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Abstract

Scene graph generation aims to construct a semantic
graph structure from an image such that its nodes and edges
respectively represent objects and their relationships. One
of the major challenges for the task lies in the presence
of distracting objects and relationships in images; contex-
tual reasoning is strongly distracted by irrelevant objects or
backgrounds and, more importantly, a vast number of irrel-
evant candidate relations. To tackle the issue, we propose
the Selective Quad Attention Network (SQUAT) that learns
to select relevant object pairs and disambiguate them via di-
verse contextual interactions. SQUAT consists of two main
components: edge selection and quad attention. The edge
selection module selects relevant object pairs, i.e., edges in
the scene graph, which helps contextual reasoning, and the
quad attention module then updates the edge features us-
ing both edge-to-node and edge-to-edge cross-attentions to
capture contextual information between objects and object
pairs. Experiments demonstrate the strong performance
and robustness of SQUAT, achieving the state of the art on
the Visual Genome and Open Images v6 benchmarks.

1. Introduction

The task of scene graph generation (SGG) is to construct

a visually-grounded graph from an image such that its nodes

and edges respectively represent objects and their relation-

ships in the image [27, 43, 46]. The scene graph provides a

semantic structure of images beyond individual objects and

thus is useful for a wide range of vision problems such as

visual question answering [36, 37], image captioning [53],

image retrieval [11], and conditional image generation [10],

where a holistic understanding of the relationships among

objects is required for high-level reasoning. With recent ad-

vances in deep neural networks for visual recognition, SGG

has been actively investigated in the computer vision com-

munity. A vast majority of existing methods tackle SGG by

first detecting candidate objects and then performing con-

textual reasoning between the objects via message pass-
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Figure 1. (a) The ground-truth scene graph contains only 4

ground-truth objects and 4 relations between the objects. (b) Only

13% of edges in a fully-connected graph have the actual relation-

ships according to the ground-truths. (c) The overview of the quad

attention. The node features are updated by node-to-node (N2N)

and node-to-edge (N2E) attentions, and the edge features are up-

dated by edge-to-node (E2N) and edge-to-edge (E2E) attentions.

ing [19, 21, 43] or sequential modeling [28, 36, 50]. Despite

these efforts, the task of SGG remains extremely challeng-

ing, and even the state-of-the-art methods do not produce

reliable results for practical usage.

While there exist a multitude of challenges for SGG, the

intrinsic difficulty may lie in the presence of distracting ob-

jects and relationships in images; there is a vast number of

potential but irrelevant relations, i.e., edges, which quadrat-

ically increase with the number of candidate objects, i.e.,
nodes, in the scene graph. The contextual reasoning for

SGG in the wild is thus largely distracted by irrelevant ob-

jects and their relationship pairs. Let us take a simple ex-

ample as in Fig. 1, where 4 objects and 4 relations in its

ground-truth scene graph exist in the given image. If our

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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object detector obtains 6 candidate boxes, 2 of which are

from the background (red), then the contextual reasoning,

e.g., message passing or self-attention, needs to consider 30

potential relations, 87% of which are not directly related ac-

cording to the ground-truth and most of them may thus act

as distracting outliers. In practice, the situation is far worse;

in the Visual Genome dataset, the standard benchmark for

SGG, an image contains 38 objects and 22 relationships on

average [43], which means that only around 1% of object

pairs have direct and meaningful relations even when ob-

ject detection is perfect. As will be discussed in our exper-

iments, we find that existing contextual reasoning schemes

obtain only a marginal gain at best and often degrade the

performance. The crux of the matter for SGG may lie in

developing a robust model for contextual reasoning against

irrelevant objects and relations.

To tackle the issue, we propose the Selective Quad Atten-
tion Network (SQUAT) that learns to select relevant object

pairs and disambiguate them via diverse contextual interac-

tions with objects and object pairs. The proposed method

consists of two main components: edge selection and quad

attention. The edge selection module removes irrelevant ob-

ject pairs, which may distract contextual reasoning, by pre-

dicting the relevance score for each pair. The quad attention

module then updates the edge features using edge-to-node

and edge-to-edge cross-attentions as well as the node fea-

tures using node-to-node and node-to-edge cross-attentions;

it thus captures contextual information between all objects

and object pairs, as shown in Figure 1 (c). Compared to pre-

vious methods [19, 21], which perform either node-to-node

or node-to-edge interactions, our quad attention provides

more effective contextual reasoning by capturing diverse

interactions in the scene graph. For example, in the case

of Fig. 1 (a), [‘man’, ‘feeding’, ‘horse’] relates to [‘man’,

‘holding’, ‘bracket’] and [‘horse’, ‘eat from’, ‘bracket’],

and vice versa; node-to-node or node-to-edge interactions

are limited in capturing such relations between the edges.

Our contributions can be summarized as follows:

• We introduce the edge selection module for SGG that

learns to select relevant edges for contextual reasoning.

• We propose the quad attention module for SGG that

performs effective contextual reasoning by updating

node and edge features via diverse interactions.

• The proposed SGG model, SQUAT, outperforms the

state-of-the-art methods on both Visual Genome and

Open Images v6 benchmarks. In particular, SQUAT

achieves remarkable improvement on the SGDet set-

tings, which is the most realistic and challenging.

2. Related work

Scene graph generation The vast majority of SGG meth-

ods [19, 21, 50] predict scene graphs in two stages: object

detection and contextual reasoning. While the first stage

is typically done by a pre-trained detection module [1, 31],

contextual reasoning is performed by different types of mes-

sage passing [2, 5, 12, 19–21, 23, 30, 41–43, 48, 49], which

uses a graph neural network with node-to-edge and edge-

to-node attentions, or sequential modeling [8, 28, 36, 50],

which updates the node features with node-to-node atten-

tion and constructs edge features with edge-to-node atten-

tion. Unlike the previous methods, we propose quad atten-

tion, which comprises node-to-node, node-to-edge, edge-

to-node, and edge-to-edge interactions, to capture all types

of context exchange between candidate objects and their

pairs for relational reasoning. In contextual reasoning, most

of the methods consider all the candidate object pairs, i.e.,
a fully-connected graph whose nodes are candidate objects.

While Graph R-CNN [46] proposes a relation proposal net-

work that prunes the edges from a fully-connected graph, it

focuses on reducing the cost of message passing and does

not analyze the effect of edge selection on the performance

of scene graph generation. In contrast, we introduce an ef-

fective edge selection method and provide an in-depth anal-

ysis of it. On the other hand, since dataset imbalance/bias

has recently emerged as a critical bottleneck for learning

SGG1, several methods [3, 16, 34, 40, 47] propose to adopt

the techniques from long-tailed recognition, e.g., data re-

sampling [6, 19] and loss reweighting [9, 15, 45].

Transformers for vision tasks and graph structures
Transformers [38] have been adapted to the various com-

puter vision tasks, e.g., object classification [7, 26], object

detection [1, 26, 32, 54] and segmentation [26, 52], and also

extended for graph structures [13, 22, 29, 33]. Despite their

success, vision transformer networks typically suffer from

high complexity and memory consumption. Several vari-

ants of transformer networks [4, 14, 32, 39, 54] have been

proposed to tackle the issue and showed that a proper spar-

sification technique, e.g., Sparse DETR [32], can not only

reduce the cost of computation and memory but also im-

prove the task performance. Our transformer network is

designed to perform contextual reasoning for scene graph

generation by capturing the inherent relationships between

objects and relevant object pairs, and unlike existing spar-

sification methods, which focus on token pruning [32] or

local attention [14, 54], our edge selection module prunes

not only the query edges to update but also the key-value

edges used for updating.

1For example, in the Visual Genome dataset, the most frequent entity

class is 35 times larger than the least frequent one, and the most frequent

predicate class is 8,000 times larger than the least frequent one.
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Figure 2. The overall architecture of Selective Quad Attention Networks (SQUAT). SQUAT consists of three components: the node

detection module, the edge selection module, and the quad attention module. First, the node detection module extracts nodes N by

detecting object candidate boxes and extracting their features. Also, all possible pairs of the nodes are constructed as initial edges E .

Second, the edge selection module select valid edges (ΩQ,ΩE2E,ΩN2E) with high relatedness scores. Third, the quad attention module

updates the node and edge features via four types of attention. Finally, the output features are passed into a classifier to predict the scene

graph. See Sec. 4 for the details.

3. Problem Definition

Given an image I , the goal of SGG is to generate a vi-

sually grounded graph G = (O,R) that represents objects

O and their semantic relationships R for object classes C
and predicate classes P . An object oi ∈ O is described

by a pair of a bounding box bi ∈ [0, 1]4 and its class label

ci ∈ C: oi = (bi, ci). A relationship rk ∈ R is represented

by a triplet of a subject oi ∈ O, an object oj ∈ O, and a

predicate label pij ∈ P: rk = (oi, oj , pij), which repre-

sents relationship pij between subject oi and object oj .

4. Selective Quad Attention Networks

To generate semantically meaningful scene graphs as de-

scribed in Section 3, we propose the Selective Quad Atten-

tion Network (SQUAT) that consists of three main com-

ponents as shown in Fig. 2: the node detection module

(Sec. 4.1), the edge selection module (Sec. 4.2), and the

quad attention module (Sec. 4.3). First, the node detection

module establishes nodes for a scene graph by detecting ob-

ject candidate boxes and extracting their features. All pos-

sible pairs of the nodes are constructed as potential edges.

Second, among all the potential edges, the edge selection

module selects valid edges with high relatedness scores.

Third, the quad attention module updates the features of

nodes and valid edges via four types of attention: node-to-

node (N2N), node-to-edge (N2E), edge-to-node (E2N), and

edge-to-edge (E2E). For the quad attention module, we use

three edge selection modules: query edge selection mod-

ule for entire quad attention (ESMQ) and key-value edge

selection modules for N2E attention (ESMN2E) and E2E

attention (ESME2E). The nodes and edges may require

different sets of edges to update their features, and some

pruned edges may help to update nodes or selected edges.

For example, an edge between a person and a background,

e.g., an ocean, is invalid but can help to predict the relation-

ships between a person and other objects. Only the valid

edges extracted by ESMN2E and ESME2E are used to up-

date the features of the nodes and valid edges from ESMQ.

Finally, the output features are then passed into a classifier

to predict relationship classes. The remainder of this section

presents the details of each component and training proce-

dure (Sec. 4.4). In this section, the calligraphic font, i.e., N
and E , denotes a set of features while the italic, i.e., N and

E, denotes a matrix of stacked features of the set.

4.1. Node detection for object candidates

Given an image I , we use a pre-trained object detector,

i.e., Faster R-CNN [31] in our experiments, to extract ob-

ject bounding boxes and their class labels. Let bi ∈ [0, 1]4

be the i-th object box coordinate and vi ∈ R
dv its visual

feature where dv is the dimension of the visual feature. We

construct a node feature fi by transforming bi and vi via

fi = Wo[Wvvi;Wgbi], (1)

where Wo, Wv , and Wg are linear transformation matrices

and [·; ·] is a concatenation operation. The edge feature fij
is formed by concatenating two node features fi and fj and

performing a linear transformation as

fij = Wp[fi; fj ], (2)

where Wp is the linear transformation matrix. As in Fig. 2,

the set of entire node features N = {fi|1 ≤ i ≤ n} and

the set of all possible edge features E = {fij |1 ≤ i, j ≤
n, i �= j} are passed into the edge selection and quad at-

tention modules, whose details are described below. We

denote the stacks of the features in N and E as N and E for

the sake of simplicity.
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Figure 3. Detailed architecture of the quad attention. The node

features are updated by node-to-node and node-to-edge attentions,

and the valid edge features, selected by ESMQ, are updated by

edge-to-node and edge-to-edge attentions. The key-value of node-

to-edge and edge-to-edge attentions are selected by ESMN2E and

ESME2E. See Sec. 4.3 for the details. Best viewed in color.

4.2. Edge selection for relevant object pairs

While node features N and edge features E can be up-

dated via attentive message passing, a large number of irrel-

evant edges in E interferes with the attention process. We

thus propose to prune invalid edges (i.e., non-existing/false

relationships) before proceeding to the quad attention mod-

ule, which will be described in the next subsection.

In order to remove such distracting edges, we introduce

an edge selection module (ESM) that takes an edge feature

fij between nodes i and j and predicts its relatedness score

sij using a simple multi-layer perceptron. We choose the

pairs with top-ρ% highest relatedness scores as valid edges

to use in the following quad attention module.

As mentioned earlier, we use three edge selection mod-

ules: ESMQ, ESMN2E, and ESME2E. Each edge selection

module ESMa takes the initial edge features E as inputs and

outputs the valid edge index set Ω for each module, result-

ing in ΩQ, ΩE2E, and ΩN2E.

4.3. Quad attention for relationship prediction

To capture contextual interactions between the nodes and

the edges, we propose a quad attention scheme inspired by

the transformer decoder [38]. The main component of the

quad attention is multi-head attention:

MHA(Q,K, V ) = [HA1; · · · ; HAh]W
O (3)

HAi = softmax

(
(QWQ

i )(KWK
i )T√

dk

)
VWV

i , (4)

where Q,K, and V are query, key, and value matrices.

WQ
i ,WK

i , and WV
i are learnable transformation parame-

ters for Q,K, and V , respectively, dk is the dimension of

the query vector, and WO is a learnable transformation pa-

rameter for the output. Each attention head HAi captures

the information from different representation subspaces in

parallel, and the multi-head attention aggregates them.

Fig. 3 shows the architecture of our quad attention layer.

Following the transformer decoder layer, the t-th quad at-

tention layer takes output edge features Et−1 and node fea-

tures Nt−1 from the (t− 1)-th layer as its input and update

them with a self-attention first. Instead of updating all pos-

sible edge features Et−1, we only update the valid edge fea-

tures EQ
t−1, whose indices are in ΩQ extracted from ESMQ:

Gt = LN(Nt−1 +MHA(Nt−1, Nt−1, Nt−1)), (5)

HQ
t = LN(EQ

t−1 +MHA(EQ
t−1, E

Q
t−1, E

Q
t−1)), (6)

where LN is layer normalization, Gt and Ht are the output

of the self-attention layer for node features and valid edge

features, respectively. For key-value edge features of N2E

and E2E attentions, we extract the key-value set from the

updated entire edge set Ht = HQ
t ∪ E\Q, where HQ

t is the

set of updated valid edges for query and E\Q = E − EQ.

Then, HQ
t are refined by E2N and E2E attentions and Gt

are refined by N2N and N2E attentions:

G′
t = LN(Gt +MHA(Gt, Gt, Gt)︸ ︷︷ ︸

node-to-node attention

+MHA(Gt, H
N2E
t , HN2E

t ))︸ ︷︷ ︸
node-to-edge attention

,
(7)

HQ
t

′ = LN(HQ
t +MHA(HQ

t , Gt, Gt)︸ ︷︷ ︸
edge-to-node attention

+MHA(HQ
t , HE2E

t , HE2E
t ))︸ ︷︷ ︸

edge-to-edge attention

,
(8)

where HN2E
t and HE2E

t are selected by the indices ΩN2E

and ΩE2E from the stack of Ht, i.e., Ht. Each attention ex-

plicitly represents a particular type of relationship between

edges and nodes and helps to construct contextual informa-

tion for the scene graph generation. Lastly, G′
t and H ′

t are

further updated by multi-layer perceptron (MLP) followed

by the residual connection and a layer normalization:

Nt = LN(G′
t +MLP(G′

t)) (9)

Et = LN(H ′
t +MLP(H ′

t)), (10)

where H ′
t is the stack of H′

t = HQ′ ∪ E\Q, and the quad

attention layer outputs Nt and Et.

The inputs N0 and E0 of the first quad attention layer are

the entire node features N and all possible edge features E,
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which are defined in Sec. 4.1. Every quad attention layer

uses the same valid edge sets to update the node features

and valid edge features by four types of attention. Given

the output edge features ET of the last T -th quad attention

layer, each edge feature eij ∈ ET is passed into a feedfor-

ward MLP to produce a probability distribution yij over the

predicate classes P .

4.4. Training objective

To train SQUAT, we use a combination of two loss func-

tions: a cross-entropy loss for the predicate classification

and a binary cross-entropy loss for the edge selection mod-

ule. The first predicate classification loss is defined as:

LPCE =
1

|E|
|N |∑

i,j=1,i �=j

LCE(yij , ŷij), (11)

where LCE is the cross-entropy loss and ŷij is a one-hot

vector of ground-truth relationship labels p̂ij between ob-

ject i and object j. To train the edge selection module, we

use auxiliary binary cross-entropy defined as:

La
ESM =

1

|E|
|N |∑

i,j=1,i �=j

LBCE(s
a
ij , ŝij), (12)

where LBCE is the binary cross-entropy loss, ŝij is the bi-

nary indicator of whether object i and object j have a rela-

tionship or not, and a ∈ A = {Q,E2E,N2E}. The entire

loss is defined as:

L = LPCE + λ
1

|A|
∑
a∈A

La
ESM, (13)

where λ > 0 is a hyper-parameter. In training, LCE does

not affect the parameters of ESM directly due to the hard

selection of ESM, and the gradient passes on to train the

edge feature extraction; ESM is mainly trained by LESM.

5. Experiments
In this section, we perform a diverse set of experiments

to evaluate the proposed model. We use two datasets: 1) Vi-

sual Genome (VG) [18] and 2) OpenImages v6 [17] datasets

to train and evaluate model performances. We intend to

show that our model can be generalized over heterogeneous

cases by demonstrating competitive results on the two inde-

pendent datasets.

5.1. Datasets and evaluation metrics

5.1.1 Visual Genome [18]

The Visual Genome dataset is composed of 108k images

with an average of 38 objects and 22 relationships per im-

age. However, most of the predicate classes have less

than 10 samples. Therefore, we adopt the widely-used VG

split [21, 50] to select the most frequent 150 object classes

and 50 predicate classes. Following the [50], we first split

the dataset into a training set (70%) and a test set (30%).

Then, we sample 5k validation images from the training

set to tune the hyperparameters. We evaluate SQUAT on

three subtasks: Predicate Classification (PredCls), Scene

Graph Classification (SGCls), and Scene Graph Detection

(SGDet). The PredCls predicts the relationships given the

ground-truth bounding boxes and object labels, the SGCls

aims to predict the object labels and the relationships given

the ground-truth bounding boxes, and the SGDet targets

predicting the object bounding boxes, object labels, and

relationships without any ground-truth. As the evaluation

metrics, we adopt the mean recall@K (mR@K), as pre-

viously used in scene graph generation literature [2, 35].

mR@K is the average of recall@K for each relation. Fol-

lowing [43], we apply the graph-constraint, in which each

object pair can have only one relationship, for evaluation.

5.1.2 OpenImages v6 [17]

The OpenImages v6 dataset has 126,368 images for the

training, 1,813 images for the validation, and 5,322 im-

ages for the test. Each image in the dataset has 4.1 ob-

jects and 2.8 relationships on average. The dataset has 301

object classes and 31 predicate classes. Compared with

the Visual Genome dataset, the quality of annotation is far

more robust and complete. For OpenImages v6, follow-

ing [17, 51], we calculate Recall@50 (R@50), weighted

mean AP of relationships (wmAPrel), and weighted mean

AP of phrases (wmAPphr) as evaluation metrics. APrel eval-

uates the two object bounding boxes, the subject box and

the object box, and three labels, the triplets of the sub-

ject, the object, and the predicate. APphr evaluates a union

bounding box of subject and object and three labels as the

same as APrel. To reduce the dataset bias in evaluation, we

calculate wmAPrel and wmAPphr with weighted average of

per-relationship APphr and APphr, respectively. The weight

of each relationship is calculated by their relative ratios in

the validation set. The final score scorewtd is obtained as

0.2× R@50 + 0.4× wmAPrel + 0.4× wmAPphr.

5.2. Implementation details

As in the previous work [19, 36], we adopt ResNeXt-

101-FPN as a backbone network and Faster R-CNN as an

object detector. The model parameters of the pre-trained ob-

ject detector are frozen during the training time. We use a

bi-level sampling [19] to handle the long-tailed distribution

of the datasets. The hyperparameters of bi-level sampling

are set the same as in [19]. We set the hyper-parameter

λ = 0.1 for the loss function. The keeping ratio ρ is set

to 70% for the SGDet setting on both the Visual Genome

dataset and the OpenImages v6 dataset in the training. In
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Methods
PredCls SGCls SGDet

mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

IMP+‡ [43] 8.9 11.0 11.8 5.2 6.2 6.5 2.8 4.2 5.3

Motifs‡ [50] 11.5 14.6 15.8 6.5 8.0 8.5 4.1 5.5 6.8

RelDN [51] - 15.8 17.2 - 9.3 9.6 - 6.0 7.3

VCTree‡ [36] 12.4 15.4 16.6 6.3 7.5 8.0 4.9 6.6 7.7

MSDN [21] - 15.9 17.5 - 9.3 9.7 6.1 7.2

GPS-Net [23] - 15.2 16.6 - 8.5 9.1 - 6.7 8.6

RU-Net [25] - - 24.2 - - 14.6 - - 10.8

HL-Net [24] - - 22.8 - - 13.5 - - 9.2

VCTree-TDE [35] 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1

Seq2Seq [28] 21.3 26.1 30.5 11.9 14.7 16.2 7.5 9.6 12.1

GPS-Net† 21.5 27.1 29.1 6.4 10.1 12.3 6.6 9.4 11.9

JMSGG [44] - 24.9 28.0 - 13.1 14.7 - 9.8 11.8

BGNN† [19] - 30.4 32.9 - 14.3 16.5 - 10.7 12.6

SQUAT † (Ours) 25.6 30.9 33.4 14.4 17.5 18.8 10.6 14.1 16.5

Table 1. The scene graph generation performance of three subtasks on Visual Genome (VG) dataset with graph constraints. † denotes that

the bi-level sampling [19] is applied for the model. ‡ denotes that the results are reported from the [35].

Methods R@50
wmAP

scorewtdrel phr

RelDN [51] 73.1 32.2 33.4 40.9

VCTree [36] 76.1 34.2 33.1 42.1

Motifs [50] 71.6 29.9 31.6 38.9

VCTree+TDE [35] 69.3 30.7 32.8 39.3

GPS-Net [23] 74.8 32.9 34.0 41.7

GPS-Net† [23] 74.7 32.8 33.9 41.6

BGNN† [19] 75.0 33.5 34.2 42.1

HL-Net [24] 76.5 35.1 34.7 43.2

RU-Net [25] 76.9 35.4 34.9 43.5
SQUAT † 75.8 34.9 35.9 43.5

Table 2. The scene graph generation performance on OpenImages

v6 dataset with graph constraints. † denotes that the bi-level sam-

pling [19] is applied for the model.

the early stages of training, the edge selection model is not

reliable, causing instability during training. To tackle the

issue, we pre-trained the edge selection module for a few

thousand iterations using LESM while freezing all other pa-

rameters and then trained the entire SQUAT except for the

object detector. Complete implementation details are spec-

ified in the supplementary material.

5.3. Comparison with state-of-the-art models

As shown in Table 1, on the Visual Genome dataset,

SQUAT outperforms the state-of-the-art models on every

setting, PredCls, SGCls and SGDet. Especially, SQUAT

outperforms the state-of-the-art models by a large margin

of 3.9 in mR@100 on the SGDet setting, which is the most

realistic and important setting in practice as there is no per-

fect object detector. There are more invalid pairs in the

SGDet setting than in other settings since the detected ob-

ject bounding boxes from the pre-trained object detector in-

cludes many background boxes. This means that previous

work for contextual modeling was most likely distracted

by the invalid pairs; thus, SQUAT shows significant per-

formance improvement on the SGDet setting. BGNN [19]

also leverage a scoring function to scale the messages of the

invalid edges, however, SQUAT shows better results with

our edge selection module to discard invalid object pairs.

This becomes doable with the quad attention mechanism

with edge selection which helps to reduce noise and outliers

from invalid pairs more effectively. Also, SQUAT shows

the performance improvements by 2.3 and 0.5 on the SG-

Cls and the PredCls settings with mR@100, respectively;

the more complex and realistic the task, the more notice-

able the performance improvement of SQUAT becomes. It

shows that SQUAT, composed of edge selection and quad

attention, is appropriate for contextual reasoning to generate

scene graphs even in a complex scene.

Also, as shown in Table 2, SQUAT achieve competitive

results or even outperform compared with the state-of-the-

art models on the OpenImages v6 dataset with scorewtd.

Since there are fewer objects and relationships in the images

of the OpenImages v6 dataset than of the Visual Genome,

the edge selection module seems less effective for the Open-

Images v6 dataset. As there is a trade-off in recall and mean

recall when bi-level sampling is utilized [2,28], the result of

SQUAT in Table 2 is a compromised metric for R@50. But

still, the R@50 of SQUAT is still competitive with that from

RU-Net [25] and outperforms other recent baselines, and we

achieve the best performance in wmAPphr by a large mar-

gin. It shows SQUAT is effective in improving the scene

graph generation performance and also in simple scenes.
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Variants SGDet

Q E2E N2E mR@20 mR@50 mR@100

BGNN [19] 7.49 10.31 12.46

9.12 12.45 15.00

� 9.92 13.22 15.66

� � 9.84 13.04 15.60

� � � 10.57 14.12 16.47

Table 3. The ablation study on model variants on edge selection.

We remove the edge selection module for query selection and key-

value selection.

Variants SGDet

Q E2E N2E mR@20 mR@50 mR@100

shared shared shared 9.61 12.70 14.85

distinct shared shared 9.63 12.54 14.64

distinct distinct distinct 10.57 14.12 16.47

Table 4. The ablation study on model variants on edge selection.

We share the edge selection module for query selection and key-

value selection. ‘shared’ denotes the edge selection modules share

the parameters.

Qualitative visualizations of SQUAT and more exper-

iments on SQUAT with 1) additional measurement, e.g.,
recall and non-graph constraint measurement, on Visual

Genome, 2) performance with plug-and-play long-tailed

recognition techniques and 3) additional qualitative results

are given in Supplementary.

5.4. Ablation study

5.4.1 Model variants on edge selection

To verify the effectiveness of the edge selection module, we

evaluate the model from which each component of edge se-

lection is removed on the Visual Genome dataset. As shown

in Table 3, we observe that the quad attention module with-

out the edge selection module shows much lower perfor-

mance at mR@100 (-8.9%) than the full model which has

the edge selection module; thus, to select the valid edges

is important for the scene graph generation. On the other

hand, the quad attention module without the edge selection

module shows 20.4% higher performance than the BGNN

and achieves 15.00 on mR@100. It shows the effective-

ness of the quad attention module itself without the edge

selection module. We also observe that the query selection

is more critical than the key-value selection for the scene

graph generation; it shows that selecting what to update is

important for the scene graph generation.

To evaluate the effectiveness of three distinct edge se-

lection modules, we evaluate the models, some of which

Method SGDet

N2N N2E E2N E2E mR@20 mR@50 mR@100

� � 7.02 9.74 11.57

� � � 9.76 12.98 15.30

� � � 9.70 12.27 15.03

� � 9.90 13.05 15.28

� � � 9.77 12.93 15.42

� � � 9.99 13.02 15.54

� � � � 10.57 14.12 16.47

Table 5. The ablation study on model variants on quad atten-

tion. N2N, N2E, E2N, E2E denote the node-to-node, node-to-

edge, edge-to-node, and edge-to-edge attentions, respectively.

edge selection modules are shared. In Table 4, ESMa, of

which a ∈ {Q,E2E,N2E} are denoted ‘shared’ in the col-

umn, share the same parameters. We observe that the three

fully-distinct edge selection modules boost the scene graph

generation performances. It shows there exist differences

between the edges needed to update both features and the

edges that need to be updated.

5.4.2 Model variants on quad attention

To verify the effectiveness of the quad attention module, we

evaluate the model from which each attention is removed

on the Visual Genome dataset. As shown in Table 5, the

full model with quad attention outperforms the other model

variants. We also observe that the SQUAT without updating

edges, i.e., edge-to-node and edge-to-edge attentions, per-

forms poorer than the SQUAT without updating nodes, i.e.,
node-to-node and node-to-edge attentions. It shows that up-

dating edge features with context information is important

for context reasoning. Especially, SQUAT without edge-to-

edge attention shows worse performance than without edge-

to-node attention since edge-to-edge attention, which is ne-

glected in the previous work, can capture high-level infor-

mation.

5.5. The effect of the edge selection module

We applied the edge selection module to the scene graph

generation model with message passing methods. Since it

is not known which pairs of objects have a relationship,

the message passing methods use the fully-connected graph

in the inference time. However, we empirically observe

that message passing on fully-connected graph is meaning-

less or even harmful for the scene graph generation. We

use three baselines, IMP [43], BGNN [19], and SQUAT,

for ablation study on the Visual Genome dataset. Table 6

shows that message passing through fully-connected graph

is harmful for the scene graph generation. Even though

BGNN uses a gating function to scale down the messages

from invalid edges, it does not work well.
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Figure 4. Qualitative results for edge selection module ESMQ for query selection. The selected edges after edge selection are drawn in the

right graph. The green arrows denote the valid pairs, and the gray arrows denote the invalid pairs. The keeping ratio for the two settings is

the same ρ = 35%. All of the valid edges remain, and most of the invalid edges are removed.

model Graph
SGDet

mR@20 mR@50 mR@100

IMP [43]
No 4.09 5.56 6.53

Full 2.87 4.24 5.42

BGNN [19]

No 8.99 11.84 13.56

Full 7.49 10.31 12.46

ES 9.00 11.86 14.20

GT 14.15 16.41 17.09

SQUAT

No 8.68 11.52 13.99

Full 9.12 12.45 15.00

ES 10.57 14.12 16.47

GT 17.95 19.21 19.51

Table 6. The ablation study on message passing for the scene

graph generation. There are four settings depending on which

graphs are used in the message passing: No, Full, ES, and GT.

Every result is reproduced with the authors’ code.

To further investigate the effect of edge selection, we ap-

plied message passing through ground-truth scene graphs

to each model. In table 6, ‘No’ represents that message

passing is not used, ‘Full’ and ‘GT’ indicate that message

passing is used with the complete graph and the ground-

truth scene graph, respectively; ‘ES’ means that the pro-

posed edge selection module is used with message passing.

As shown in Table 6, every model with the message pass-

ing through ground truth outperforms state-of-the-art mod-

els by a substantial margin, showing that removing the in-

valid edges is crucial for scene graph generation. The edge

selection module clearly improves not only the performance

of SQUAT but also that of BGNN, the previous state-of-

the-art model. It indicates that the edge selection module

effectively removes the invalid edges and can be used as

a plug-and-play module for message-passing-based scene

graph methods.

5.6. Qualitative results

Qualitative results for the edge selection module are

shown in Fig. 4. As shown in Fig. 4 (a), the object detection

module extracts 6 bounding boxes, then the fully-connected

graph has 30 edges in total, where only 6 valid edges are

in the ground-truth. After edge selection with keeping ra-

tio ρ = 35%, only 10 edges remain where 6 valid edges all

remain. It significantly reduces noises from invalid edges.

The other example in Fig. 4 (b) shows the same tendency.

6. Conclusion

We presented a novel scene graph generation model that

predicts a scene graph within an image. The method is de-

signed to selectively utilize valid edges using our proposed

quad attention module, and update the model from the valid

edges only. The edge selection module effectively filters

out invalid edges to sparsify a noisy scene graph, and thus it

removes uncertainties brought by invalid edges. The quad

attention module, which is composed of four components

— node-to-node, node-to-edge, edge-to-node, and edge-to-

edge attentions — captures the high-level information for

accurately predicting relationships among different objects.

We have shown the effectiveness of the SQUAT, and each

component under various settings was properly validated in

the experiments to demonstrate stability.

Acknowledgements. This work was supported by the

IITP grants (2021-0-00537: Visual common sense through

self-supervised learning for restoration of invisible parts in

images (50%), 2022-0-00959: Few-shot learning of causal

inference in vision and language (40%), and 2019-0-01906:

AI graduate school program at POSTECH (10%)) funded

by the Korea government (MSIT).

18671



References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 2

[2] Tianshui Chen, Weihao Yu, Riquan Chen, and Liang Lin.

Knowledge-embedded routing network for scene graph gen-

eration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6163–

6171, 2019. 2, 5, 6

[3] Meng-Jiun Chiou, Henghui Ding, Hanshu Yan, Changhu

Wang, Roger Zimmermann, and Jiashi Feng. Recovering the

unbiased scene graphs from the biased ones. In Proceedings
of the 29th ACM International Conference on Multimedia,

pages 1581–1590, 2021. 2

[4] Krzysztof Choromanski, Valerii Likhosherstov, David Do-

han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter

Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,

et al. Rethinking attention with performers. International
Conference on Learning Representations, 2021. 2

[5] Bo Dai, Yuqi Zhang, and Dahua Lin. Detecting visual rela-

tionships with deep relational networks. In Proceedings of
the IEEE conference on computer vision and Pattern recog-
nition, pages 3076–3086, 2017. 2

[6] Alakh Desai, Tz-Ying Wu, Subarna Tripathi, and Nuno Vas-

concelos. Learning of visual relations: The devil is in the

tails. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 15404–15413, Oc-

tober 2021. 2

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2

[8] Jiuxiang Gu, Handong Zhao, Zhe Lin, Sheng Li, Jianfei Cai,

and Mingyang Ling. Scene graph generation with exter-

nal knowledge and image reconstruction. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1969–1978, 2019. 2

[9] Yuyu Guo, Lianli Gao, Xuanhan Wang, Yuxuan Hu, Xing

Xu, Xu Lu, Heng Tao Shen, and Jingkuan Song. From

general to specific: Informative scene graph generation via

balance adjustment. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages

16383–16392, October 2021. 2

[10] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image gener-

ation from scene graphs. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

1219–1228, 2018. 1

[11] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li,

David Shamma, Michael Bernstein, and Li Fei-Fei. Image

retrieval using scene graphs. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

3668–3678, 2015. 1

[12] Siddhesh Khandelwal, Mohammed Suhail, and Leonid Si-

gal. Segmentation-grounded scene graph generation. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 15879–15889, 2021. 2

[13] Jinwoo Kim, Saeyoon Oh, and Seunghoon Hong. Trans-

formers generalize deepsets and can be extended to graphs

& hypergraphs. Advances in Neural Information Processing
Systems, 34:28016–28028, 2021. 2

[14] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Re-

former: The efficient transformer. International Conference
on Learning Representations, 2020. 2

[15] Boris Knyazev, Harm de Vries, Cătălina Cangea, Graham W
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