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Abstract

Referring Expression Comprehension (REC) is a task of
grounding the referent based on an expression, and its de-
velopment is greatly limited by expensive instance-level an-
notations. Most existing weakly supervised methods are
built based on two-stage detection networks, which are
computationally expensive. In this paper, we resort to the
efficient one-stage detector and propose a novel weakly su-
pervised model called RefCLIP. Specifically, RefCLIP re-
defines weakly supervised REC as an anchor-text matching
problem, which can avoid the complex post-processing in
existing methods. To achieve weakly supervised learning,
we introduce anchor-based contrastive loss to optimize Re-
fCLIP via numerous anchor-text pairs. Based on RefCLIP,
we further propose the first model-agnostic weakly super-
vised training scheme for existing REC models, where Ref-
CLIP acts as a mature teacher to generate pseudo-labels for
teaching common REC models. With our careful designs,
this scheme can even help existing REC models achieve
better weakly supervised performance than RefCLIP, e.g.,
TransVG and SimREC. To validate our approaches, we con-
duct extensive experiments on four REC benchmarks, i.e.,
RefCOCO, RefCOCO+, RefCOCOg and ReferItGame. Ex-
perimental results not only report our significant perfor-
mance gains over existing weakly supervised models, e.g.,
+24.87% on RefCOCO, but also show the 5x faster infer-
ence speed. Project: https://refclip.github.io.

1. Introduction
Referring Expression Comprehension (REC), also

known as visual grounding [5, 16], aims to locate the
target instance in an image based on a referring expres-
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Figure 1. Illustration of the proposed RefCLIP and weakly-
supervised training scheme. RefCLIP selects the target bounding
box from YOLOv3 via anchor-text matching, which is optimized
by anchor-based contrastive learning. Our training scheme uses
RefCLIP as a mature teacher to supervise common REC models ,
which requires no network modifications.

sion [25–27, 42, 48]. As a cross-modal recognition task,
REC is not limited to a fixed set of object categories and
is theoretically capable of any open-ended detection [45].
These appealing properties give REC increasing attention
from the community of computer vision [25, 28, 45–48].
However, the expensive instance-level annotation has long
plagued its development.

To this end, recent progress has been devoted to the re-
search of weakly supervised REC models, which aim to
learn detection based merely on language information [7,
38, 43]. Specifically, existing methods extend the two-stage
object detector like Faster-RCNN [37] to a weakly super-
vised REC model. In terms of methodology, they regard the
REC as a region-text ranking problem, where the salient re-
gions of an image are first extracted by Faster-RCNN and
then ranked via cross-modal matching. To achieve weakly
supervised training, they only use expressions as supervi-
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sion information and optimize the ranking modules via se-
mantic reconstruction [19,20,38] or cross-modal contrastive
learning [7, 43]. However, these methods are often inferior
in inference speed due to the use of Faster-RCNN.

To overcome these limitations, we resort to one-stage de-
tectors for weakly supervised REC. Compared with Faster-
RCNN, one-stage detectors like YOLOv3 [36] have obvi-
ous advantages in efficiency, but it is intractable to directly
adapt them to existing weakly supervised schemes. Above
all, existing one-stage detectors [17, 36] predict the bound-
ing boxes based on the features of the last few convolution
layers, also known as anchor points [36]. In terms of multi-
scale detection, thousands of bounding boxes will be pre-
dicted for an image, so transforming them into region fea-
tures becomes more time consuming1. However, we notice
that the receptive field of convolution features will be much
larger than the actual areas they represent [29], suggesting
that an anchor point in the one-stage detector may contain
enough information for recognition.

Motivated by the above observations, we define weakly
supervised REC as an anchor-text matching problem and
propose a novel weakly supervised model named RefCLIP.
Specifically, we change the task definition from which de-
tected region is the referent to which anchor point has the
target bounding box. In this case, we can directly rank an-
chor points without complex post-processing like ROI pool-
ing and NMS [37]. To achieve weakly supervised learning,
RefCLIP performs anchor-based contrastive learning inter
and intra images, thereby learning vision-language align-
ments via numerous anchor-text pairs. Notably, this con-
trastive learning scheme also exhibits superior flexibility in
negative sample augmentation, which is not constrained by
the batch size.

In this paper, we also focus on the model-agnostic train-
ing scheme for weakly supervised REC. Including Ref-
CLIP, all existing solutions are model-specific, which can
not directly generalize to existing supervised REC mod-
els [5, 25, 42, 45]. To this end, we further propose the
first model-agnostic weakly supervised training scheme for
REC. Specifically, we use RefCLIP as a teacher to produce
pseudo-labels, i.e., bounding boxes, to supervise common
REC models. Meanwhile, we also alleviate the confirma-
tion bias [1] caused by pseudo-label noise via EMA [39]
and data augmentation [13]. In this scheme, existing REC
models can be weakly trained without any modification,
which makes our work greatly different from the existing
ones [7, 18–20, 38].

To validate the proposed RefCLIP and weakly su-
pervised training scheme, we conduct extensive experi-
ments on four REC benchmarks, i.e., RefCOCO [32], Ref-
COCO+ [32], RefCOCOg [30] and ReferItGame [10], and

1With confidence filtering, this processing still requires about 26.6%
additional computation on COCO images.

compare with a bunch of latest weakly supervised REC
models [18, 22, 38, 41]. We apply our training scheme to
several representative REC models including RealGIN [45],
TransVG [5] and SimREC [25]. Experimental results show
obvious performance gains of our RefCLIP over existing
weakly supervised REC models, e.g., +21.25% on Ref-
COCO. Meanwhile, with our careful designs, the proposed
training scheme can even help these REC models obtain
new SOTA performance of weakly supervised REC.

Conclusively, our main contributions are three-fold:

• We propose a novel one-stage contrastive model called
RefCLIP, which achieves weakly supervised REC
via anchor-based cross-modal contrastive learning and
significantly improves the inference speed by 5 times.

• We propose the first generic weakly supervised train-
ing scheme for common REC models, which can effec-
tively boost any REC model using pseudo-labels gen-
erated by our RefCLIP.

• The proposed RefCLIP outperforms existing ap-
poroaches on four benchmarks, and our training
scheme also helps previous REC models obtain new
weakly supervised SOTA performance.

2. Related Work
2.1. Referring Expression Comprehension.

Referring Expression Comprehension (REC) [26,42,45],
also known as visual grounding [5, 16] or phrase ground-
ing [6], aims to locate the target object in an image based
on the given referring expression. The methodology of REC
can be divided into two categories, i.e., two-stage and one-
stage based ones. Two-stage methods [16, 21, 42] first use
the detection networks like Faster-RCNN [37] to generate
a set of candidate regions, and then perform region-text
ranking to select the target one. Recently, one-stage ap-
proaches [14, 24, 26, 45, 48] obtain more attention due to
their high inference speed and superior performance. Early
one-stage methods [26,45] mainly consist of shallow multi-
modal fusion layers. Inspired by the great success of Trans-
former [40], recent researchers [5, 48] resort to deep Trans-
former architecture for REC.

2.2. Weakly Supervised Referring Expression Com-
prehension.

Compared with fully supervised REC, weakly super-
vised REC is more challenging due to the lack of box an-
notations. Most existing methods [7, 19, 20, 22, 38, 41, 43]
are motivated by two-stage supervised REC models and
formulate weakly supervised REC as a region-text ranking
problem. In these approaches, the main difficulty relies on
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Figure 2. The framework of the proposed RefCLIP (left) and weakly supervised training scheme (right). In RefCLIP, the image and
expression are first processed by visual and text encoders. After that, RefCLIP filters anchors of low-value and returns the best-matching
one for bounding box prediction. RefCLIP is weakly supervised via anchor-based contrastive learning. In our weakly supervised training
scheme, RefCLIP serves as a mature teacher to provide pseudo-labels for training common REC models without any modification.

how to provide effective supervision signal from image-text
pairs. To address this issue, researchers adopt methodolo-
gies like sentence reconstruction [19,20,38] and contrastive
learning [7, 43]. In particular, sentence reconstruction se-
lects the region with the highest ranking score to reconstruct
the input expression. Compared to sentence reconstruction,
contrastive learning based approaches [7,43] construct pos-
itive and negative sample pairs from the selected regions
and expressions, and calculate the InfoNCE loss [34]. We
also notice that few early work [44] has explored one-stage
models for weakly supervised REC, but their performance
is still inferior to the two-stage ones. Different from these
approaches, RefCLIP is a one-stage model with an innovate
weakly supervised formulation, i.e., anchor-text matching.
Based on RefCLIP, we propose a new weakly supervised
training scheme, i.e., pseudo-label learning, which is appli-
cable to most REC models and does not require any network
modification.

3. RefCLIP

3.1. Problem Definition

Given an image I and a text expression T , Referring Ex-
pression Comprehension (REC) aims to locate the target
instance by a bounding box b. Under the existing weakly
supervised setting [19, 20, 38], the model is expected to
learn detection based merely on text expressions and im-
ages, which is intractable to accomplish.

In this case, existing weakly supervised solutions usu-
ally adopt a pre-trained two-stage detection network, e.g.,
Faster-RCNN [37], to provide a set of candidate bound-

ing boxes B2, similar to existing two-stage REC meth-
ods [16, 21, 42]. Then, REC is formulated as a region-text
matching problem, defined by

b∗ = argmax
b∈B

Φ(T, I, b), (1)

where b∗ is the best-matched box, and Φ(·) is a cross-modal
ranking network that returns the similarities between the
candidate regions (boxes) and expression. Afterwards, the
model conducts weakly supervised training based on se-
mantic reconstruction [19,20,38] or cross-modal contrastive
losses [7, 43]. Despite the feasibility, this solution requires
complex post-processing, e.g., ROI pooling for region fea-
ture extraction, which greatly limits its inference speed.

To this end, we resort to efficient one-stage detectors like
YOLOv3 [36] to build our RefCLIP. RefCLIP also lever-
ages the detection capability of YOLOv3. But in practice,
we simplify the REC task to an anchor-text matching prob-
lem, i.e., which anchor is most likely to have the target box:

a∗ = argmax
a∈A

ϕ(T, I, a), (2)

where a∗ is the best anchor, A denotes the set of anchor
points in YOLOv3, and ϕ(·) is a simple linear ranking mod-
ule. To explain, the prediction of one-stage detectors like
YOLOv3 is based on the grid features of the output feature
maps, also termed anchor points. By knowing which an-
chor is correct, we can greatly narrow down the range of
candidate boxes and finally obtain the most confident box
as the prediction.

2Some methods use the official annotations of MSCOCO as candidates.
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More importantly, through Eq. 2, we can directly use
the convolution backbone to extract anchor features with-
out complex post-processing. To achieve weakly supervised
optimization, we further perform anchor-based contrastive
learning in and out of images.

3.2. Anchor Selection

The framework of RefCLIP is depicted in Fig. 2. Simi-
lar to the popular cross-modal contrastive learning scheme,
i.e., CLIP [35], RefCLIP also projects visual and text fea-
tures onto a joint semantic space and learn vision-language
alignment via numerous multi-modal pairs.

In RefCLIP, using all anchors as candidates will hinder
the efficiency and quality of contrastive learning. It is be-
cause that one-stage detectors [17,36] are often multi-scale,
so they have thousands of candidate anchor points, most of
which are background or low-quality.

Therefore, RefCLIP needs to filter out most low-value
anchors, as illustrated in Fig. 2. Firstly, we only keep the
anchors of the last convolution feature map. To explain, in
recent REC datasets [10, 30, 32], most objects are relatively
large and can be detected by anchors in small-resolution
feature maps. Secondly, we filter the remaining anchors ac-
cording to their confidence scores, e.g., selecting the top 10
percents of anchors.

Afterwards, RefCLIP computes the similarities between
these candidate anchors and expression in the joint seman-
tic space, and then returns the best-matching anchor as the
positive one for contrastive optimization.

3.3. Anchor-based Contrastive Learning

To achieve weakly supervised learning, we introduce
an anchor-based cross-modal contrastive learning scheme.
Specifically, given an image I and an expression T , we first
use the detection network and language encoder to extract
their features, denoted as Fv ∈ Rh×w×d and ft ∈ Rd,
respectively. Then, an anchor is represented by the corre-
sponding feature in Fv , denoted as fa ∈ Rd.

After anchor selection, we linearly project the selected
anchor fa and the text feature ft onto the same semantic
space, and their similarity is calculated by

sim(fa, ft) = (faWa)
T (ftWt), (3)

where Wa and Wt are projection matrices, and sim(·) can
be regarded as the lightweight ranking module in Eq. 2.

In REC, the target instance and expression in an image
are usually matched one-to-one. Theoretically, only one an-
chor is the positive example, and the rest ones are negative,
especially those that are filtered out. Therefore, we define
the contrastive loss inter and intra images:

Lc = − log
exp

(
sim(f i

a0
, f i

t )/τ
)

N∑
n=0

M∑
j=0

I¬(i=j
∧

n ̸=0) exp
(
sim(f j

an , f
i
t )/τ

) , (4)

where f j
an

are anchors sampled from a batch and f i
a0

is the
postive one of image i. I¬(i=j

∧
n ̸=0) is the indicator func-

tion, which is equal to 0 when i = j and n ̸= 0. N and
M denote the number of negative anchors per image and
batchsize, respectively. τ is the temperature [9]. In terms of
N , we select the negative anchors based on their confidence
scores.

From Eq. 4, we can see the flexibility of RefCLIP in aug-
menting negative samples. In principle, more negative sam-
ples can better facilitate optimization. However, in exist-
ing image-level contrastive learning schemes, the number
of negative examples is limited to the batch size [4] or re-
lies on external stacks [8]. In our anchor-based scheme, the
number of negative samples can be multiple times the batch
size, greatly improving the training efficiency.

3.4. Network Settings

As shown in Fig. 2, RefCLIP consists of a pre-trained
one-stage detector, i.e., YOLOv3 [36], a language encoder
and a multi-scale fusion module [25, 26]. The language en-
coder is a bidirectional GRU [2] followed by a self-attention
layer [40]. Before cross-modal matching, we employ a
multi-scale fusion module [26] to fuse the semantic infor-
mation of three scales.

During inference, RefCLIP first selects the best-
matching anchor point, based on which the detection head
is used to predict the bounding boxes. Since an anchor point
may yield several boxes [36], we use the one with the high-
est confidence score as the prediction.

4. Pseudo-label based weakly supervised train-
ing Scheme

In this section, we introduce a novel pseudo-label based
training scheme for arbitrary REC models, which is also the
first attempt in REC. In this scheme, RefCLIP plays a role of
teacher to teach common REC models via its pseudo-labels,
which can help them generalize to weakly supervised REC
without any modification.

Given an image-text pair (I, T ), we first use RefCLIP
to generate the pseudo-label b. After that, we construct a
triplet (I, T, b) to supervise the common REC model, and
the objective can be defined by

minLs(I, T, b; θs), (5)

where θs denotes the model parameters, and Ls is the loss
function, which can be the ranking loss for two-stage mod-
els [42] or the regression one for one-stage models [5, 45].

The pseudo labels generated by RefCLIP are still likely
to be noisy and of low quality, leading to a critical issue
called confirmation bias [1]. This issue means that the
training signal may be dominated by noisy samples, and the
accumulated errors will eventually limit the performance
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ceiling. Drawing on the latest research progress [23, 31],
we implement two designs to alleviate this problem.

Specifically, we conduct data augmentation on the input
image, e.g., random resize [13], to prevent the model from
prematurely overfitting the pseudo-labeled data. In addi-
tion, we adopt Exponential Moving Average (EMA) [39] to
the REC model, defined by

θts ← αθt−1
s + (1− α)θts, (6)

where α is the EMA coefficient and t is the training step.
As defined in Eq. 6, EMA will gradually ensemble the REC
models at different training statuses, thereby preventing the
decision boundary from moving towards noisy samples.

Lastly, the gradient update in our training scheme is:

θts = θ̂s − γ

t−1∑
k=1

(1− α−k+(t−1))
∂Ls(I, T, b; θs)

∂θks
, (7)

where θ̂s denotes the initial model weights.
Although the proposed scheme is similar to fully super-

vised training, it does not use any ground-truth bounding
boxes during training, which is consistent with the defini-
tion of weakly supervised REC [19, 20].

5. Experiments
5.1. Datasets and Metric

RefCOCO [32] has 142,210 referring expressions and
50,000 objects from 19,994 MSCOCO [15] images. The
expressions of RefCOCO are mainly about absolute spa-
tial information. RefCOCO+ [32] contains 141,564 refer-
ring expressions for 49,856 bounding boxes from 19,992
MSCOCO images. The data splits of RefCOCO+ are
the same as RefCOCO. However, the descriptions of Ref-
COCO+ are about relative spatial information and appear-
ance, e.g., color and texture. RefCOCOg [30, 32] has
104,560 referring expressions for 54,822 bounding boxes
in 26,711 images. Compared with RefCOCO and Ref-
COCO+, the expressions of RefCOCOg are longer and
more complex. Here, we use the google split [30] of
RefCOCOg in our experiments. ReferItGame [10] has
19,997 images from the SAIAPR-12 dataset, 99,220 bound-
ing boxes and 120,072 referring expressions.We partition
the dataset into train ,val ,test according to berkeley split.
We use IoU@0.5 as the metric. If IoU between the pre-
dicted and the ground-truth box is larger than 0.5, the pre-
diction is correct.

5.2. Implementation Details

We resize the input image to 416 × 416. The maxi-
mum length of the input text is set to 15 for RefCOCO,
RefCOCO+ and RefCOCOg and 20 for ReferItGame. For

RefCLIP, we use YOLOv3 [36] as the detector to extract an-
chor features, which is pre-trained on MS-COCO [15] and
the images of val and test set in three datasets above are re-
moved. For fair comparison with [21, 41] in ReferItGame,
we use the YOLOv3 pre-trained on Visual Genome [12] as
the detector of our RefCLIP. During training, the parame-
ters of YOLOv3 are fixed. The dimension of the language
encoder is set to 512. The anchor features are projected to
512 by the multi-scale fusion. In anchor-based contrastive
learning, the dimension of linear projection is 512, and 2
negative anchors per image are used by default. All models
are trained by Adam [11] optimizer with a constant learn-
ing rate of 1e-4. The training epochs and the batch size are
set to 25 and 64, respectively. For the weakly supervised
training scheme, we apply random resize as the data aug-
mentation to the input image. The EMA coefficient is set
to 0.9997. Other configurations of RealGIN, SimREC and
TransVG remain the same as their default settings.

5.3. Quantitative Analysis

Ablation of RefCLIP. Tab. 1 shows the ablation results
of two main designs in RefCLIP, i.e., anchor selection and
negative anchor augmentation (NAA). NAA denotes that
adding negative samples intra images without changing the
batch size. We can first observe that anchor filtering is crit-
ical for RefCLIP. In the absence of any filtering rules, the
performance of RefCLIP is actually far from satisfactory,
which confirms our motivation about anchor noise. In this
case, a simple scale selection can improve the performance
to a large extent, e.g., +17% on RefCOCO. When combined
with the confidence-based filtering, the performance can be
further improved on both datasets. The results of the last
row, i.e., NAA, reflect that adding negative anchors intra im-
ages is also beneficial for REC performance, which can im-
prove contrastive learning with very limited additional cost.

Tab. 2 shows the effect of different settings of anchor se-
lection. We first notice that the scales of 52× 52 or 26× 26
lead to drastic drops in performance, especially the former.
As mentioned above, the referents in existing REC datasets
are relatively large, so the target bounding boxes are barely
distributed on the predictions at these scales, which also ex-
plains why the accuracy of 52 × 52 is zero. In this case,
the smallest scale, i.e., 13× 13, is the best choice. Even so,
the anchor points of YOLOv3 are still redundant. As shown
in Tab. 2, by filtering up to 80% or 90% anchors based on
confidence, the performance can still be improved slightly.
These results well confirm our assumption about the anchor
redundancy for contrastive learning.

In Tab. 4, we examine the effect of negative sample size
for contrastive learning. Specifically, we adjust the number
of negative anchors per image and batch size for controlled
experiments, i.e, N and M defined in Eq. 4. We first ob-
serve that a larger batch size is beneficial for contrastive
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Table 1. Ablation study of RefCLIP. “ Scale” refers to scale se-
lection. “ Conf.” is confidence filtering. “ NAA” denotes negative
anchor augmentation.

Anchor
Selection

Contrastive
Learning

RefCOCO RefCOCO+

Scale Conf. NAA val val
- - - 33.71 29.11
✓ - - 50.75 36.65
✓ ✓ - 53.30 40.07
✓ ✓ ✓ 60.36 40.39

Table 2. The impact of anchor selection settings for RefCLIP.
Anchor

Selection
Setting

RefCOCO RefCOCO+
val val

Scale
selection

all 48.75 38.14
52 × 52 0.00 0.00
26 × 26 11.23 7.19
13 × 13 60.36 40.39

Confidence
filtering

100% 20.84 39.74
20% 59.31 41.06
10% 60.36 40.39
5% 48.46 39.69

Figure 3. The impact of RefCLIP’s performance on common REC
models, i.e., RealGIN and SimREC, on RefCOCO test splits.

learning, but the merit will become marginal as the batch
size increases. Therefore, we only test the max batch size of
64. The second block shows the effect of negative anchors
within images. We can observe that N = 2 does not lead to
much additional cost, but its performance gain is significant,
suggesting our advantage in negative anchor augmentation.
We also notice that using more negative anchors is coun-
terproductive, e.g., N = 3, which is not consistent with
existing contrastive learning study [8]. A potential reason is
that RefCLIP only needs to optimize the language encoder
and the joint semantic space, which makes it easy to overfit
at the existing data scale.

Ablation of weakly supervised training. We further
examine the effect of EMA and data augmentation in our
scheme in Tab. 3. We can first observe that this training
scheme is valid for weakly supervised REC. On all three
splits, the performance gap between the weakly supervised
RealGIN and RefCLIP is not obvious. Meanwhile, with
the help of data augmentation and EMA, the performance
of RealGIN is comprehensively improved, suggesting their
effectiveness for model training.

Table 3. Ablation study of the proposed weakly-supervised train-
ing scheme. RealGIN is the base model and RefCLIP is used for
reference.

Model
Method RefCOCO

Aug EMA val testA testB
RefCLIP - - 60.36 58.58 57.13

RealGIN
- - 57.36 57.34 56.33
✓ - 58.99 58.51 55.66
✓ ✓ 59.43 58.49 57.36

Table 4. Ablation of negative sample size in RefCLIP. N and M
denote the numbers of negative anchors per image and batchsize.

Constrastive
Learning

Setting
Neg.

Number
RefCOCO RefCOCO+

val val

M
16 15 48.98 40.08
32 31 52.74 40.98
64 63 53.30 40.07

N

1 63 53.30 40.07
2 126 60.36 40.39
3 189 44.41 38.66
5 315 42.98 38.46

Fig. 3 illustrates the impact of RefCLIP’s performance
on the tested REC models. The first observation is that the
quality of RefCLIP greatly affects the weakly supervised
performance of these common REC models. However, we
can also see that RefCLIP’s performance is not always the
performance upper-bound of our training scheme. When
the tested model has a better multi-modal reasoning ability
or more advanced designs for REC, their performance can
easily exceed RefCLIP under different settings, e.g., Sim-
REC and RealGIN. These results greatly validate the gener-
alization of our scheme for existing REC models.

Comparison to the state-of-the-arts. We examine our
weakly supervised training scheme and RefCLIP by com-
paring to a set of weakly supervised REC models in Tab.
5. In Tab. 5, we compare the proposed RefCLIP and
common REC models including both one-stage REC mod-
els [5, 25, 45] and two-stage REC models [42] weakly
trained by our scheme with more weakly supervised meth-
ods. The previous best performance is held by the meth-
ods [18, 20, 38] under the settings of using manually anno-
tated boxes as region candidates. Even so, RefCLIP can
outperform these methods on most splits, which can be up
to 21.1% on RefCOCO val.

Tab. 5 also shows the results of existing REC models
trained by our weakly supervised training scheme, which
are denoted as RefCLIP ModelName. It can be seen that our
training scheme can help common REC models easily sur-
pass the existing SOTA performance on multiple splits, e.g.,
71.27 on RefCOCO test B. We also observe that the perfor-
mance gains of MAttNet are more obvious than the one-
stage ones, e.g., +14.14% on RefCOCO testB. In terms of
these results, our hypothesis is that two-stage REC models
do not need to learn bounding box regression, which re-
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Table 5. Comparisons with state-of-the-art methods on four REC benchmark datasets. Ground-truth proposals means using the official
annotations of MSCOCO as candidates. For a fair comparison, the inference speeds of these methods are not compared. RefCLIP ModelName

represents the common REC models trained by RefCLIP in our weakly supervised training scheme.

Method RefCOCO RefCOCO+ RefCOCOg ReferItGame Inference
Speedval testA testB val testA testB val-g test

Ground-truth Proposals:
VC [33]CVPR18 - 33.29 30.13 - 34.60 31.58 30.26 - -
ARN [19]ICCV19 38.05 36.43 36.47 34.53 36.40 36.12 39.62 - -
KPRN [20]MM19 36.34 35.28 37.72 37.16 36.06 39.29 38.37 33.87 -
DTWREG [38]TPAMI21 39.21 41.14 37.72 39.18 40.01 38.08 43.24 - -
EARN [18]TPAMI22 38.08 38.25 38.59 37.54 37.58 37.92 45.33 36.86 -
RefCLIP MAttNet [42] (ours) 69.31 67.23 71.27 43.01 44.80 41.09 51.31 - -

Detected Proposals:
VC [33]CVPR18 - 32.68 27.22 - 34.68 28.10 29.65 14.50 -
KAC Net [3]CVPR18 - - - - - - - 15.83 -
MATN [44]CVPR18 - - - - - - - 13.61 -
ARN [19]ICCV19 32.17 35.25 30.28 32.78 34.35 32.13 33.09 26.19 5.7fps
IGN [43]NeurIPS20 34.78 37.64 32.59 34.29 36.91 33.56 34.92 - -
DTWREG [38]TPAMI21 38.35 39.51 37.01 38.91 39.91 37.09 42.54 - 5.9fps
RelR [22]CVPR21 - - - - - - - 37.68 -
NCE+Distillation [41]CVPR21 - - - - - - - 38.39 -
RefCLIP (ours) 60.36 58.58 57.13 40.39 40.45 38.86 47.87 39.58 31.3fps
RefCLIP RealGIN [45] (ours) 59.43 58.49 57.36 37.08 38.70 35.82 46.10 37.56 51.7fps
RefCLIP SimREC [25] (ours) 62.57 62.70 61.22 39.13 40.81 36.59 45.68 42.33 54.8fps
RefCLIP TransVG [5] (ours) 64.08 63.67 63.93 39.32 39.54 36.29 45.70 42.64 19.3fps

duces the difficulty of weakly supervised REC to a large
extent. More importantly, the inference speed of either Re-
fCLIP or our one-stage base models is much faster than ex-
isting weakly supervised models, e.g., RefCLIP improves
the inference speed by an order of magnitude compared to
DTWREG [38]. These results well confirm the effective-
ness of RefCLIP and our training scheme.

5.4. Qualitative Analysis

To obtain deep insight into the proposed RefCLIP and
training scheme, we further visualize the predictions under
different settings in Fig. 4. From Fig. 4-a, we can see that
without any filtering, the vision-language alignment abil-
ity of RefCLIP is very limited. Meanwhile, the model is
easy to select the boxes of inappropriate sizes, e.g., the 2-
th and 4-th examples. Such cases can be well alleviated
by scale selection, i.e., “+scale”. With confidence filtering,
i.e., “+confidence”, the prediction accuracy of RefCLIP is
further improved, validating our concerns about anchor re-
dundancy. Fig. 4-b shows the predictions of RefCLIP with
different negative sample sizes. It can be seen that a proper
increase in negative anchors can greatly improve contrastive
learning, making anchor-text matching more accurate, e.g.,
the 1-st example. Lastly, we compare RefCLIP with the

base REC models trained by it in Fig. 4-c. It can be seen
that the predictions of these common REC models do not
always agree with their teacher RefCLIP. When these mod-
els have a stronger reasoning ability, e.g., SimREC, they can
even show better cross-modal alignment than RefCLIP, e.g.,
the 7-th and 8-th examples. These results also well confirm
the generalization and superiority of our training scheme.

6. Limitation and Future Work
The detection scale of RefCLIP is designed for REC

tasks, which may limit its performance in small object de-
tection. Additionally, our weakly training scheme may re-
sult in the student model performing better on easier sam-
ples, leading to lower teaching quality on more challeng-
ing datasets. Future research will focus on addressing these
limitations and expanding the application of our approach
to other multi-modal tasks.

7. Conclusions
In this paper, we focus on efficient and general weakly

supervised REC. Specifically, we first propose a novel
weakly supervised model called RefCLIP. To avoid com-
plex region feature extraction, RefCLIP redefines REC as
an anchor-text matching problem and achieves weakly su-
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None +Scale +Confidence

RefCLIP RealGIN RefCLIP SimREC RefCLIP SimREC
(b) Predictions of RefCLIP with different numbers of negative anchors.

None +Scale +Confidence

.

.

(3) real cat (4)  lower right dish

Image Image

(1) center red hair (2) middle red bowl peas

(a) Predictions of RefCLIP with different anchor filtering rules.
Num = 15 Num = 126 Image Image

(1) striped tie guy (2)  tan couch with white pillow

Num = 63 Num = 15 Num = 126 Num = 63 

(1) middle cow (2) remote middle going sideway (4) the white lugage

(7) person touching guys face
(c) Predictions of RefCLIP and  weakly supervised  common REC models.

(5)  middle red vase (6)  leftmost orange

(3) front orange

RefCLIP RealGIN

(8) bald head bottom right

RefCLIP RealGIN RefCLIP SimREC RefCLIP SimRECRefCLIP RealGIN

Figure 4. Visualizations of RefCLIP and common REC models trained by our weakly supervised learning scheme. The yellow and green
boxes are the predicted and ground truth ones, respectively. Sub-figure (a) shows that scale selection and confidence filtering can help
RefCLIP better select the target boxes. The examples in sub-figure (b) reflect the benefit of a larger negative sample size to anchor-text
matching. In sub-figure (c), we can see the predictions of common REC models weakly trained by our scheme are not always consistent
with their teacher RefCLIP, and they are sometimes even better.

pervised optimization via anchor-based contrastive learn-
ing. Based on RefCLIP, we further propose the first model-
agnostic weakly supervised training scheme for common
REC models, where RefCLIP acts as a teacher for pseudo-
label learning. This scheme is applicable to most existing
REC models without any network modification. Experi-
mental results on four benchmarks not only show the perfor-
mance gains of RefCLIP over existing weakly supervised
REC models, but also confirm the effectiveness and gener-
alization ability of our training scheme.
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