This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

GeoNet: Benchmarking Unsupervised Adaptation across Geographies

Tarun Kalluri Wangdong Xu Manmohan Chandraker
UC San Diego

https://tarun005.github.io/GeoNet

Abstract

Us4

In recent years, several efforts have been aimed at im-
proving the robustness of vision models to domains and
environments unseen during training. An important practi-
cal problem pertains to models deployed in a new geography
that is under-represented in the training dataset, posing
a direct challenge to fair and inclusive computer vision.

In this paper, we study the problem of geographic robust-

ness and make three main contributions. First, we intro-

duce a large-scale dataset GeoNet for geographic adapta-

tion containing benchmarks across diverse tasks like scene

recognition (GeoPlaces), image classification (GeolmNet)

and universal adaptation (GeoUniDA). Second, we inves-

tigate the nature of distribution shifts typical to the prob-

lem of geographic adaptation and hypothesize that the ma- 5

jor source of domain shifts arise from significant varia- %

tions in scene context (context shift), object design (de- g
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sign shift) and label distribution (prior shift) across ge-
ographies. Third, we conduct an extensive evaluation of
several state-of-the-art unsupervised domain adaptation al-
gorithms and architectures on GeoNet, showing that they do
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1. Introduction
. . (c) Large vision models exhibit cross-domain drops on GeoNet

In recent years, domain adaptation has emerged as an

effective technique to alleviate dataset bias [80] during train-
ing and improve transferability of vision models to sparsely
labeled target domains [27,36,40,42,49-51, 68,69, 86, 89].
While being greatly instrumental in driving research forward,
methods and benchmark datasets developed for domain adap-
tation [56,57, 64, 83] have been restricted to a narrow set of
divergences between domains. However, the geographic ori-
gin of data remains a significant source of bias, attributable to
several factors of variation between train and test data. Train-

Figure 1. Summary of our contributions. (a): Training computer vision
models on geographically biased datasets suffers from poor generaliza-
tion to new geographies. We propose a new dataset called GeoNet to
study this problem and take a closer look at the various types of domain
shifts induced by geographic variations. (b) Prior unsupervised adapta-
tion methods that efficiently handle other variations do not suffice for
improving geographic transfer. (c) We highlight the limitations of mod-
ern convolutional and transformer architectures in addressing geographic
bias, exemplified here by USA—Asia transfer on GeolmNet.

generalization to novel domains with significantly different

ing on geographically biased datasets may cause a model
to learn the idiosyncrasies of their geographies, preventing

geographic and demographic composition. Besides robust-
ness, this may have deep impact towards fair and inclusive
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computer vision, as most modern benchmark datasets like
ImageNet [63] and COCO [47] suffer from a significant US
or UK-centric bias in data [24, 73], with poor representation
of images from various other geographies like Asia.

In this paper, we study the problem of geographic
adaptation by introducing a new large-scale dataset called
GeoNet, which constitutes three benchmarks — GeoPlaces
for scene classification, GeoImNet for object recognition and
GeoUniDA for universal domain adaptation. These bench-
marks contain images from USA and Asia, which are two
distinct geographical domains separated by various cultural,
economic, demographic and climatic factors. We addition-
ally provide rich metadata associated with each image, such
as GPS location, captions and hashtags, to facilitate algo-
rithms that leverage multimodal supervision.

GeoNet captures the multitude of novel challenges posed
by varying image and label distributions across geographies.
We analyze GeoNet through new sources of domain shift
caused by geographic disparity, namely (i) context shift,
where the appearance and composition of the background in
images changes significantly across geographies, (ii) design
shift, where the design and make of various objects changes
across geographies, and (iii) prior shift, caused by different
per-category distributions of images in both domains. We
illustrate examples of performance drop caused by these fac-
tors in Fig. 1a, where models trained on images from USA
fail to classify common categories such as running track and
mailbox due to context and design shifts, respectively.

GeoNet is an order of magnitude larger than previous
datasets for geographic adaptation [58, 61], allowing the
training of modern deep domain adaptation methods. Im-
portantly, it allows comparative analysis of new challenges
posed by geographic shifts for algorithms developed on other
popular adaptation benchmarks [56, 57,64, 83]. Specifically,
we evaluate the performance of several state-of-the-art un-
supervised domain adaptation algorithms on GeoNet, and
show their limitations in bridging domain gaps caused by
geographic disparities. As illustrated in Fig. 1b for the case
of DomainNet [56] vs. GeoNet, state-of-the-art models on
DomainNet often lead to accuracies even worse than a source
only baseline on GeoNet, resulting in negative relative gain
in accuracy (defined as the gain obtained by an adaptation
method over a source-only model as a percentage of gap be-
tween a source-only model and the target-supervised upper
bound). Furthermore, we also conduct a study of modern ar-
chitectures like vision transformers and various pre-training
strategies, to conclude that larger models with supervised
and self-supervised pre-training offer improvements in accu-
racy, which however are not sufficient to address the domain
gap (Fig. 1c). This highlights that the new challenges intro-
duced by geographic bias such as context and design shift are
relatively under-explored, where our dataset may motivate
further research towards this important problem.

In summary, our contribution towards geographic domain
adaptation is four-fold:

* A new large-scale dataset, GeoNet, with benchmarks for
diverse tasks like scene classification and object recogni-
tion, with labeled images collected from geographically
distant locations across hundreds of categories (Sec. 3).

* Analysis of domain shifts in geographic adaptation,
which may be more complex and subtle than style or
appearance variations (Sec. 3.4).

» Extensive benchmarking of unsupervised adaptation al-
gorithms, highlighting their limitations in addressing
geographic shifts (Sec. 4.2).

* Demonstration that large-scale pretraining and recent
advances like vision transformers do not alleviate these
geographic disparities (Sec. 4.3).

2. Related Works

Domain Adaptation Unsupervised domain adaptation en-
ables training models on a labeled source domain along with
unlabeled samples from a different target domain to improve
the target domain accuracy. A large body of prior works aim
to minimize some notion of divergence [4, 5] between the

source and target distributions based on MMD [49,51,77,78]
adversarial [9,13,27,50,68,81,82,92], generative [8,36,70],
class-level [31,44,52,55,69, 88] or instance-level align-
ment [74,84,86] techniques. Clustering [23,39,41,42,54]

and memory-augmentation approaches [40] have also been
shown to be effective. However, most of these works are
shown to improve performance using standard datasets such
as Office-31 [64], visDA [57], OfficeHome [83] or Domain-
Net [56], where the distribution shifts typically arise from
unimodal variations in style or appearance between source
and target. While prior works also study semantic shift [6]
and sub-population shift [ 10], we aim to address a more prac-
tical problem of geographic domain adaptation with more
complex variations not covered by prior works.

Geographic Robustness Many prior works study biases of
CNNSs towards 3D poses [1,94], textures [29], styles [35],
natural variations [7, 60, 79] and adversarial inputs [35],
but robustness of computer vision towards shift induced
by geography is relatively under-explored. While algorithms
for bridging geographic domain gaps have been proposed
in [18,41,85], they are restricted to road scenes with limited
number of classes. A major hindrance has been the lack
of suitable benchmark datasets for geographic adaptation,
so several datasets have been recently proposed to address
this issue [24, 58,61, 72]. Datasets based on dollar street
images [01] highlight the geographic differences induced by
income disparities between various countries, Ego4D [30]
contains egocentric videos with actions from various geogra-
phies, while researchers in [58] design an adaptation dataset
with images from YFCC-100M [26] to analyze geographic

15369



I GeoPlaces-USA
GeoPlaces-Asia

% of Images/Class
S o o &
o> ® o

o

(b) GeoImNet

Figure 2. Class distribution in GeoNet Percentage of images per class from USA and Asia domains shown for the GeoPlaces benchmark in (a) and GeoImNet
benchmark in (b). The label distributions are long-tailed in both, and the dominant and tail classes are widely different across geographies in each setting
indicating a strong prior shift. (Best viewed in color, zoom in to see the class names).

Split  GeoPlaces GeolmNet GeoUniDA
USA Train 178110 154908 100136

Test 17234 16784 25034
Asia Train 187426 68722 33912

Test 26923 9636 8478
classes-shared 205 600 62
classes-private - - 138

Table 1. Summary of GeoNet Number of images in train and test
splits in each of our benchmarks. While GeoPlaces and GeoIlmNet are
developed for unsupervised adaptation, GeoUniDA is developed for
universal domain adaptation across geographies.

shift. Adding to these efforts, we propose a much larger-
scale dataset for geographic adaptation consisting of more
diverse categories for place and object classification, across
factors of variation beyond income disparities.

3. Dataset Creation and Analysis

We present the overall summary of various datasets in
our benchmark in Tab. 1, including the number of images
and categories from each of our settings. In this paper, we
broadly consider US and Asia as the two domains, as these
two geographies have considerable separation in terms of
underlying cultural, environmental and economical factors,
while also providing the appropriate level of abstraction and
leaving enough data from each domain to perform mean-
ingful analysis. Although Asia is less homogeneous than
USA with greater within-domain variance, our adopted ge-
ographical granularity follows from the amount of data we
could retrieve from different countries using concepts in

GeoNet, where we observed general paucity in images from
many low-resource countries on Flickr. We also note that the
domain shifts caused by geographic disparities are not re-
stricted to these regions, and use images from Africa to show
similar observations of domain gaps in the supplementary.

3.1. GeoPlaces

We propose GeoPlaces to study geographic adaptation in
scene classification, which involves predicting the semantic
category of the place or location present in the image [95]. In
contrast to object classification, it is necessary to accurately
identify and understand various interactions and relation-
ships between the objects and people in the scene to predict
the appropriate scene category. In spite of rapid progress in
datasets [87,95] and methods [14] for this task, robustness
of scene classification networks to unseen domains in gen-
eral, and across geographies in particular, has received little
attention, for which we propose a suitable benchmark.

Selecting Concepts and Images We use the 205 scene
categories from Places-205 [95] to build GeoPlaces, as
these semantic categories cover a wide range of real world
scenes commonly encountered in most geographies. We
build our GeoPlaces benchmark from the labeled Places-
205 dataset [96]. We first collect the unique Flickr identifier
(Flickr-id) associated with each image in the Places-205
dataset, and then use the publicly available Flickr API' to
extract the GPS location of the image. Since only a fraction
of images belong to Flickr and a further smaller fraction
contain valid geotags, we end up with around 400k images
from 205 classes with associated geographical information.

!Flickr.com/services/api/explore/Flickr.photos.geo.getLocation
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Figure 3. Context Shift in GeoNet A few examples showing the nature of context shifts across categories from GeoPlaces benchmark in (a), and GeolmNet
benchmark in (a), arising due to a variety of differences between geographical disparity. For example, outdoor scenes (shopfront, marketplace) reflect the
demographies across geographies, indoor-scenes (living rooms, cafeteria) reflect cultural and economic variations and wildlife images reflect the habitat and

climatic variations.
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Figure 4. Design Shift in GeoNet We show examples illustrating the design shifts for the cases of castle from GeoPlaces and candle from GeolmNet. Note
that differences in designs of castles as well as the variety of objects like candles found across geographies lead to design shifts between the domains.

Of these, 190k images are from the US domain, and we use
178k of them for training and 17k for testing. In Asia domain
however, we obtain only 27k images. To match the scale of
images from both domains, we perform an additional step
and manually collect more images as explained next.

Additional Data Due to the inherent US-centric bias of
photo-sharing websites like Flickr, a major portion of im-
ages are US-based. In order to collect more images from the
Asia domain, we directly scrape images from Flickr using the
205 category names from Places-205 as the seed concepts.
As many Asian users often post descriptions and tags for pic-
tures in languages other than English, we use translations of
these seed concepts in English to 6 Asian languages, namely
{Hindi, Korean, Japanese, Chinese, Russian, Hebrew}, and
use these along with the original concepts, as the augmented
or expanded concepts. Then, we search Flickr for images
which match the criterion that (i) they are geotagged in Asia,
and (ii) the tags associated with the image match with exactly
one of the categories in the expanded concept list (which we
assign as the label). We collect around 190k images this way,
and use this as the training set. Since images collected from
web tend to be nosier than human labeled ones, we use the
manually labeled 27k images from Places-205 as the test set
for Asia domain to ensure robust benchmarking.

3.2. GeoImNet

We propose the GeoImNet benchmark to investigate the
domain shift due to geographical disparities on object clas-
sification. Different from existing object-level datasets for
domain adaptation [56,57, 64, 83], GeolmNet provides do-
main shifts induced by geographic disparities.

Dataset curation We collect images in the GeolmNet bench-
mark from the WebVision dataset [46], which itself is
scraped from Flickr using queries generated from 5000 con-
cepts in the Imagenet-5k dataset [22]. We then follow the
same pipeline as explained above for GeoPlaces benchmark,
and identify the GPS coordinates of each images using its
Flickr-id.

Concept Selection Although the original dataset contains
5000 classes, many of these classes are indigenous to a par-
ticular geography. For example, Bengal Tigers are found in
Indian subcontinent, and Bald Eagle is a North-American
bird. Since unsupervised domain adaptation typically de-
mands matching label spaces across source and target, we
select 600 categories out of the original 5000 with at least 20
images in each domain from each category. We then assign
roughly 15% of images from each domain into the test set
and use the remaining as the training images.
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Dataset filtering WebVision is webly supervised [16], which
does not guarantee object-centric images or clean labels.
Therefore, we remove all the images from the dataset which
have more than one tag that match our selected concepts
(the 600 chosen categories) to handle multi-labeled images.
Furthermore, we manually quality-check all the test images
and remove all the images with noisy labels. Finally, we
perform de-duplication to remove images from the training
set which are very similar to those in the test set. More
insights into each step of our data collection and filtering
process is provided in the supplementary material. The final
label distribution for both US and Asia domains in both our
benchmarks is shown in Fig. 2.

3.3. GeoUniDA

Universal Domain Adaptation (UniDA) [90] facilitates
domain adaptation between source and target domains that
have few private classes, in addition to shared classes which
are common to both. While this is a realistic problem, prior
works [45,65,67,90] use benchmarks created from existing
UDA datasets for evaluation. However, our proposed geo-
graphical adaptation setting gives us an unique opportunity
to design benchmarks for UniDA such that the private cate-
gories from the source and the target are a natural reflection
of the presence or absence of these categories in the respec-
tive geographical domains. In order to select the shared and
private categories for our Geo-UniDA benchmark, we first
start with the 1000 categories in the original Imagenet-1k
dataset [63], and select top 200 categories each in the USA
and Asia domains that have the most number of images from
the WebVision dataset. Out of these, we use the 62 common
classes as the shared categories, and the remaining 138 as
the private classes in each domain.

3.4. Analysis of Distribution Shifts

We denote the source dataset using D,={ X, Y5}, and as-
sume that X;~Ps(z) and (X, Y;)~Ps(z,y) where Ps(x)
and P;(xz,y) are the image marginal and image-label joint
distribution respectively. Target dataset D; = {X;, Y}
and target distributions P;(x) and P;(x, y) are defined sim-
ilarly, and the domain discrepency assumption states that
Py(z,y) # Pi(z,y). In order to formulate domain shift
across geographies, we define f, as the part of image re-
ferring to the foreground objects (corresponds to the salient
objects in a scene) and b,, to be the rest of the image cor-
responding to the background regions (corresponding to
the surrounding regions or context). For example, for the
task of classifying living room in Fig. 3a from GeoPlaces,
common objects like sofa and table are foreground, while
floor, roof and walls are backgrounds. We make a simpli-
fying assumption that an image is completely explainable
using its foreground and background and replace the class-
conditional distribution of the images P(x|y) with the joint

class-conditional P(b,, f|y). Further, we also assume that
given a class label, the background is conditionally indepen-
dent of the foreground. Then,

P(z,y) P(zly) - P(y)

P(by, fzly) - P(y)

P(bz|y) - P(fzlbz,y) - P(y)
P(bzly) - P(fzly) - P(y) (1)
—_—— —— =~

context design prior

= P({E,y) =

We define the class-conditional background distribu-
tion P(b,|y) as context, class-conditional object distribu-
tion P(f.|y) as design and the label distribution P(y) as
prior. Note that standard covariate shift assumption [4] as-
sumes uniform domain discrepency across all the images
(Ps(z)#P;(x)), which does not hold for geographic adapta-
tion due to the diverse source of variations. We analyze each
of these from a geographic adaptation perspective next.

Context Shift We define context shift to be the changes in
the context around an object or scene given by Ps(b,|y) #
P;(b.]y). Deep learning models are generally sensitive to
object contexts and backgrounds, and learn spurious cor-
relations that impede their ability to recognize objects and
scenes in novel contexts [19,20,62,75]. In geographic adap-
tation, context shift can be caused by differences in cultural
or economic factors across geographies, and few examples
illustrating context shift from GeoPlaces and GeolmNet are
shown in Fig. 3. While prior works already introduce con-
text shift for domain adaptation [58], a key difference lies
in their modeling assumption that the context is irrelevant
while training, while in our case context might play a key
role in improving scene classification on GeoPlaces.

Design Shift We define “design” shift as the change in ob-
ject structure, shape and appearance, where the foreground
objects belonging to the same semantic category look differ-
ent across geographies, given by Ps(f.|y) # Pi(f.|y). Few
examples are shown in Fig. 4, where categories like castle
from GeoPlaces and candle from GeolmNet datasets look
widely different due to high intra-class variance, although
they belong to the same semantic category. It is important to
note that context and design shifts might also occur within a
domain or within a geography. However, it is easier to ac-
count for intra-domain variations on labeled source datasets
than ensuring robustness to new and unlabeled geographies.

Prior Shift The label distributions across the domains in our
benchmarks widely differ due to natural prominence or rarity
of the classes according to the geography, as shown in Fig. 2,
where the head classes of one domain might be tail classes in
another. This leads to a prior shift where Ps(y) # P:(y). For
example, categories like railway station, outdoor markets,
monasteries are common in Asia while baseball stadiums
are more common in USA. Prior works examining prior
shift or label shift across domains [2,3,28,48,91] generally
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GeoPlaces

Train | / Test — USA Asia Drop (%)

USA 56.35/85.15  36.27/63.27 -20.08/-21.88

Asia 21.03/44.81 49.63/78.45 -28.60/-33.64
GeolmNet

Train | / Test — USA Asia Drop (%)

USA 56.35/77.95 36.98/63.42 -19.37/-14.53

Asia 40.43/64.60  60.37/80.22 -19.94/-15.62

Table 2. Top-1/Top-5 accuracies of Resnet-50 models across geograph-
ically different train and test domains. Note the significant drop in
accuracies caused by the geographical domain shifts in each setting.

Original Balanced
USA  Asia A USA  Asia A
GeoPlaces 56.35 36.27 20.08% 55.52 42,6 12.92%
GeoIlmNet 56.35 3698 19.37% 5272 373 1542%

Table 3. USA — Asia comparison between GeoNet and its label-
balanced version. Non-trivial gaps between the geographies still exist
even after accounting for prior shift between the domains.
assume that the class conditionals remain the same, which is
not true in the case of geographic adaptation due to context
and design shifts as illustrated above.

4. Experiments
4.1. Domain Shifts in Proposed Datasets

We illustrate the severity of domain differences across
geographies using the drop in accuracy caused by cross-
geography transfer in Tab. 2. Specifically, we train a Resnet-
50 [34] model using images only from one domain, and
compute the accuracies on both within-domain and cross-
domain test sets. Since a lot of categories in GeoNet are
close (example, train station vs. subway station), we use
both top-1 and top-5 accuracies to report the performance.
We observe a significant drop in accuracy caused by direct
transfer of models across domains which can be attributed
to the geographic bias in the training data. For example, a
model trained on GeoPlaces benchmark on US images gives
56.35% Top-1 accuracy on US images, but only 36.27%
on images from Asia with a notable drop of 20%. On the
GeolmNet benchmark, within-domain testing on images
collected from USA gives 56.35% top-1 accuracy while
cross-domain testing on Asia images gives only 36.98% with
adrop of 19.37%. The 36.98% accuracy is also much inferior
to the supervised accuracy on the Asia domain (60.37%)
which can be considered as the target upper bound.
Meta-category wise error analysis for GeoImNet We re-
late the drop in performances across geographies to the pro-
posed notions of domain discrepency in geographic adapta-
tion like context and domain shifts in Fig. 5. Specifically,
since the concepts in GeolmNet are sourced from ILSVRC,
we leverage the wordnet hierarchy to group our 600 classes
into 9 meta-labels. We then average the accuracy within
each meta-class from USA— Asia domain transfer, and plot
the difference in accuracy across domains per meta-label in
Fig. 5. We note that categories in the meta-label “animals”

g e
@@ 30 ot W€ e
e o™ 9 et 0™ (0o (ot (god

|
-
N

Drop in accuracies (%)

|
-
S

Figure 5. Drop in accuracies for each meta-category in GeolmNet. Groups
that showcase context and design shifts suffer a larger drop in accuracy.

class: kitchen pred: art studio class: Fire Extinguisher( ) pred: mongoose
c]

pred: seaplane class: oil lamp pred: bouquet

(b)

Figure 6. GradCAM visualization of predictions of a USA-trained model on
Asia images show that prominent context and design shifts across geography
hurts accuracy. (a) is from GeoPlaces, (b,c,d) are from GeolmNet.

have minimum design-shift across domains, but suffer from
context shift due to shifts in weather and habitats across
geographies leading to significant drop in accuracy. On
the other hand, many categories in “equipment” and “ob-
ject’(like candle, broom, sewing machine) have prominent
design shifts (Fig. 4) leading to notable performance drop.
Finally, categories in “food” (like bottled water, ice-cream)
have minimum change in both design and context and hence
suffer the least fall in accuracy across domains.
GradCAM visualization of the failure cases We present
few examples in Fig. 6 of predictions made on Asia test
images by a model trained on USA, along with their Grad-
CAM visualizations. As shown, when the model focuses
on the context and background, it fails to generalize to new
scenes from target geographies with notable shifts in con-
text (kitchen classified as art studio). Even in cases when
the model accurately focuses on the foreground object, it
sometimes leads to incorrect predictions due to design shifts
between geographies, where oil lamp is accurately localized,
but predicted as bouquet.

Separating the prior shift To further delineate prior shift
from context and design shifts, we curate a balanced subset
out of GeoNet such that each category has about 200-300
images, and drop categories which have fewer images (about
3/ 4 of the categories remain). From Tab. 3, the drop in ac-
curacy after addressing the prior shift is 12.9% on GeoPlaces
and 15.4% on GeolmNet, compared to 20.08% and 19.37%
on the original datasets, showing that non-trivial accuracy
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Method GeoPlaces GeolmNet

USA — Asia Asia — USA USA — Asia  Asia — USA

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Source Only 36.27 63.27 21.03 44.81 3698 6343 4043 64.6
DANN [27] 29.58 55.23 16.59 35.32 32.88 57.77 38.42 62.90
CDAN [50] 3048 5594 17.01 36.26 3594  60.21 39.88 63.74
MCC [38] 30.09 55.85 17.17 36.85 35.71 60.48 39.86 64.00
SAFN [89] 3250 5793 1434 35.68 3240 5843 36.26 61.58
MDD [93] 34.18 59.10 17.81 36.44 36.26  62.13 40.15 6391
MCD [69] 3349 5941 16.57 3474 25.60 48.45 36.69 60.68
ToAlign [86] 29.86 56.16 16.32 33.58 32.13 58.64 3798 63.17
MemSAC [40]  34.68 60.52 15.75 32.83 36.71 63.16 40.34 64.40
Tgt. Supervised 49.63 78.45 56.35 85.15 60.37 80.22 5635 77.95

Table 4. UDA on GeoNet Top-1 and Top-5 accuracies of various unsupervised adaptation methods on GeoNet. Most of the methods fail to sufficiently handle
cross-geography transfer on both GeoPlaces and GeolmNet benchmarks and often give lower accuracies even compared to a baseline model trained only
using source data calling attention to the need for novel methods that can handle domain shifts beyond style and appearance.

Method closed-set open-set H-Score ‘ Target Sup.
UniDA [90] 27.64 43.93 33.93
DANCE [66] 38.54 78.73 51.75 70.70%
OVANet [67] 36.54 66.89 47.26

Table 5. Universal domain adaptation methods on GeoUniDA.

closed-set and open-set refer to the closed set and open set accuracies,
and H-Score is the harmonic-mean of the two. Note the significant gap
that still exists with target supervised accuracy on closed-set labels with
the best adaptation method DANCE [66].

drops caused by context and design shifts still exist even
after accounting for label imbalance between the domains.

4.2. Benchmarking Domain Adaptation

We study the effectiveness of prior unsupervised adaptation
algorithms in bridging novel notions of domain gaps like
context shift and design shift on GeoNet. We review various
standard as well as current state-of-the-art domain adaptation
methods to examine their geographical robustness.

Architecture and training details We follow the standard
protocol established in prior works [40, 50, 69] and use
an ImageNet pre-trained Resnet-50 [34] as the feature ex-
tractor backbone and a randomly intialized classifier layer.
We use a batch size of 32 and SGD with a learning rate
of 0.01 for the classifier head and 0.001 for the already
pretrained backbone. We report the top-1 and top-5 accu-
racy numbers using the test splits from each benchmarks.
We perform comparisons between traditional adversarial
methods (DANN [27], CDAN [50]), class-aware adaptation
methods (MCC [38], MDD [93]), non-adversarial methods
(SAFN [89], MCD [69]) as well as recent state-of-the-art
(ToAlign [86], MemSAC [40]). We train prior works using
their publicly available code and adopt all hyper-parameters
as recommended in the respective papers.

Existing UDA methods do not suffice on GeoNet We show
the Top-1 and Top-5 accuracies of all the transfer settings

from GeoNet in Tab. 4. A key observation is that most of
the domain adaptation approaches are no better, or some-
times even worse, than the baseline model trained only us-
ing source domain data, indicating their limitations for ge-
ographic domain adaptation. For example, on GeoPlaces,
training using data from USA achieves a top-1 accuracy of
36.27% on test data from Asia test images, while the best
adaptation method (MemSAC) obtains lesser accuracy of
34.7%, indicating negative transfer. Likewise, on GeolmNet,
a USA-trained source model achieves 36.98% on test images
from Asia which is comparable to the best adaptation accu-
racy of 36.71%. To further illustrate this, we define relative
accuracy gain as the improvement in accuracy obtained by
a method over a source-only model as a percentage of gap
between a source-only model and the target-supervised up-
per bound (which is 100% if the method achieves the target
supervised upper bound). From Fig. 1b, it is notable that
the same adaptation methods that yield significantly high
relative accuracy gains on DomainNet [56] yield negative
relative accuracy gains on GeoNet, highlighting the unique
the nature of distribution shifts in real-world settings like ge-
ographic adaptation that challenge existing methods. These
observations also suggest that future research should focus
on context-aware and object-centric representations in addi-
tion to domain invariant features to improve cross-domain
transfer amidst context and design shifts.

Universal domain adaptation on Geo-UniDA We run
SOTA universal domain adaptation methods (You et.al. [90],
DANCE [66] and OvaNET [67]) on the Geo-UniDA bench-
mark of GeoNet. Following prior works [67], we adopt
the H-score metric which is a harmonic mean of closed-set
and open-set accuracies giving equal importance to closed
set transfer as well as open set accuracy. In Tab. 5, we
show that DANCE [66] outperforms both You et.al. [90] and
OVANet [67] on the Geo-UniDA benchmark. We also show
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Figure 7. We show that most architectures and pre-training strategies exhibit
significant cross-domain drops when fine-tuned on geographically biased
datasets. Shown for USA— Asia on GeoPlaces, refer Fig. Ic for the plot on
GeolmNet and supplementary material for other transfer settings.

ViT-L (303.3M)

that a significant gap still exists between target supervised
accuracy when trained using supervision (70.7%) and best
adaptation accuracy (38.5%) on our benchmark, highlight-
ing the limitations of existing methods to efficiently address
universal adaptation in a geographic context.

4.3. Large-scale pre-training and architectures

It is common to use large scale self-supervised [11,12, 15,

,32,33] and weakly-supervised [37, 53, 76] pre-trained
models as starting points in various downstream applica-
tions. While recent works explored role of pre-training on
domain robustness [43], we are interested in the extent to
which large scale pre-training effectively preserved robust-
ness when fine-tuned on geographically under-represented
datasets. We investigate the performance of a variety of
methods on GeoNet in terms of backbone architectures, pre-
training strategies and supervision.

Experimental setup Our backbone architectures include
Resnet50 [34] as well as the small (ViT-S), base (ViT-B) and
large (ViT-L) vision transformers [25]. In terms of super-
vision, in addition to the standard supervised pre-training
on ImageNet-1k, we also consider self-supervised methods

MoCo-V3 [17], SWAV [1 1], DINO [12], MAE [32] trained
on ImageNet- 1k, the weakly supervised SWAG [76] trained
on 3.6B uncurated instagram images and CLIP [59] trained

on 400M image-language pairs [71]. We denote {Backbone-
Supervision-Data} for different model choices (for example,
Resnet50-sup-IN1k indicates a Resnet50 pre-trained on su-
pervised data from ImageNet-1k).

For evaluating geographic robustness of these models, we
first take the pre-trained model and fine-tune it on training
data from a “source” geography, then evaluate the perfor-
mance on test data from the “target” geography. We show
the results using USA as the source and Asia as the target
from the GeoPlaces benchmark in Fig. 7, and GeolmNet
benchmark in Fig. Ic. For reference, we also report accuracy
after fine-tuning on labeled data from the target geography
using the same {Backbone-Supervision-Data} pair (denoted
as target-supervised), which serves as an upper bound for
the transfer performance.

Large-scale pretraining is not geographically robust

From Fig. 7, we make a few observations. Firstly, com-
parison between Resnet50 and ViT-S which have roughly
the same number of parameters suggests the superiority of
the vision transformer architectures over CNNs. For ex-
ample, ViT-S-sup-IN1k is better than Resnet50-sup-IN1k,
and ViT-S-moco-IN1k is better than Resnet50-moco-IN1k,
indicating that global reasoning using self-attention layers
in vision transformers benefits context-dependent tasks like
GeoPlaces. Next, comparing different pre-training strate-
gies, we observe that MoCo gives best accuracy on ViT-S
and ViT-B, while supervised pre-training outperforms other
approaches on large models like ViT-L. However, the gap
between target supervised accuracy and the best adaptation
accuracy achieved using either Resnet50 or any of the vision
transformers is still high, highlighting the need for better
transfer strategies. In terms of data, weakly-supervised pre-
training using billion-scale dataset IG3.6B (ViT-B-swag-3B)
shows significant improvements over self-supervised train-
ing methods like MAE (ViT-B-mae-IN1k) and DINO (ViT-
B-dino-IN1k). But despite training on massive-scale data,
ViT-L-swag-3B and ViT-L-clip-2B are still inferior to the tar-
get supervised accuracies, revealing the limitations of current
pre-training strategies towards robust cross-geography trans-
fer after fine-tuning. While the success of large-scale pre-
training strategies are well-documented on popular datasets
like ImageNet, our results indicate that similar benefits might
not be observed when application domains significantly dif-
fer from pre-training or fine-tuning datasets [21].

5. Conclusion

We introduce a new dataset called GeoNet for the prob-
lem of geographic adaptation with benchmarks covering the
tasks of scene and object classification. In contrast to exist-
ing datasets for domain adaptation [56,57,64,83], our dataset
with images collected from different locations contains do-
main shifts captured by natural variations due to geographies,
cultures and weather conditions from across the world, which
is a novel and understudied direction in domain adaptation.
Through GeoNet, we analyze the sources of domain shift
caused by changes in geographies such as context and de-
sign shift. We conduct extensive benchmarking on GeoNet
and highlight the limitations of current domain adaptation
methods as well as large-scale pretraining methods towards
geographical robustness. Finally, in spite of geographical
diversity in GeoNet, we note a possible limitation of indirect
bias towards USA as the user-base on photo-sharing sites
like Flickr is dominated by the US. Creating datasets that are
a more natural reflection of cultures and trends from diverse
geographies and devising learning algorithms robust to those
variations is an exciting proposition for the future.
Acknowledgements We thank NSF CAREER 1751365,
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