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Abstract

Learning-based gaze estimation methods require large
amounts of training data with accurate gaze annotations.
Facing such demanding requirements of gaze data collec-
tion and annotation, several image synthesis methods were
proposed, which successfully redirected gaze directions pre-
cisely given the assigned conditions. However, these meth-
ods focused on changing gaze directions of the images that
only include eyes or restricted ranges of faces with low res-
olution (less than 128× 128) to largely reduce interference
from other attributes such as hairs, which limits applica-
tion scenarios. To cope with this limitation, we proposed
a portable network, called ReDirTrans, achieving latent-
to-latent translation for redirecting gaze directions and
head orientations in an interpretable manner. ReDirTrans
projects input latent vectors into aimed-attribute embed-
dings only and redirects these embeddings with assigned
pitch and yaw values. Then both the initial and edited
embeddings are projected back (deprojected) to the initial
latent space as residuals to modify the input latent vec-
tors by subtraction and addition, representing old status re-
moval and new status addition. The projection of aimed at-
tributes only and subtraction-addition operations for status
replacement essentially mitigate impacts on other attributes
and the distribution of latent vectors. Thus, by combining
ReDirTrans with a pretrained fixed e4e-StyleGAN pair, we
created ReDirTrans-GAN, which enables accurately redi-
recting gaze in full-face images with 1024×1024 resolution
while preserving other attributes such as identity, expres-
sion, and hairstyle. Furthermore, we presented improve-
ments for the downstream learning-based gaze estimation
task, using redirected samples as dataset augmentation.

1. Introduction
Gaze is a crucial non-verbal cue that conveys attention

and awareness in interactions. Its potential applications in-

clude mental health assessment [5,18], social attitudes anal-

ysis [19], human-computer interaction [12], automotive as-

sistance [30], AR/VR [6,34]. However, developing a robust

unified learning-based gaze estimation model requires large

amounts of data from multiple subjects with precise gaze

annotations [42, 44]. Collecting and annotating such an ap-

propriate dataset is complex and expensive. To overcome

this challenge, several methods have been proposed to redi-

rect gaze directions [17, 39, 41, 42, 44] in real images with

assigned directional values to obtain and augment train-

ing data. Some works focused on generating eye images

with new gaze directions by either 1) estimating warping

maps [41,42] to interpolate pixel values or 2) using encoder-

generator pairs to generate redirected eye images [17, 39].

ST-ED [44] was the first work to extend high-accuracy

gaze redirection from eye images to face images. By dis-

entangling several attributes, including person-specific ap-

pearance, it can explicitly control gaze directions and head

orientations. However, due to the design of the encoder-

decoder structure and limited ability to maintain appearance

features by a 1 × 1024 projected appearance embedding,

ST-ED generates low-resolution (128 × 128) images with

restricted face range (no hair area), which narrows the ap-

plication ranges and scenarios of gaze redirection.

As for latent space manipulation for face editing tasks,

large amounts of works [2–4, 14, 31, 35] were proposed to

modify latent vectors in predefined latent spaces (W [21],

W+ [1] and S [40]). Latent vectors in these latent spaces

can work with StyleGAN [21, 22] to generate high-quality

and high-fidelity face images with desired attribute editing.

Among these methods, Wu et.al [40] proposed the latent

space S working with StyleGAN, which achieved only one

degree-of-freedom gaze redirection by modifying a certain

channel of latent vectors in S by an uninterpreted value in-

stead of pitch and yaw values of gaze directions.

Considering these, we proposed a new method, called

ReDirTrans, to achieve latent-to-latent translation for redi-

recting gaze directions and head orientations in high-

resolution full-face images based on assigned directional

values. Specifically, we designed a framework to project

input latent vectors from a latent space into the aimed-

attribute-only embedding space for an interpretable redirec-

tion process. This embedding space consists of estimated

pseudo conditions and embeddings of aimed attributes,
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where conditions describe deviations from the canonical

status and embeddings are the ‘carriers’ of the conditions.

In this embedding space, all transformations are imple-

mented by rotation matrices multiplication built from pitch

and yaw values, which can make the redirection process

more interpretable and consistent. After the redirection pro-

cess, the original embeddings and redirected ones are both

decoded back to the initial latent space as the residuals to

modify the input latent vectors by subtraction and addition

operations. These operations represent removing the old

state and adding a new one, respectively. ReDirTrans only

focuses on transforming embeddings of aimed attributes

and achieves status replacement by the residuals outputted

from weight-sharing deprojectors. ReDirTrans does not

project or deproject other attributes with information loss;

and it does not affect the distribution of input latent vec-

tors. Thus ReDirTrans can also work in a predefined feature

space with a fixed pretrained encoder-generator pair for the

redirection task in desired-resolution images.

In summary, our contributions are as follows:

• A latent-to-latent framework, ReDirTrans, which

projects latent vectors to an embedding space for an

interpretable redirection process on aimed attributes

and maintains other attributes, including appearance,

in initial latent space with no information loss caused

by projection-deprojection processes.

• A portable framework that can seamlessly integrate

into a pretrained GAN inversion pipeline for high-

accuracy redirection of gaze directions and head ori-

entations, without the need for any parameter tuning

of the encoder-generator pairs.

• A layer-wise architecture with learnable parameters

that works with the fixed pretrained StyleGAN and

achieves redirection tasks in high-resolution full-face

images through ReDirTrans-GAN.

2. Related Works
Gaze and Head Redirection. Methods for redirect-

ing gaze directions can be broadly classified into two cate-

gories: warping-based methods and generator-based meth-

ods. Deepwarp [13, 23] presented a deep network to learn

warping maps between pairs of eye images with different

gaze directions, which required large amounts of data with

annotations. Yu et al. [41] utilized a pretrained gaze estima-

tor and synthetic eye images to reduce the reliance on anno-

tated real data. Yu et al. [42] further extended the warping-

based methods in an unsupervised manner by adding a gaze

representation learning network. As for the generator-based

methods, He et al. [17] developed a GAN-based network for

generating eye images with new gaze directions. FAZE [26]

proposed an encoder-decoder architecture to transform eye

images into latent vectors for redirection with rotation ma-

trix multiplication, and then decode the edited ones back to

the synthetic images with new gaze directions. ST-ED [44]

further extended the encoder-decoder pipeline from gaze

redirection only to both head and gaze redirection over full

face images by disentangling latent vectors, and achieving

precise redirection performance. However, ST-ED gener-

ates images with a restricted face range (no hair area) with

a size of 128×128. We further improve the redirection task

by covering the full face range with 1024×1024 resolution.

Latent Space Manipulation. Numerous methods in-

vestigated the latent space working with StyleGAN [21,22]

to achieve semantic editing in image space due to its mean-

ingful and highly disentangled properties. As for the super-

vised methods, InterFaceGAN [31] determined hyperplanes

for the corresponding facial attribute editing based on pro-

vided labels. StyleFlow [2] proposed mapping a sample

from a prior distribution to a latent distribution conditioned

on the target attributes estimated by pretrained attribute

classifiers. Given the unsupervised methods, GANSpace

[15], SeFa [32] and TensorGAN [14] leveraged princi-

pal components analysis, eigenvector decomposition and

higher-order singular value decomposition to discover se-

mantic directions in latent space, respectively. Other self-

supervised methods proposed mixing of latent codes from

other samples for local editing [8, 9], or incorporating the

language model CLIP [29] for text-driven editing [27].

Domain Adaptation for Gaze Estimation. Domain

gaps among different datasets restrict the application range

of pretrained gaze estimation models. To narrow the gaps, a

few domain adaptation approaches [37, 38] were proposed

for the generic regression task. SimGAN [33] proposed an

unsupervised domain adaptation method for narrowing the

gaps between real and synthetic eye images. HGM [36] de-

signed a unified 3D eyeball model for eye image synthesis

and cross-dataset gaze estimation. PnP-GA [25] presented

a gaze adaptation framework for generalizing gaze estima-

tion in new domains based on collaborative learning. Qin

et al. [28] utilized 3D face reconstruction to rotate head

orientations together with changed eye gaze accordingly

to enlarge overlapping gaze distributions among datasets.

These adaptation methods typically rely on restricted face

or eye images to alleviate interference from untargeted at-

tributes. Our work incorporates the redirection task in a

predefined meaningful feature space with controllable at-

tributes to achieve high-resolution and full-face redirection.

3. Method

3.1. Problem Statements

Our goal is to train a conditional latent-to-latent transla-

tion module for face editing with physical meaning, and it

can work either with a trainable or fixed encoder-generator
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Figure 1. Conditional redirection pipeline and comparison among different redirectors. (a) We first encode the input image into the latent

vector. Given the provided conditions, we modify the latent vector and send it to a generator for image synthesis with only aimed attribute

redirection. (b) We compared our proposed redirector with two state-of-the-art methods by omitting common modules (basic encoders

and decoders/generators) and focusing on the unique components: (b-1) VecGAN achieves editing in feature space F given projected

conditions from latent vectors with a global direction f i
N . (b-2) ST-ED projects the latent vector into conditions and embeddings of aimed

attributes, and one appearance-related high dimensional embedding z0 in embedding space Z . After interpretable redirection process in

space Z , all embeddings are concatenated and projected back to space F . (b-3) Our proposed ReDirTrans projects the latent vector into

conditions and embeddings of aimed attributes only. After an interpretable redirection process, both original and redirected embeddings

are deprojected back to initial space F as residuals. These residuals modify the input latent vector by subtraction and addition operations,

which represent the initial status removal and the new status addition, respectively. This approach efficiently reduces effects on other

attributes (especially the appearance related information) with fewer parameters than ST-ED.

pair. This editing module first transforms input latent vec-

tors from encoded feature space F to an embedding space

Z for redirection in an interpretable manner. Then it de-

projects the original and redirected embeddings back to the

initial feature space F for editing input latent vectors. The

edited latent vectors are fed into a generator for image syn-

thesis with the desired status of aimed facial attributes. The

previous GAN-based work [10,14,31] achieved a certain fa-

cial attribute editing with a global latent residual multiplied

by a scalar without physical meaning to describe the rela-

tive deviation from the original status. To make the whole

process interpretable and achieve redirection directly based

on the new gaze directions or head poses, we follow the as-

sumption proposed by [44], where the dimension of an em-

bedding is decided by the corresponding attribute’s degree

of the freedom (DoF) and redirection process is achieved

by the rotation matrices multiplication. Thus the transfor-

mation equivariant mappings can be achieved between the

embedding space Z and image space. To be specific, nor-

malized gazes or head poses can be represented by a two-

dimensional embedding with the pitch and yaw as the con-

trollable conditions. The embeddings can be edited (multi-

plied) by the rotation matrices built from the pitch and yaw

for achieving redirection (rotation) of aimed attributes in

image space accordingly through our proposed redirector.

3.2. Redirector Architecture

ST-ED is one of the state-of-the-art architectures for gaze

and head poses redirection over face images [44] shown

in Fig. 1 (b-2). ST-ED projects the input latent vector f
to non-varying embeddings z0 and M varying ones with

corresponding estimated conditions {(zi, ĉi)|i ∈ [1,M ]},

where ĉi describes the estimated amount of deviation from

the canonical status of the attribute i, and it can be com-

pared with the ground truth ci for the learning of conditions

from latent vectors. The non-varying embedding z0 defines

subject’s appearance, whose dimension is much larger (over

twenty times larger in ST-ED) than other varying embed-

dings. It is inefficient to project input latent vectors into

a high-dimensional embedding to maintain non-varying in-

formation such as identity, hairstyle, etc. Thus, we propose

a new redirector architecture, called ReDirTrans, shown in

Fig. 1 (b-3), which transforms the source latent vector fs
to the embeddings of aimed attributes through the projec-
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Figure 2. ReDirTrans-GAN: Layer-wise ReDirTrans with fixed e4e and StyleGAN. Given the multi-layer representation of latent vectors

in W+ ⊆ R
18×512, we feed each layer into an independent ReDirTrans for redirection task given the provided target condition cit, where

i represents a certain attribute. c̃i denotes the pseudo condition estimated directly from the inverted image by a pretrained HeadGazeNet

ξhg [44]. We calculate errors between estimated conditions ĉik, k ∈ [1, 18] from multiple ReDirTrans and c̃i for supervising the trainable

weights learning (green arrow) based on the Layer-wise Weights Loss described in Eq. 10 to decide which layers should contribute more to

a certain attribute redirection. Given the estimated weights and initial latent vectors fs, we can acquire the final disentangled latent vector

f̂t,d based on Eq. 2 for redirected samples synthesis.

tor P and redirects them given the newly provided target

conditions ct. Then we deproject both original embeddings

zs and redirected embeddings ẑt back to the feature space

F through the weights-sharing deprojectors DP to acquire

latent residuals. These residuals contain source and target

status of aimed attributes, denoted as Δf i
s and Δf̂ i

t , respec-

tively. Inspired by addition and subtraction [10,31] for face

editing in feature space F , the edited latent vector is

f̂t = fs +

M∑

i=1

(−Δf i
s +Δf̂ i

t ), i ∈ [1,M ], (1)

where the subtraction means removing source status and

the addition indicates bringing in new status. The pro-

jector P ensures that the dimension of embeddings can be

customized based on the degrees of freedom of desired at-

tributes, and the transformations can be interpretable with

physical meanings. The deprojector DP enables the orig-

inal and edited features in the same feature space, allow-

ing ReDirTrans to be compatible with pretrained encoder-

generator pairs that are typically trained together without in-

termediate (editing) modules. ReDirTrans reduces parame-

ters by skipping projection (compression) and deprojection

(decompression) of the features that are not relevant to the

desired attributes, but vital for final image synthesis.

3.3. Predefined Feature Space

Except for the trainable encoder-decoder (or -generator)

pair to learn a specific feature space for redirection task

as ST-ED did, ReDirTrans can also work in the predefined

feature space to coordinate with fixed, pretrained encoder-

generator pairs. For our implementation, we chose the

W+ ∈ R
18×512 feature space [1], which allows us to

utilize StyleGAN [22] for generating high-quality, high-

fidelity face images. We refer to this implementation as

ReDirTrans-GAN. Considering multi-layer representation

of the latent vector [1] and its semantic disentangled prop-

erty between different layers [2, 15] in W+ space, we pro-

posed layer-wise redirectors, shown in Fig. 2, rather than

using a single ReDirTrans to process all (18) layers of the

latent vector. To largely reduce the interference between

different layers during redirection, we assume that if one at-

tribute’s condition can be estimated from certain layers with

less errors than the others, then we can ‘modify’ these cer-

tain layers with higher weights pik, k ∈ [1, 18] than others

to achieve redirection of the corresponding attribute i only.

P i = [pi1, · · · , pi18]T ∈ R
18×1, as part of network parame-

ters, is trained given the loss function described in Eq. 10.

The final disentangled latent vectors after redirection is

f̂t,d = fs +

M∑

i=1

P i � (−Δf i
s +Δf̂ i

t ), i ∈ [1,M ], (2)

where � means element-wise multiplication and (−Δf i
s +

Δf̂ i
t ) ∈ R

18×512. One challenge regarding the predefined

feature space comes from the inversion quality. There ex-

ist attribute differences between input images and inverted

results, shown in Fig. 4 and 6, which means that the con-

ditions in source images cannot be estimated from source

latent vectors. To solve this, instead of using conditions

from source images, we utilized estimated conditions from

the inverted images, which ensures the correctness and con-

sistence of conditions learning from latent vectors.
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3.4. Training Pipeline

Given a pair of source and target face images, Is and It
from the same person, we utilize an encoder to first trans-

form Is into the feature space F , denoted as fs. We fur-

ther disentangle fs into the gaze-direction-related embed-

ding z1s and the head-orientation-related embedding z2s with

corresponding estimated conditions: ĉ1s and ĉ2s by the pro-

jector P. Then we build rotation matrices using the pitch

and yaw from estimated conditions (ĉ1s, ĉ
2
s) and target con-

ditions (c1t , c
2
t ) to normalize embeddings and redirect them

to the new status, respectively:

Normalization: ziN = R−1(ĉis) · zis,
Redirection: ẑit = R(cit) · ziN ,

(3)

where i ∈ {1, 2}, representing gaze directions and head ori-

entations, respectively, and ziN denotes the normalized em-

bedding of the corresponding attribute. We feed the origi-

nal embedding zis and the modified embedding ẑit into the

weights-sharing deprojectors DP to transform these embed-

dings back to the feature space F as the residuals. Given

these residuals, we implement subtraction and addition op-

erations over fs as described in Eq. 1 (or Eq. 2) to acquire

the edited latent vector f̂t (or f̂t,d), which is sent to a gen-

erator for synthesizing redirected face image Ît. Ît should

have the same gaze direction and head orientation as It.

3.5. Learning Objectives

We supervise the relationship between the generated im-

age Ît and the target image It with several loss functions:

pixel-wise reconstruction loss, LPIPS metric [43] and at-

tributes loss by a task-related pretrained model.

Lrec(Ît, It) =
∣∣∣∣Ît − It

∣∣∣∣
2
, (4)

LLPIPS(Ît, It) =
∣∣∣∣ψ(Ît)− ψ(It)

∣∣∣∣
2
, (5)

Latt(Ît, It) = 〈ξhg(Ît), ξhg(It)〉, (6)

where ψ(·) denotes the perceptual feature extractor [43],

ξhg(·) represents the pretrained HeadGazeNet [44] to es-

timate the gaze and head pose from images and 〈u, v〉 =
arccos u·v

||u||·||v|| .

Identity Loss. Identity preservation after redirection is

critical for the face editing task. Considering this, we cal-

culate the cosine similarity of the identity-related features

between the source image and the redirected image:

LID(Ît, Is) = 1− 〈φ(Ît), φ(Is)〉, (7)

where φ(·) denotes the pretrained ArcFace [11] model.

Label Loss. We have ground truth of gaze directions and

head orientations, which can guide the conditions learning

from the input latent vectors for the normalization step:

Llab(ĉ
i
s, c

i
s) = 〈ĉis, cis〉, i ∈ {1, 2}. (8)

Embedding Loss. The normalized embeddings only con-

tain the canonical status of the corresponding attribute af-

ter the inverse rotation applied to the original estimated

embeddings, shown in Fig. 1. Thus the normalized em-

beddings given a certain attribute across different samples

within batch B should be consistent. To reduce the number

of possible pairs within a batch, we utilize the first normal-

ized embedding ziN,1 as the basis:

Lemb =
1

B − 1

B∑

j=2

〈ziN,1, z
i
N,j〉, i ∈ {1, 2}. (9)

Layer-wise Weights Loss. This loss is specifically de-

signed for the W+ space to decide the weights pi of which

layer should contribute more to the aimed attributes editing.

Firstly, we calculate the layer-wise estimated conditions ĉik
and calculate estimated pseudo labels c̃i. Secondly, we have

layer-wise estimated label errors by 〈ĉik, c̃i〉. Lastly, we cal-

culate the cosine similarity between the reciprocal of label

errors and weights of layers as the loss:

Lprob = 〈{pk}, { 1

〈ĉik, c̃i〉
}〉, k ∈ [1,K], i ∈ {1, 2}, (10)

where K is the number of layers for editing.

Full Loss. The combined loss function for supervising the

redirection process is:

L = λrLrec + λLLLPIPS + λIDLID + λaLatt

+λlLlab + λeLemb + λpLprob,
(11)

where LLPIPS and Lprob are utilized only when the pre-

trained StyleGAN is used as the generator.

4. Experiments
4.1. datasets

We utilize GazeCapture [24] training subset to train the

redirector and assess the performance with its test subset,

MPIIFaceGaze and CelebA-HQ [20]. Supplementary ma-

terial provides more information about these datasets.

4.2. Evaluation Criteria

We follow metrics utilized by ST-ED [44] to evaluate dif-

ferent redirectors’ performance.

Redirection Error. We measure the redirection accu-

racy in image space by a pre-trained ResNet-50 based [16]

head pose and gaze estimator ξ′hg , which is unseen during

the training. Given the target image It and the generated

one Ît redirected by conditions of It, we report the angular

error between ξ′hg(Ît) and ξ′hg(It) as the redirection errors.

Disentanglement Error. We quantify the disentangle-

ment error by the condition’s fluctuation range of one at-

tribute when we redirect the other one. The redirection
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Gaze

Redir

Head

Redir

Gaze

Induce

Head

Induce
LPIPS

StarGAN † [7] 4.602 3.989 0.755 3.067 0.257

He et al. † [17] 4.617 1.392 0.560 3.925 0.223

VecGAN [10] 2.282 0.824 0.401 2.205 0.197
ST-ED [44] 2.385 0.800 0.384 2.187 0.208

ReDirTrans 2.163 0.753 0.429 2.155 0.197

Table 1. Within-dataset quantitative comparison (GazeCapture test

subset) between different methods for redirecting head orienta-

tions and gaze directions. (Lower is better). Head (Gaze) Redir
denotes the redirection accuracy in degree between the redirected

image and the target image given head orientations (gaze direc-

tions). Head (Gaze) Induce denotes the errors in degree on gaze

(head) when we redirect the head (gaze). † denotes copied results

from [44]. Other methods are retrained given previous papers.

angle ε follows U(−0.1π, 0.1π). For example, when we

redirect the head pose of the generated image Ît by ε and

generate a new one Î ′t, we calculate the angular error of the

estimated gaze directions between ξ′hg(Ît) and ξ′hg(I
′
t).

LPIPS. LPIPS is able to measure the distortion [43] and

image similarity in gaze directions [17] between images,

which is applied to evaluate the redirection performance.

4.3. Redirectors in Learnable Latent Space

We compared quantitative performance of different

redirectors, which were trained along with the trainable

encoder-decoder pair designed by ST-ED on 128 × 128
images with restricted face ranges, given the criteria pro-

posed in Sec. 4.2. Table 1 and Table 2 present within-

dataset and cross-dataset performance, respectively. From

these tables, we observe that our proposed ReDirTrans

achieved more accurate redirection and better LPIPS com-

pared with other state-of-the-art methods by considering

the extra embedding space Z for redirecting embeddings

of aimed attributes only and maintaining other attributes

including the appearance-related information in the origi-

nal latent space F . ST-ED [44] projected input latent vec-

tors into nine embeddings including the non-varying em-

bedding z0. This appearance-related high dimensional em-

bedding z0 requires more parameters than ReDirTrans dur-

ing projection. After redirecting the embeddings of aimed

attributes, ST-ED deprojected a stack of z0, redirected em-

beddings, and rest unvaried embeddings of other attributes

back to the feature space for decoding. This projection-

deprojection process of non-varying embedding z0 results

in loss of appearance and worse LPIPS, as depicted in Fig.

3. VecGAN [10] was proposed to edit the attributes only

within the feature space by addition and subtraction oper-

ations. Since there is no projection-deprojection process,

given the original latent code, LPIPS performance is bet-

Gaze

Redir

Head

Redir

Gaze

Induce

Head

Induce
LPIPS

StarGAN † [7] 4.488 3.031 0.786 2.783 0.260

He et al. † [17] 5.092 1.372 0.684 3.411 0.241

VecGAN [10] 2.670 1.242 0.391 1.941 0.207

ST-ED [44] 2.380 1.085 0.371 1.782 0.212

ReDirTrans 2.380 0.985 0.391 1.782 0.202

Table 2. Cross-dataset quantitative comparison (MPIIFaceGaze)

between different methods for redirecting head orientations and

gaze directions. (Lower is better). Notations are the same as them

in the Table 1. † denotes copied results from [44]. Other methods

are retrained given previous papers.

(a) Input (b) ST-ED (c) ReDirTrans (d) Target

Figure 3. Qualitative Comparison of ReDirTrans and ST-ED in

GazeCapture. ReDirTrans preserves more facial attributes, such

as lip thickness and sharpness of the beard.

ter than ST-ED. However, as no extra embedding space was

built for the aimed attributes editing, both redirection accu-

racy and the disentanglement process were affected.

4.4. Redirectors in Predefined Latent Space

Except for using the trainable encoder-decoder pair of

ST-ED, we also implemented our proposed ReDirTrans

within a predefined feature space W+ to achieve redirec-

tion task in full face images with desired resolution. We

utilized e4e [35] as the pre-trained encoder, which can

transform input images into latent vectors in W+, and we

chose StyleGAN2 [22] as the pre-trained generator to build

ReDirTrans-GAN. Fig. 4 shows qualitative comparison be-

tween ST-ED and ReDirTrans-GAN in the GazeCapture test

subset with providing target images from the same sub-

ject. ReDirTrans-GAN successfully redirected gaze direc-

tions and head orientations to the status provided by tar-

get images while maintaining the same appearance pat-

terns with 1024 × 1024 full face images. Due to the de-

sign of ReDirTrans, which maintains unrelated attributes

and appearance information in the initial latent space in-

stead of going through the projection-deprojection pro-
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Figure 4. Qualitatively comparisons between ST-ED and ReDirTrans-GAN. Red boxes represent different face covering ranges.

Q% GazeCapture MPIIFaceGaze

Raw ↓ Aug ↓ Raw ↓ Aug ↓
25 5.875 5.238 8.607 7.096
50 4.741 4.506 6.787 6.113
75 4.308 4.200 6.165 5.767

Table 3. Learning-based gaze estimation errors (in degrees) in

GazeCapture and MPIIFaceGaze with or without redirected data

augmentation. Q% represents percent of labeled data in 10,000

images for training ReDirTrans-GAN. ‘Raw’ or ‘Aug’ mean train-

ing the gaze estimator with real data or with real & redirected data.

cess, ReDirTrans-GAN keeps more facial attributes such

as expressions, mustaches, bangs compared with ST-ED.

Fig. 5 presents qualitative results with assigned conditions

(pitch and yaw of gaze directions and head orientations)

in CelebA-HQ [20]. ReDirTrans-GAN can achieve out-of-

domain redirection tasks in predefined feature space while

maintaining other facial attributes.

4.5. Data Augmentation

To solve data scarcity of the downstream task: learning-

based gaze estimation, we utilized redirected samples with

assigned gaze directions and head orientations to augment

training data. We randomly chose 10, 000 images from the

GazeCapture training subset to retrain ReDirTrans-GAN

with using only Q% ground-truth labels of them. The

HeadGazeNet ξhg(·) was also retrained given the same Q%
labeled data and Q ∈ {25, 50, 75}. Then we utilized

ReDirTrans-GAN to generate redirected samples given pro-

vided conditions over Q% labeled real data and combined

the real and redirected data as an augmented dataset with

size 2×10, 000×Q% for training a gaze estimator. Table 3

presented within-dataset and cross-dataset performance and

demonstrated consistent improvements for the downstream

task given redirected samples as data augmentation.

4.6. Challenge in Predefined Feature Space

One challenge for redirection tasks in predefined feature

space comes from inconsistency between input and inverted

images, mentioned in Sec. 3.3. We can observe that the ex-

isting gaze differences between input and inverted images

in Fig. 4. In some cases, the gaze directions are changed

after GAN inversion, which means that the encoded latent

codes do not necessarily keep the original gaze directions.

Thus, instead of using provided gaze directions of input im-

ages during the training, we utilized estimated gaze direc-

tions from inverted results to correctly normalize the gaze

and head pose to the canonical status. This process ensures

correctness when further new directions are added, making

the training process more consistent.

4.7. Gaze Correction

ReDirTrans can correct gaze directions of inverted re-

sults by viewing input images as the target ones. e4e guar-

antees high editability, which is at the cost of inversion per-

formance [35]. Fig. 6 shows several samples which failed to

maintain input images’ gaze directions even by the ReStyle

encoder [3], which iteratively updates the latent codes given

the differences between the input and inverted results. With
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Figure 5. Redirection results given assigned (pitch, yaw) conditions of gaze directions (g) and head orientations (h). The first two columns

are input and inversion results with e4e [35] and StyleGAN [22]. The following columns are redirected samples with assigned redirection

values based on the latent code estimated from e4e.

(a) Input (b) e4e Inversion (c) ReStyle-e4e (d) ReDirTrans

Figure 6. Gaze correction in CelebA-HQ by viewing the same

image as both the input and target.

ReDirTrans-GAN, we can successfully correct the wrong

gaze based on inverted results from e4e.

5. Conclusions
We introduce ReDirTrans, a novel architecture work-

ing in either learnable or predefined latent space for high-

accuracy redirection of gaze directions and head orienta-

tions. ReDirTrans projects input latent vectors into aimed-

attribute pseudo labels and embeddings for redirection in an

interpretable manner. Both the original and redirected em-

beddings of aimed attributes are deprojected to the initial

latent space for modifying the input latent vectors by sub-

traction and addition. This pipeline ensures no compression

loss to other facial attributes, including appearance informa-

tion, which essentially reduces effects on the distribution of

input latent vectors in initial latent space. Thus we success-

fully implemented ReDirTrans-GAN in the predefined fea-

ture space working with fixed StyleGAN to achieve redirec-

tion in high-resolution full-face images, either by assigned

values or estimated conditions from target images while

maintaining other facial attributes. The redirected samples

with assigned conditions can be utilized as data augmenta-

tion for further improving learning-based gaze estimation

performance. In future work, instead of a pure 2D solution,

3D data can be included for further improvements.
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