values that are useful on their own for alignment
and can be converted to calibration parameters easily by
solving a simple inverse problem. The Up-vector gives the
world-coordinate up direction at each pixel, which equals
the inverse gravity direction of the 3D scene projected onto
the image. The Latitude is the angle between the incom-
ing light ray and the horizontal plane (see Fig. 1-D). This
enables our method to be robust to cropping and we show
results on multiple camera projection models.

Perspective Fields have a strong correlation with local
image features. For example, the Up-vectors can be in-
ferred by vertical edges in the image, and the Latitude is
0 at the horizon, positive above, and negative below. Since
Perspective Fields have this translation-equivariance prop-
erty, they are especially well suited to prediction by con-
volutional neural networks. We train a neural network to
predict Perspective Fields from a single image by extracting
crops from 360◦ panoramas where ground truth supervision
can be easily obtained (see Fig. 2). We also use a teacher-
student distillation method to transfer Perspective Fields to
object-cutouts, which lets us train models to predict Per-
spective Fields for object-centric images.

For applications that require traditional camera parame-
ters (e.g. roll, pitch, field of view and principal point), we
propose ParamNet to efficiently derive camera parameters
from Perspective Fields. Our method works on image crops
and outperforms existing methods in single image camera
parameter estimation. In addition, Perspective Fields can
be used in image compositing to align the camera view be-
tween a foreground object and the background based on a
local Perspective Field matching metric. We show with a
user study that this metric for view alignment more closely
matches human perspective than existing camera models.

Our contributions are summarized as follows.
• We propose Perspective Fields, a local and non-

parametric representation of images with no assump-
tion of camera projection models.

• We train a network to predict Perspective Fields that
works on both scene-level and object-centric images,
and we propose ParamNet to efficiently derive camera
parameters from Perspective Fields. Our Perspective
Fields achieve better performance on recovering cam-
era parameters than existing approaches. On cropped
images, we reduce the pitch error by 40% over [29].

• We propose a metric of Perspective Fields to esti-
mate the low-level perspective consistency between
two images. We show that this consistency measure is
stronger in correlation with human perception of per-

spective mismatch than previous metrics such as Hori-
zon line [24, 47].

2. Related Work

Calibration for perspective images. Most calibration
methods aimed at consumer cameras assume a pinhole cam-
era model [22] to estimate both its intrinsics and extrinsics.
Traditional camera calibration processes require a reference
object like chessboards or planar grids [5, 13, 14, 20, 21,
23, 36, 41, 43, 52], or multiple images [18, 22, 42]. Other
methods strongly rely on the Manhattan world assump-
tion to estimate camera parameters via vanishing points
[8, 9, 12, 22, 28, 37, 40]. Recently, deep learning meth-
ods directly predict camera parameters from single images,
including horizon line [47] and focal length [46]. Hold-
Geoffroy et al. [24] further extend a CNN to simultaneously
predict camera roll, pitch, and FoV. UprightNet [48] pre-
dicts 3D surface geometry to optimize for camera rotation.
A few works [29, 30, 50] combine learned features with de-
tected vanishing points to improve performance. However,
these methods are limited to perspective images with a cen-
tered principal point and often do not work on images in the
wild where the centered pinhole assumption does not hold
due to cropping, warping, or other similar edits.
Calibration for non-pinhole camera models. Besides the
common pinhole camera model, prior works have proposed
different non-linear models such as Brown-Conrady for
small distortions [16], the division model [17] for fisheye
cameras, and the unified spherical model [7,19,35]. Assum-
ing certain distortion models, learning-based methods can
recover focal length and distortion parameter [3,10,31,34].
With a known 3D shape and its correspondences, [11, 38]
can recover lens distortions. Instead of relying on a spe-
cific lens model, we propose a generic representation that
stores the up and latitude information for each pixel. This
local representation encompasses multiple camera projec-
tion models. Our versatile Perspective Field can be used to
recover the parameters of a specific model, if desired.
Perspective aware object placement. Many works aim to
automate the image compositing process by directly learn-
ing to match lighting, scale, etc. [27, 44, 51, 53]. To plau-
sibly composite an object in a background image, one can
match their camera parameters. One way to achieve this is
to match the horizon lines between two images [24,26]. All
these methods share the same limitations as the perspective
image calibration methods due to their assumptions.

3. Method
We first define Perspective Fields and show some exam-

ples on various images. Then we show how we train a net-
work to recover Perspective Fields from a single image. Fi-
nally, we demonstrate some downstream applications that
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Figure 2. Example ground truth Perspective Fields for different camera parameters. Image (A) - (E) are generated from the 360◦ panorama
(middle top). Image (A, B, C) is perspective projection (Up-vectors point to vertical vanishing point, Horizon is a straight line at Latitude
0◦, and (B) has a shifted principal point to preserve parallel lines. (D) is a rectangular crop from the equirectangular input (Up-vectors
point vertically) and (E) has radial distortion [7, 10, 35]. For each view, we visualize the Up-vector field in green arrows and the Latitude
field using a blue-red color map with contour lines. Latitude colormap: −π/2 π/2.

Perspective Fields enable, including camera parameter re-
covery, image compositing, and object cutout calibration.

3.1. Definition of Perspective Fields

Each pixel x ∈ R2 on the image frame is originated from
a light ray R ∈ R3 emitted from a 3D point in the world
frame X ∈ R3. When the ray travels through the camera,
it is bent by the lens and projected onto the image frame.
We assume an arbitrary projection function x = P(X) that
maps a point in the world to the image plane. We denote
the gravity direction in the world frame to be a unit vector
g. For each pixel location x, a Perspective Field consists of
a unit Up-vector ux and Latitude φx. The Up-vector ux is
the projection of the up direction of X, or

ux = lim
c→0

P(X− cg)− P(X)

||P(X− cg)− P(X)||2
(1)

The limit is not required for perspective projection since it
preserves straight lines. The Latitude φx of this pixel is
defined as the angle between the ray R and the horizontal
plane, or

φx = arcsin

(
R · g
||R||2

)
. (2)

This representation is applicable to arbitrary camera
models. In Fig. 2, we illustrate the Perspective Field repre-
sentation of images captured from commonly used cameras
extracted from a 360◦ panorama. Although our representa-
tion is general, we mainly focus on perspective projection
to compare with existing works and leave extensive appli-
cations to other camera models for future work.

3.2. Estimating Perspective Fields

Our goal is to train a neural network to estimate Perspec-
tive Fields from a single image. To do this, we introduce
PerspectiveNet (Fig. 3 left), an end-to-end network that
takes a single RGB image as input and outputs a per-pixel

value for Up-vector and Latitude. Unlike previous camera
calibration works where the network outputs a single vec-
tor of camera parameters [24, 29], the output of our system
has the same dimension as the input, making it amenable to
pixel-to-pixel architectures [6,39,49]. We train our Perspec-
tiveNet on crops from 360◦ panoramas with cross entropy
loss Lpers. (see Sec. 3.3.)
Camera parameters from Perspective Fields. When cam-
era parameters from specific models are needed, we can re-
cover the camera parameters from Perspective Fields. For
instance, if we parameterize perspective projection by roll,
pitch, and field of view following [24, 29], and optionally
the principal point location, we can represent these with a
vector θ. As extracting these parameters requires combin-
ing potentially noisy Perspective Field estimates, we extract
them by training a neural network named ParamNet that
maps the Perspective Fields to the camera parameters, as
shown in Fig. 3. This network is trained directly with a sum
of ℓ1 losses Lparam = Σ||θi − θ̂i||1.
Perspective Fields as a metric for perspective mismatch.
Our representation is easy to interpret: the Up-vectors align
with structures that are upright, such as trees and vertical
lines on buildings; the Latitude values align with viewpoint
direction: if the top of an upright object is visible. There-
fore, we propose to use Perspective Fields agreement as a
measurement for the image compositing quality between a
foreground object and background scene. We propose Per-
spective Field Discrepancy (PFD), which is defined as the
sum of the difference between the Up-vectors and the Lati-
tude values, or

EPFD = λarccos(u1 · u2) + (1− λ)||l1 − l2||1, (3)

where ui is the Up-vector and li is the Latitude value. The
weight λ = 0.5 is used in our experiments. Both the Up-
vector and the Latitude are in an angular space, so we can
take a weighted sum of their angular differences. We ag-
gregate the metric by averaging the PFD over all the pixels,
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Figure 3. Left: We use a pixel-to-pixel network (PerspectiveNet) to predict Perspective Fields from a single image. Right: When classical
camera parameters are needed, we use a ConvNet (ParamNet) to extract this information directly from the Perspective Fields.

denoted as APFD. The experiment in Sec. 4.3 shows that the
proposed metric strongly correlates with human perception.

Object cutout calibration. Image composition often in-
volves compositing a segmented object with a scene. As
foreground objects contain little to no background informa-
tion, camera calibration methods, including our scene level
Perspective Field prediction network, fail on such images
due to the domain gap between the panorama training data
and the real object images (see Table 2).

We can easily train Perspective Fields on objects by tak-
ing COCO [32] and doing distillation training using our
scene level model as a teacher. Since the Perspective Fields
are stored per-pixel, we can crop out an object in the image
and its corresponding pseudo ground truth Perspective Field
to form a new training pair.

3.3. Implementation details

To learn Perspective Fields from single images, we use
the architecture of SegFormer [49] with Mix Transformer-
B3 encoder which was originally used for semantic segmen-
tation tasks. The transformer based encoder is effective to
enforce global consistency in the Perspective Fields. We use
two decoder heads to output a per-pixel probability over dis-
cretized Latitude and Up-vector bins. We use cross-entropy
loss Lpers = ℓCE, which we empirically found better than
regression. The ParamNet uses ConvNeXt-tiny [33] to pre-
dict a vector of camera parameters trained with ℓ1 loss.

4. Experiments

Overview. In the following experiments, we study three
questions. First, (Sec. 4.1), can methods that recover a
global set of camera parameters (e.g. pitch) produce ac-
curate Perspective Fields. We verify that directly produc-
ing Perspective Fields produces more accurate camera cal-
ibrations, especially on cropped images. We then ask in
Sec. 4.2 the reverse statement: whether our Perspective
Field method can be used to recover global camera param-
eters well. We find that our method matches and often out-
performs previous methods on images with a centered prin-
cipal point and substantially outperforms these methods on
cropped images. Next, we ask whether errors in Perspec-
tive Fields match human judgments so that the evaluation

in Perspective Field error is meaningful. We conduct a user
study in Sec. 4.3 to evaluate our proposed metric with hu-
man perception and show that humans are more sensitive to
the Perspective Fields discrepancy than other existing mea-
surements on image perspective. We finally show image
editing applications from Perspective Fields in Sec. 4.4.

4.1. Predicting Perspective Fields

We first evaluate our PerspectiveNet on both natural
scenes and object-centric images.

Training data and training details. We train our net-
work on a diverse dataset of panorama scenes which in-
cludes 30,534 indoor, 51,157 natural and 110,879 street
views from 360Cities.1 Although we can generate arbitrary
types of image projections from the panoramas, we choose
to train on perspective images for a fair comparison with
previous methods. To do this, we uniformly sample crops
from the panoramas with camera roll in [−45◦, 45◦], pitch
in [−90◦, 90◦] and FoV in [30◦, 120◦]. Our training and
validation set consist of 190,830/1,740 panorama images re-
spectively. We augment training data with random color jit-
tering, blurring, horizontal flipping, rotation and cropping.
We later show results on other camera models such as fish-
eye images.

Ours-distill: We distill our network on COCO [32] images
by using pseudo ground truth predicted by our scene level
network. We crop out the foreground object and the pseudo
ground truth to generate the training pairs, and randomly
(70% of the time) remove the background of the image us-
ing segmentation masks as data augmentation to generalize
to object cutouts.

Test data. We test generalization of different methods on
publicly available datasets including Stanford2D3D [4] and
TartanAir [45] where ground truth camera parameters are
available. None of the methods compared were trained on
the test set. Stanford2D3D is an indoor panorama dataset
where arbitrary camera views can be extracted. TartanAir
is a photo-realistic dataset captured by drones with ex-
treme viewpoint and diverse scenes (indoor, outdoor, natu-
ral, and man-made structures) rendered with different light-
ing and weather conditions. Assuming perspective projec-

1https://www.360cities.net/
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Table 1. Quantitative evaluation for scene-level Perspective Field prediction. Perturb: None on centered principal point images; Crop on
uncentered principal point images. We re-implement Percep. [24] using the same backbone and training data as ours. None of the methods
have been trained on Stanford2D3D [4] or TartanAir [45]. Results on warped test data and qualitative results are in the supp.

Dataset Stanford2D3D [4] TartanAir [45]

Up (o) Latitude (o) Up (o) Latitude (o)
Method Perturb Mean ↓ Median ↓ % < 5o ↑ Mean ↓ Median ↓ % < 5o ↑ Mean ↓ Median ↓ % < 5o ↑ Mean ↓ Median ↓ % < 5o ↑
Upright [28] None 3.63 3.28 64.97 7.03 7.03 41.12 3.53 3.19 65.36 5.63 5.59 49.71
Percep. [24] None 3.58 3.32 64.19 6.27 6.07 42.36 7.30 6.86 47.04 11.35 11.22 27.69
CTRL-C [29] None 7.39 6.87 42.49 10.21 9.96 28.67 8.64 7.67 41.21 9.76 10.22 28.21
Ours None 2.18 1.88 82.83 3.40 3.06 68.27 3.47 2.86 67.45 4.01 3.60 61.73

Upright [28] Crop 4.49 4.19 55.58 11.43 10.93 27.37 5.89 5.38 51.87 10.28 9.85 28.92
Percep. [24] Crop 5.78 5.55 45.52 9.76 9.65 29.13 5.54 5.18 51.72 9.22 8.66 30.10
CTRL-C [29] Crop 8.52 8.18 38.63 12.13 11.63 24.22 7.32 6.78 43.93 9.64 9.66 27.37
Ours Crop 2.21 1.87 78.80 5.57 5.15 50.36 2.81 2.35 71.89 5.73 5.28 50.16

Input Upright [28] Percep. [24] CTRL-C [29] Ours-Distill GT

Figure 4. Qualitative results on Objectron [1]. The top two rows
show the results on the original image crops. The bottom row
shows the results on isolated object images. Upright [28] and Per-
ceptual [24] often fail dramatically on these images. Up-vectors
are shown in the green vectors. Latitude are visualized by col-
ormap: −π/2 π/2.

tion, we uniformly sample 2,415 views from Stanford2D3D
with camera roll in [−45◦, 45◦], pitch in [−50◦, 50◦] and
FoV in [30◦, 120◦]. For TartanAir, we randomly sample
2,000 images from its test sequences with roll ranging in
[−20◦, 20◦], pitch in [−45◦, 30◦], and fixed FoV (74◦). To
test the robustness of methods, we add image crop pertur-
bation to the test image, details in supp.

For object-centric test images, we randomly sample 600
views from 6 classes of the Objectron [1] test set, and com-
pute foreground cutouts based on the object bounding box
with a margin of 20% box size. In some tests, the object is
isolated by removing the background using the segmenta-
tion mask predicted by PointRend [25], which we refer to
as (Isolated). We use the camera pose annotation to get the
ground truth Perspective Fields with camera roll ranging in
[−45◦, 45◦], pitch in [−82◦,−4◦] and FoV in [46◦, 53◦].

Baselines. The closest task to Perspective Fields predic-
tion is to recover a global set of camera parameters, and
then convert them to Perspective Fields using Eq. 1 and

Eq. 2. We compare our method with the following base-
lines: Upright [28], Perceptual measure [24] and CTRL-
C [29], among which Upright is the only non-learning based
method. They all predict camera roll, pitch, and FoV from
a single RGB image and assume that the principal point is
at the image center. From the predicted camera parameters,
we calculate their Perspective Fields for evaluation. We re-
implement [24] using the same backbone and train it on our
data. For Upright and CTRL-C, we use the official model
and code for evaluation. None of these methods have seen
any training data from the test datasets.

Metrics. We calculate the angular error of Up-vector and
Latitude fields and report three metrics: the mean error
(Mean), median error (Med), and fraction of pixels with er-
ror less than a threshold (in our case 5◦). For methods that
output camera parameters, we convert the predicted param-
eters to Perspective Fields.

Results on scene images. We show the results on Stan-
ford2D3D and TartanAir in Table 1. Predicting the Per-
spective Fields is more effective than recovering camera
parameters from previous methods. On centered principal
point images (Perturb: None), our method outperforms the
second best by a large margin. On shifted principal point
images (Perturb: Crop), (simulating images found in the
wild that have undergone cropping), our method has less
degradation than previous baselines. Our performance on
Up-vector prediction is robust to cropping, with compara-
ble numbers (4% drop in %< 5◦ of Up on Stanford2D3D).
Other methods, have large performance drop in both Up-
vector and Latitude prediction in this setting. Nevertheless,
our method outperforms the competing methods on Lati-
tude. Visual results can be found for qualitative evaluation
in our supplementary material.

Results on object-centric images. The results on the
Objectron dataset [1] are shown in Table 2. Our model
trained on COCO (Ours-distill) using the proposed distilla-
tion method significantly improves over its teacher model,
especially for isolated object images. Both our teacher
model trained on panorama scene images and [24] have a
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Table 2. Quantitative evaluation for object-centric prediction.
None of the compared methods have been trained on Objectron.

Dataset Objectron [1]

Up (o) Latitude (o)
Method Perturb Mean ↓ Median ↓ % < 5o ↑ Mean ↓ Median ↓ % < 5o ↑
Upright [28] crop 7.57 7.03 44.31 22.59 22.20 18.49
Percep. [24] crop 7.85 7.21 39.39 11.60 11.69 22.97
CTRL-C [29] crop 7.50 7.09 40.02 20.93 21.00 11.26

Ours crop 4.96 4.42 53.90 8.49 8.01 32.31
Ours-distill crop 4.19 3.76 57.71 7.71 7.57 33.54

Upright [28] isolated 8.14 7.71 41.45 28.49 28.38 12.05
Percep. [24] isolated 38.70 31.63 11.27 99.35 100.32 1.05
CTRL-C [29] isolated 7.49 7.13 39.38 9.87 9.85 27.32

Ours isolated 17.24 11.30 33.96 84.61 84.69 0.49
Ours-distill isolated 4.45 4.12 54.88 9.65 9.56 25.82

Input Upright [28] Percep. [24] CTRL-C [29] Ours

Figure 5. Qualitative results on web images. Our approach pro-
duces better results compared to [28], [24], and [29]. There is no
ground truth available, see Supp on how to infer the GT horizon
line for the laptop example.

big performance drop on isolated object images due to a
major data domain gap. In contrast, Upright and Ours-
distill only have a mild performance drop. It is quite sur-
prising that CTRL-C’s accuracy on Latitude field improves
on the isolated object images. We suspect that the structure
in the background might contradict CTRL-C’s assumption
of a centered principal point, as the the cropping will often
shift the principal point. Our student model (Ours-distill)
achieves overall better accuracy than the baselines. Some
visual results are shown in Fig. 4.

We also test each method on some challenging in-the-
wild web images in Fig. 5. These web images may have
been cropped or warped for aesthetic composition. Camera
calibration methods with rigid scene and camera assump-
tions cannot robustly handle these images. Our method
tends to provide better estimations. More results can be
found in our supplementary material.
Generalization to non-perspective projections. In this
section, we ask whether we can recover the Perspective
Field for images with non perspective properties without
explicitly training on them. We take advantage of the lo-
cal representation and use a sliding window inference tech-
nique for images that are out of our training distribution.
We inference on small crops and aggregate the prediction

Input Sliding Win. Fine-tune GT

Up LatitudeInput

Figure 6. Generalization to non-pinhole images. (1st row) Fisheye
images (top) are unseen during training. We show results by com-
puting inference on small crops with a sliding window, or fine-
tuning the network on fisheye images. (2nd row) A screen shot
from the movie Inception shows our method identifies the correct
distortion at the top right corner and negative Latitude (in Blue)
on top of the building. (4th row) More results on artworks with
various camera models.

for each pixel from overlapping windows. Using this tech-
nique, we show in Fig. 6-Sliding Win. that, without fine-
tuning, the recovered Up-vectors are already tangential to
the upward curves and the horizon line is curved, which is
close to the ground truth. In Fine-tune, we show results af-
ter fine-tuning on distorted images, e.g. Fig. 2-(E), which
has comparable predictions in Up-vectors and slightly bet-
ter predictions in Latitude. In Fig. 6 row 2, we show results
on a challenging multiperspective image from the Inception
movie, using the same sliding window technique. The net-
work is able to pick up the negative Latitude on top of the
building and the Up-vector distortion at the top right corner.
In row 3 and 4, we show more results from the Perspec-
tiveNet on art works with non physically plausible cameras.

4.2. Camera parameter estimation

We have shown in Sec. 4.1 that Perspective Fields from
predicted camera parameters are less effective than directly
predicting them; can camera parameters be effectively re-
covered from Perspective Fields? In this section, we use
the ParamNet in Sec. 3.2 Fig. 3 to recover camera param-
eters from Perspective Field predictions and compare with
methods that directly predict them [24, 28, 29].
Setup. We test on perspective images and recover roll,
pitch, and FoV for uncropped images as well as principal
point for cropped images. All methods are trained and eval-
uated on Google Street View (GSV) [2] for fair comparison,
following [29]. Besides the test images used in [29], we
generate a more general set of uncentered principal-point
images by cropping. See Supp for detailed dataset settings.
Metrics. Since FoV is undefined for cropped images, we
define it (FoV∗) as follows: Denote camera pinhole as O
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Table 3. GSV uncentered principal-point results. Our method recovers the principal point and outperforms the baselines on all metrics.
Method Roll (◦) ↓ Pitch (◦) ↓ FoV∗ (◦) ↓ cx ↓ cy ↓ Up(◦) Latitude(◦)

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Med. ↓ % < 5o↑ Med. ↓ % < 5o ↑
Upright [28] 2.73 1.55 7.23 4.98 10.50 7.67 - - - - 1.83 74.57 6.32 41.08
Perceptual [24] 2.39 1.45 5.24 4.05 8.47 7.22 - - - - 1.70 93.15 3.58 70.35
CTRL-C [29] 1.92 1.21 4.51 3.64 5.57 4.66 - - - - 1.29 96.84 2.98 75.70
Ours 1.37 0.97 2.60 2.14 3.75 3.19 0.09 0.07 0.08 0.06 1.05 98.95 2.17 89.47
No Lpers 1.68 1.28 2.88 2.33 3.95 3.25 0.09 0.07 0.08 0.07 1.44 95.94 2.37 84.20
No Center Shift 1.98 1.19 4.23 3.58 6.18 4.82 0.13 0.11 0.12 0.11 1.12 94.88 2.69 82.77

Table 4. Results on GSV centered principal-point images. Our
method has comparable performance to the baselines.
Method Roll (◦) ↓ Pitch (◦) ↓ FoV (◦) ↓

Mean Med. Mean Med. Mean Med.

Upright [28] 6.19 0.43 2.90 1.80 9.47 4.42
Perceptual [24] 0.94 0.67 2.24 1.81 4.37 3.58
CTRL-C [29] 0.66 0.53 1.58 1.31 3.59 2.72
Ours 0.66 0.52 1.36 1.18 3.07 2.33

and the middle points of the top and bottom edges of the
image as M1,M2. FoV∗ is the angle between OM1 and
OM2. The principal point location (cx and cy) is relative to
the image size. We use ℓ1 error between the prediction and
ground truth as our metric for all camera parameters (Roll,
Pitch, FoV, cx, cy). We also measure the Up and Latitude er-
rors of the Perspective Fields recovered from the predicted
camera parameters using Eq. 1 and 2 to show the impact of
errors from camera parameters on Up and Latitude.

Results. We start with the principal-centered test set that
previous methods use, which is a highly constrained setting.
We report the angle differences of roll, pitch, and FoV in Ta-
ble 4. Our method gets comparable camera calibration per-
formance compared to previous methods on principal-point
centered images, with lower errors in pitch and FoV and
comparable median error in roll. Our Perspective Field rep-
resentation is a dense local representation, which leads to a
robust way to estimate the global camera parameters. The
Up-vector field and the Latitude field provide interpretable
cues for the estimation of camera roll and pitch respectively.

We then test on a more general cropped dataset, where
images have an uncentered principal point. As shown in
Table 3, our method outperforms all the other baselines by
a large margin on all metrics. Compared to CTRL-C, we re-
duce the error on roll (19%), pitch (40%), and FoV (31%),
which reflects a large increase in Latitude accuracy by over
13% and Up-vector accuracy by 2%. None of the baselines
above handles principal point by design, therefore, we per-
form two ablations: 1) No Lpers: we train without Lpers

but with Lparam. This is a network that predicts parameters
end-to-end. Compared to Perceptural [24], it has the same
backbone followed by the ParamNet while additionally pre-
dicting the principal point. It differs from our method by
lacking the Lpers. This is to test whether using Perspec-
tive Fields as the intermediate representation is helpful. Re-
sults show that it works better than existing methods but is

Table 5. Pearson’s correlation for different metrics w.r.t. human
perception. Our APFD metric has strongest correlation with hu-
man perception. More statistics and visual results are in the supp.

Camera-All Roll Pitch FoV Prin. Point Horizon Lati Up APFD

Median 0.59 0.21 0.73 -0.08 0.49 0.71 0.65 0.80 0.87

still worse than Ours. 2) No Center Shift: our ParamNet
in Table 4 assumes a central principal point and only pre-
dicts roll, pitch and FoV. We improve the relative principal
point shift accuracy by over 36%. By recovering the princi-
pal point, we improve Up-vector accuracy (%<5◦) by >4%
and Latitude accuracy by >6%.

Although our method does not directly learn to predict
the camera parameters, our results show that they can be
recovered from the Perspective Fields alone without RGB
data and still outperform SOTA methods.

4.3. User study for perspective matching metrics

To validate our proposed APFD metric, we conduct a
user study to analyze its correlation with human perception
of perspective consistency for image compositing.

Given a background image with known camera settings,
we render a 3D object with 10 randomly perturbed cameras
and composite it to the background. Example images are in
the supp material. These 10 images are ranked by partici-
pants using a two alternative forced-choice (2AFC) test. In
this test, two composites are displayed side by side, and a
user picks the one that looks better in term of perspective
consistency. We compute the Pearson’s correlation coeffi-
cient of APFD w.r.t. the human ranking scores. We receive
18 votes for each image pair and we repeat the experiment
on 8 scenes (background-object pairs).

Table 5 shows the median correlation scores on the 8
scenes for different metrics. See the supplementary mate-
rial for full statistics and more details of the test. Our pro-
posed APFD metric has the highest correlation with human
perception. The Up-vector field error captures the local per-
spective distortion well, thus providing good performance
among individual metrics. The APFD metric which com-
bines both Up-vector and Latitude gives a slightly higher
correlation score. Single camera parameter metrics have
widely varying correlations. Among them, deviation in FoV
is a poor indicator of human perception, also shown in [24].
The change in pitch is a dominant factor in perspective mis-

17313



Ranking based on APFD

5.82

48.39

68.46

114.62

3.75

25.15

54.90

63.77

Figure 7. Given selected locations on a skyscraper image, our sys-
tem computes the local Perspective Field for the background and
retrieves foreground objects from a set of air balloons that best
match the predicted fields. Left: ranking of air balloon images for
two insertion locations, APFD error shown at the bottom. Middle:
background image with two boxes as the insertion locations (top)
and predicted Perspective Fields (bottom). Right: image compo-
sition with 2D rotation adjustment of foreground sprites (top) and
visualization of Up-vector fields after compositing (bottom).

match. Summing the parameter difference (Camera-All)
does not improve correlation scores, which shows the dif-
ficulty of using camera parameters to measure perceived
perspective consistency. The horizon line used in [24] per-
forms comparably with our Latitude field metric, since they
measure similar quantities, however horizon lines are not
always visible in images.

4.4. Image editing applications

We conclude with applications of Perspective Fields.

Perspective-aware image recommendation. Perspective
Fields can guide the retrieval of images from a database
of 2D images. Our method works on images with ex-
treme viewpoints, while horizon-based perspective match-
ing methods like [24] fail on this type of image because the
horizon is far outside the image. We demonstrate this in
Fig. 7, where we estimate Perspective Fields on 10 images
of hot air balloons with diverse view angles. We use our
Perspective Field metric to retrieve the best balloon sprite
based on the bounding box given by the user (yellow and
green boxes). The system calculates the APFD error (Eq. 3)
between the background and foreground fields, and adjusts
the best candidate with a similarity transformation to better
align the Perspective Fields with the background. The left
columns rank the balloon sprites by error from low to high.

AR effect. Our Perspective Fields can be used in AR effect
applications related to gravity e.g. simulating snows, hang-
ing a chandelier to the ceiling, etc. In Fig. 8, we demonstrate
rain effect using the Up-vector prediction. Our compositing
w/ Up which considers the Up-vector prediction looks more
natural than vertical raindrops in the image frame w/o Up.

3D object insertion. Our Perspective Fields can be used to
achieve better compositing. In Fig. 9, we render 3D mod-

Input Up Prediction w/o Up w/ Up

Figure 8. Rain effect based on Perspective Fields. See supp video
for a dynamic composite. Our compositing w/ Up which considers
the Up-vector prediction looks more natural than vertical raindrops
in the image frame w/o Up.

OursPrevious OursPreviousOriginal Image

Figure 9. On the left half: we estimate camera by [24] and insert
a 3D lamp and a Doctor Who Police Box. One may notice that
it looks a bit off, and especially that the tip of the lamp is tilted.
This is because [24] predicts pitch = 7◦ which matches the hori-
zon line, but causes distortion in the up direction in that region. In
contrast, on the right half, using our Perspective Fields to estimate
the camera view, we can correctly maintain the perspective consis-
tency for the temple on the right. The white dashed lines intersect
at the horizon location, the green dashed lines are up direction.

els in a renaissance painting. The painting does not follow
the centered pinhole assumptions of past methods [24, 29].
On the left, we use camera parameters from [24] to render
and insert the 3D objects. The lamp looks off since the top
seems to be tilted. This is because it predicts pitch = 7◦ that
matches the horizon line, causing distortion in the up direc-
tion in that region. On the right, we use our Perspective
Fields to estimate the camera view and correctly maintain
the perspective consistency for the objects.

5. Conclusion
We propose Perspective Fields, an over-complete repre-

sentation capturing the local perspective properties of an
image. We introduce a neural network model to predict
Perspective Fields for various image types, and ParamNet
which recovers camera parameters directly from Perspec-
tive Fields. Perspective Fields can serve as a metric to quan-
tify perspective matching quality in image compositing. As
a local representation, it is robust to different camera mod-
els and lens types, and several image editing operations, a
complete study of which we leave to future work.
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