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Abstract

Recent studies in Vision-and-Language Navigation
(VLN) train RL agents to execute natural-language navi-
gation instructions in photorealistic environments, as a step
towards robots that can follow human instructions. How-
ever, given the scarcity of human instruction data and lim-
ited diversity in the training environments, these agents
still struggle with complex language grounding and spa-
tial language understanding. Pretraining on large text
and image-text datasets from the web has been extensively
explored but the improvements are limited. We investi-
gate large-scale augmentation with synthetic instructions.
We take 500+ indoor environments captured in densely-
sampled 360° panoramas, construct navigation trajecto-
ries through these panoramas, and generate a visually-
grounded instruction for each trajectory using Marky [63],
a high-quality multilingual navigation instruction genera-
tor. We also synthesize image observations from novel view-
points using an image-to-image GAN [27]. The resulting
dataset of 4.2M instruction-trajectory pairs is two orders of
magnitude larger than existing human-annotated datasets,
and contains a wider variety of environments and view-
points. To efficiently leverage data at this scale, we train
a simple transformer agent with imitation learning. On the
challenging RxR dataset, our approach outperforms all ex-
isting RL agents, improving the state-of-the-art NDTW from
71.1 to 79.1 in seen environments, and from 64.6 to 66.8 in
unseen test environments. Qur work points to a new path to
improving instruction-following agents, emphasizing large-
scale training on near-human quality synthetic instructions.

1. Introduction

Developing intelligent agents that follow human instruc-
tions is a long-term, formidable challenge in Al [66]. A
recent focus addressing this problem space is Vision-and-
Language Navigation (VLN) [3, 9]. Navigation is an ideal
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Figure 1. Simpler agents with more data: We investigate large-
scale augmentation using 500+ environments annotated with syn-
thetic instructions that approach human quality.

test bed for studying instruction-following, since the task
can be simulated photo-realistically at scale and evaluation
is straightforward. However, datasets that capture the lin-
guistic diversity and idiosyncrasies of real human instruc-
tors are small and expensive to collect.

Shortages of human-annotated training data for other
vision-and-language tasks have been partially addressed
by pretraining transformers on up to billions of image-
text pairs. This has underpinned dramatic improvements
in image captioning [65, 70], visual question answering
[59], phrase grounding [26, 35], text-to-video retrieval,
video question answering [32] and text-to-image synthesis
[49,69]. However, these are all static image or video tasks,
whereas VLN agents interact with 3D environments. In
VLN, pretraining on large image-text and text-only datasets
has been thoroughly explored [21,22,40,45], but improve-
ments are more limited. Arguably, progress in VLN has
plateaued while still leaving a large gap between machine
and human performance [73]. We hypothesize that static
image-text and text-only datasets — despite their size — lack
the spatially grounded and action-oriented language needed
for effective VLN pretraining. Consider instructions from
the Room-across-Room (RxR) dataset [30], which illus-
trate that wayfinding requires an understanding of allocen-

10813



tric and egocentric spatial expressions (near a grey console
table behind you), verbs (climb the stairs), imperatives and
negations (do not enter the room in front) and temporal
conditions (walk until you see an entrance on your left).
Such expressions are rarely found in image-text datasets.
Though similar expressions are found in text-only corpora,
their meaning as it relates to the physical world is hard to
infer from text alone (without sensorimotor context) [6].

To address this problem, we investigate large-scale
augmentation with synthetic in-domain data, i.e., model-
generated navigation instructions for trajectories in realistic
3D environments using previously developed components
[27,63]. We construct a large dataset using Marky [63],
which generates VLN instructions that approach the qual-
ity of human instructors. [63] released the 1M Marky
instruction-trajectory pairs situated in 61 Matterport3D [7]
environments. To increase the diversity of the environments
(and thus the scenes and objects available in them), we au-
tomatically annotate an additional 491 environments from
the Gibson dataset [67]. Gibson environments have been
underutilized in prior VLN work due to the lack of navi-
gation graphs indicating navigable trajectories through its
densely-sampled 360° panoramas. We train a model that
classifies navigable directions for Matterport3D and use it
to construct the missing navigation graphs. We sample
3.2M trajectories from these graphs and annotate them with
Marky. To further increase the variability of trajectories, we
synthesize image observations from novel viewpoints using
an image-to-image GAN [27]. The resulting dataset is two
orders of magnitude larger than existing human-annotated
ones, and contains a wider variety of scenes and viewpoints.
We have released our Gibson navigation graphs and the
Marky-Gibson dataset.’

With orders of magnitude more training examples and
environments, we explore VLN agent performance with
imitation learning (IL), i.e., behavioral cloning and DAG-
GER [53] IL can take advantage of high-throughput trans-
former frameworks such as T5 [48] and thus efficiently train
on 4.2M instructions (accumulating over 700M steps of ex-
perience). This is a departure from most prior VLN work
in low-data settings, e.g. [10] report that pure IL under-
performs by 8.5% success rate compared to agents trained
with both IL and online reinforcement learning (RL) algo-
rithms such as A3C [44]. However, IL outperforms RL
in related tasks with sufficient training data [50]. Online
RL also requires interacting with the environment at each
step; this precludes efficient data prefetching and paral-
lel preprocessing and thus imposes unavoidable overhead
compared to IL. Empirically, we confirm that training ex-
isting models such as HAMT [10] on 4.2M instructions is
infeasible without ground-up re-engineering, though we do
find incorporating 10K additional synthetic instructions into

2//github.com/google-research-datasets/RxR/tree/main/marky-mT5

HAMT training modestly improves performance. Training
with IL aligns with the trend towards large-scale multi-task
vision-and-language models trained with supervised learn-
ing; these have unified tasks as diverse as visual question
answering, image captioning, object detection, image clas-
sification, OCR and text reasoning [12] — and could include
VLN in future.

Experimentally, in detailed ablation studies we show that
adding Gibson environments, synthesizing additional image
observations from novel viewpoints, increasing the capacity
of the transformer, and finetuning with DAGGER all im-
prove agent performance. On the challenging RxR dataset
— which contains multilingual instructions with a median
trajectory length of 15m — our best agent using only imita-
tion learning outperforms all prior RL agents. Evaluating
on novel instruction-trajectories in seen environments (Val-
Seen), we improve over the state-of-the-art by 8%, reaching
79.1 NDTW. In new, unseen environments (Test), we im-
prove by 2%, achieving 66.8 NDTW. We also show that
that self-training with synthetic instructions in new envi-
ronments (still without human annotations) improves per-
formance by an additional 2% to 68.6 NDTW. Overall, our
RxR results point to a new path to improving instruction-
following agents, emphasizing large-scale training on near-
human quality synthetic instructions. Perhaps surprisingly,
on the English-only R2R dataset [3], our IL agent achieves
strong but not state-of-the-art results. Marky was trained
on RxR, so we attribute this to domain differences between
R2R and RxR, underscoring the domain dependence of syn-
thetic instructions.

2. Related Work

Vision-and-Language Navigation Agents that follow in-
structions by navigating to a prescribed location were ini-
tially studied in simple settings requiring limited or no per-
ception, using instructions that were often procedurally gen-
erated [4, 5, 8, 42, 43]. More recent work has explored
photorealistic 3D settings and natural language instruc-
tions [3, 9], using environments such as Matterport3D [7]
and Streetview [41]. This instantiation of the problem,
known as Vision-and-Language Navigation (VLN), raises
the prospect of sim-to-real transfer to physical robots [2],
and encouraged further datasets exploring dialog [17, 62],
object search [46] and multilingual instructions [30].

Pretraining and Transfer Learning The use of realis-
tic imagery and language in VLN, combined with the cost
of collecting human instruction annotations, leads to a nat-
ural focus on pretraining and transfer learning to improve
performance. Majumdar et al. [40] formulate VLN as
an instruction-trajectory alignment problem, and initialize
a transformer model using pretrained BERT weights [13]
then perform additional pretraining on image-text pairs
from Conceptual Captions [57]. Li et al. [36] also use a
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BERT model, although more recent approaches have fa-
vored learned text encoders from scratch by pretraining with
Masked Language Modeling (MLM) and related objectives
on instruction-trajectory data [10, 18]. In terms of image
representations, early work [15] used ResNet features [19]
pretrained on ImageNet [54], although pretrained object
detectors have also been explored [22, 33, 40] (typically a
Faster-RCNN [51]). More recently, Chen et al. [10] use
a vision transformer (ViT) [14] and current-state-of-the art
agents [34,58] use CLIP [47], obtaining improvements over
similarly sized encoders pretrained on ImageNet. However,
although pretraining and transfer learning from large text
and image-text datasets has been thoroughly explored, a sig-
nificant gap to human performance remains.

Data Augmentation Fried et al. [15] were the first to
demonstrate that performance following human instruc-
tions could be improved by augmenting training with syn-
thetic (model-generated) instructions. A variety of other
data augmentation approaches have been investigated, in-
cluding modifying existing environments before generating
new instructions [34, 60], training on a synthetic dataset
of path-instruction pairs generated using online rental list-
ings [16], and training with a generative model that infills
and outpaints spatially perturbed panos of indoor environ-
ments to generate new observations [27, 28] (we also use
this in Section 5). Notwithstanding these contributions,
prior work incorporating synthetic instructions has been
severely limited by instruction quality and scale. In human
wayfinding evaluations, the instructions used [15, 60] were
shown to be surprisingly weak, being poorly grounded and
mostly unfollowable by people [72]. The recently proposed
Marky model [63] (an instruction generator trained with
text-aligned visual landmark correspondences) addresses
this limitation, achieving near-human quality on R2R-style
paths in unseen environments. We address the second limi-
tation (scale) by developing an automated pipeline for scal-
ing navigation graphs to 500+ new environments which we
annotate with 3.2M instructions, and training agents on two
orders of magnitude more data than before. Using this ap-
proach, we achieve state-of-the-art results in a VLN setting
using a purely imitation learning agent. In contrast, most
recent VLN work focuses on RL agents. An exception is
DUET [!1], which uses imitation learning in conjunction
with a global action space based on a topological map.

3. Approach

Problem set up The agent is instantiated in an environ-
ment and must follow a natural language instruction W. At
time step ¢, the agent receives observation o; and chooses
action a, that transitions it from state s; to new state s;1.
Following prior work, each observation is a photorealis-
tic panoramic image (hereafter, pano) encoded as 36 im-
age feature vectors o;={171, I, ..., I{ ¢ }. These features

are extracted from perspective projections at 36 view an-
gles (12 headings x 3 elevations at 30° intervals). The
agent moves by choosing an action a; from a set of can-
didates A;={I{, I{!5, ..., I{! ;} given by the environment.
Action candidates are determined by the adjacent panos in
a predefined navigation graph; each is represented by the
image feature vector extracted from the perspective projec-
tion looking towards the adjacent pano. Selecting an action
teleports the agent a few meters to the new pano. Alterna-
tively, the agent can choose ‘STOP’ to end the episode. On
average agents have 5 actions available at each step, includ-
ing ‘STOP’. See [3] for more details.

Agent architecture Our imitation-learning agent is a
transformer encoder which predicts the next action a;i1
by jointly combining all four input modalities: the instruc-
tion text W, the history of observations 01.;—1 and actions
ai.t—1, the current observation o;, and the action candi-
dates A; (see Figure 2). At each step, all input features
are concatenated into a single multimodal sequence with no
attention masking, allowing every input to attend to every
other input. For biasing interactions between different input
modalities we include learned attention biases for each pair
of input types, e.g. the instruction and the observation/ac-
tion history. Like HAMT [10], our approach is not autore-
gressive: every forward pass predicts a single action using
the full history. Given our emphasis on data augmentation,
we name our agent MARVAL for Maximum Augmentation
Regime for Vision And Language navigation. Our imple-
mentation is based on mT5 [68], a multilingual variant of
the T5 transformer architecture [48].

Image features As noted above, pano observations o
and action candidates A; are represented with sets of im-
age features. We use precomputed, fixed 640-d features
from MURAL-large [24], an EfficientNet-B7 [01] back-
bone trained on 1.8B multilingual image-text pairs and 6B
translation pairs. MURAL’s image encoder’s representa-
tional power is similar to CLIP [47], which is used in previ-
ous work [10,58] and is trained on 400M English image-text
pairs with a VIT [14] backbone. To provide orientation in-
formation, each feature is combined with two learned em-
beddings: an absolute direction embedding capturing the
feature’s orientation in the environment’s fixed coordinate
system, and a relative direction embedding based on ori-
entation relative to the agent’s heading. The agent’s ini-
tial heading at ¢=0 is given by the dataset, and is typically
random. We also augment the action candidates .4; with
a ‘STOP’ action. This is convenient for modeling action
classification over the candidates (refer ‘Action classifica-
tion’, below) and is represented by a zero image vector with
unique direction embeddings. We use 37 absolute and rela-
tive direction embeddings, and snap features to the closest.

Instruction encoding The instruction WV is encoded as a
sequence of WordPiece [56] tokens using the mT5 vocab-
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Figure 2. Agent architecture. At each time step, we combine the instruction, state and action history, current observation and action
candidates into a multimodal transformer to predict the next action. Since observations consist of 36 image feature vectors (representing
different views from a 360° camera) we compress each previous observation into a single vector, similar to [10].

ulary which supports up to 101 languages via a Sentence-
Piece [31] model trained on mC4. Following TS5, position
information within the instruction is derived from relative
position biases applied to the transformer’s attention logits.
History encoding The history of agent observations
01.t—1 and actions aj.;—1 is computationally expensive to
process, since each pano observation o, is comprised of 36
feature vectors. Similar to [10] we embed the 36 features
from each previous pano observation into a single vector,
based on the mean-pooled output of a separate transformer
applied to the image features and their direction embed-
dings. This is added to the action candidate selected at each
previous step. Position information for the state and action
history is provided by relative position biases.

Pretraining We train the agent in two stages. We first
pretrain on a large dataset of instruction-trajectory pairs,
including both model-generated instructions and trajecto-
ries containing synthesized image observations from novel
viewpoints (refer Section 4). We then finetune on a sin-
gle dataset of human-annotated instruction-trajectory pairs
to maximize performance on that dataset. Unlike [40] and
[37], our transformer weights are initialized from scratch —
we do not use any image-caption datasets or text corpora
to train the transformer. Since the model is not autoregres-
sive, each training trajectory is broken down into 7’ training
examples, where T is the number of time steps in the trajec-
tory. Each training example requires the model to predict
the next action for a single step in a trajectory, given the
full instruction W, the action history a;.;—1, the observa-

tion history o1.;_1, the current observation o, and the set of
action candidates A;. To increase the amount of supervi-
sion, during pretraining we combine four tasks:

e Masked language modeling (MLM) [13]: 15% of in-
struction tokens are masked, with all consecutive spans
of masked tokens replaced by a single MASK token.
Similar to [10], the model predicts the masked tokens
using the surrounding text and visual clues from the
observation/action history and the current observation.

e Progress prediction: A small MLP is added to the
output representation of the CLS token (a special sym-
bol capturing the fused representation of the entire
sequence) to predict the proportion of the trajectory
that is completed (based on 20 discretized classes).
Progress monitoring has been shown to improve in-
struction grounding [39].

e Constrained action prediction: A classification task
to predict the correct action from the constrained set
of available action candidates A;. Since action can-
didates are inputs to the encoder (refer Figure 2), we
compute the logit for each action as a learned projec-
tion of its output representation and normalize with
softmax (a simplification of [10]).

e Unconstrained action prediction: A second small
MLP is added to the CLS output to directly predict
the next action from all 36 discretized agent-relative
directions or ‘STOP’. Hence, these predictions are not
constrained to A4, similar to the approach in [18]. The
constrained and unconstrained action prediction tasks
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(a) Agent is on the GT trajectory: Expert selects the
next action in the GT trajectory.

(b) Agent is off the GT trajectory; GT trajectory is the
shortest-path from start to goal: Expert action is the first
step in the recalculated shortest-path to the goal.

a

(c) Agent is off the GT trajectory; GT trajectory is not
a shortest-path: Expert takes the shortest path back to
the closest node in the GT trajectory.

Figure 3. Calculation of the DAGGER expert action (black) given the ground-truth (GT) trajectory (blue) and an agent trajectory (yellow).

are highly related but complimentary; in early experi-
ments we found that equally weighting the logits from
both improves accuracy by 1-2%, so we adopt this ap-
proach in all experiments.
Finetuning (behavioral cloning) During finetuning we
adapt our pretrained agent for best performance on a smaller
human-annotated dataset. We update only the WordPiece
embeddings in the agent and keep all other transformer
weights frozen, as this makes finetuning more stable and
less prone to overfitting (especially on the smaller R2R
dataset). We consider two finetuning strategies. The first
is behavioral cloning. In this setting, we simply drop the
instruction text masking and the MLM objective, retaining
the progress prediction and constrained and unconstrained
action prediction losses used in pretraining. We then fine-
tune the agent to predict the next action at each step along
ground-truth trajectories, treating imitation learning as su-
pervised learning.
DAGGER training The main weakness of behavioral
cloning is that the state distribution seen in training dif-
fers from the state distribution induced by the agent during
inference [52]. Previous works [10, 60] report substantial
improvements by combining behavioral cloning with on-
line reinforcement learning algorithms such as A3C [44].
We use DAGGER [11,52] to help train the agent to bet-
ter recover from errors, since it is simple to implement
and requires no environment interaction during training. In
DAGGER, during each iteration of finetuning the dataset is
augmented with trajectories of states visited by the current
agent policy and actions given by an expert. Figure 3 ex-
plains the calculation of expert actions. We find that most
of the gains are captured in a single DAGGER iteration.
Pre-Exploration While most of the focus in VLN is on
instruction-following in new, unseen environments, in real-
ity environments persist over time providing opportunities
for pre-exploration. Similar to [60, 64] we consider a pre-
exploration setting in which the agent may explore unseen
environments with self-supervision before evaluation. Our
synthetic-instruction approach is readily applicable to this
scenario; we simply sample paths from the Val-Unseen or

Test environments, annotate them with Marky instructions,
and include them in the training data.

4. Datasets and Augmentation

The datasets used for training and evaluation are de-
scribed below and summarized in Table 1.

e Room-to-Room (R2R) [3] consists of 22K human-
annotated English language navigation instructions,
each describing a trajectory that traverses multiple
rooms in Matterport3D [7]. This was the first dataset
to use a photo-realistic environment for the instruc-
tion guided navigation task. R2R trajectories average
10m, and the trajectories are always the shortest path
between the start point and the goal.

e Room-across-Room (RxR) [30] is a larger human-
annotated dataset containing 126K instructions in En-
glish, Hindi and Telugu. To mitigate goal seeking be-
haviour and to ensure that agents are faithful to the in-
struction, RxR includes Matterport3D trajectories that
are diverse in terms of length (average is 15m) and the
landmarks that are referred to, and it also includes tra-
jectories that do not go directly to the goal.

e Speaker-Matterport (S-MP) [15] is a set of 178K
sampled trajectories in Matterport3D environments,
annotated with synthetic instructions generated with an
LSTM [20] Speaker model trained on R2R.

e Marky-Matterport (M-MP) Marky [63] is a
landmark-aware multilingual instruction generator
trained on RxR, used to generate 1M instructions in
English, Hindi and Telugu for 330K sampled Matter-
port3D trajectories. In human wayfinding evaluations
in unseen environments Marky achieves close to
human performance on shortest-path trajectories (e.g.,
R2R’s paths). On the more challenging RxR paths a
gap remains: human wayfinders obtain a 62% success
rate with Marky vs. 78% with human instructions.

e Marky-Gibson (M-Gib) The Gibson [67] dataset con-
sists of 572 indoor 3D environments. Despite its large
size compared to Matterport3D, prior work has under-
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Dataset Instruction Avg Avg Environment Model- Language
Count steps words generated
Room-to-Room (R2R) [3] 14K 5.0 26 Matterport X en
Room-across-Room (RxR) [30] 79K 8.1 78 Matterport X en/hi/te
Speaker-Matterport [15] 178K 5.1 21 Matterport v en
Marky-Matterport [63] 1.0M 9.5 87 Matterport v en/hi/te
Marky-Gibson (ours) 3.2M 7.1 71 Gibson v en/hi/te

Table 1. Training data. Existing datasets are situated in the 61 train environments from Matterport3D [7]. We introduce the multilingual

Marky-Gibson dataset containing 3.2M model-generated navigation instructions in 491 Gibson [

utilized Gibson data for training VLN agents. This is
primarily due to a lack of navigation trajectories and
instruction annotations. To alleviate this, and unlock
the Gibson dataset for VLN training, we propose an
automated process to label these environments with
high quality navigation graphs (see below). We then
sample 1.3M trajectories and annotate them with 3.2M
Marky instructions in English, Hindi and Telugu.
Gibson navigation graphs In the standard VLN setting,
agents are trained and evaluated using panos as observations
(refer Section 3). Movement in the environment requires
a graph with panos as nodes and edges indicating naviga-
bility. Navigation graphs for Matterport3D were generated
by [3], using a semi-automated process combined with hu-
man visual inspection. However, there are no navigation
graphs for Gibson environments and the size of the dataset
precludes human inspection. We therefore train a model on
panos and navigation graphs from the Matterport3D train
split to classify whether a patch of pixels in a pano con-
stitutes a navigable direction. The model is based on Red-
Net [25], an RGB-D encoder-decoder first proposed for im-
age segmentation, using a ResNet-50 [19] backbone. The
output space is discretized into 8 X 16 x 5 pitch, heading and
distance buckets. During training each bucket is assigned a
positive value if the corresponding location corresponds to
a navigable node, and 0 otherwise.

To compute Gibson navigation graphs, we combine
model edge predictions with obstacle information from the
dataset’s 3D meshes. We add an edge between pano nodes %
and j if the following boolean expression evaluates to true:

e(i, j) = ()‘d%_)‘ppi,j < DA(sij < 35)A(|lzi—z] <3)
]
where g; ; is the geodesic distance (accounting for obsta-
cles) between nodes ¢ and j calculated using the Habitat
Simulator [55], s; ; is the straight-line Euclidean distance
between nodes i and j, p; ; is the model probability of an
edge connecting nodes ¢ and j, z; is the vertical coordinate
of pano 7, and A4 and )\, are weighting parameters. The first
term captures model predictions and encourages edges be-
tween panos that have few intervening obstacles. The sec-
ond term ensures that nodes are within 3.5m, and the third

] environments.

term ensures that nodes are within 3m in the vertical axis
(these values are chosen based on [3]). Finally, to ensure
that the navigation graph for each environment is fully con-
nected, we compute the minimum spanning tree (MST) [29]
of the graph with the edge weights given by the first term in
the equation for e(%, j), and apply a logical ‘OR’ operation
over e(, j) and the MST.

To set the weighting parameters Ay and A, we perform
grid search to maximize the F score when predicting edges
in Matterport3D val environments. Fj uses the standard
calculation where the population includes all pairs of nodes
in each environment, and the true condition is positive if an
edge exists in the hand-crafted navigation graphs from [3].
Our approach achieves an I} score of 0.70, precision of
0.695, and recall of 0.713. The average edge length in the
generated Gibson graphs is 3.02m (median of 2.06m), and
the average node degree is 4.15 (median of 4).

Trajectory sampling and instruction generation Using
the generated navigation graphs, we sample trajectories
from 491 Gibson train and val environments (we do not
use test environments). Unlike Matterport3D, Gibson lacks
room annotations, which precludes us from using the two-
step sampling approach from RxR. Instead, we use a sim-
pler approach: we randomly sample 3 panos, and use a TSP
solver to find the shortest path that visits all 3 panos. Tra-
jectories longer than 40m or 16 steps are discarded, and no
more than 3K paths are sampled per environment. This pro-
cedure generates 1.06M paths, with an average of 7.1 steps
and length of 19.3m. Using Marky we annotate each trajec-
tory with English, Hindi and Telugu instructions to create
the Marky-Gibson dataset.

Synthesizing image observations with SE3DS One
weakness of training VLN agents on pano images is that
training trajectories are constrained to the locations of the
captured images. VLN agents tend to overfit to these trajec-
tories [7 1], contributing to a performance drop in unseen en-
vironments. [27, 28] showed that a strong generative model
is capable of successfully rendering high resolution panos
from novel viewpoints, and that training VLN agents with
spatially-perturbed panos could improve the success rate of
the agent on R2R Val-Unseen by 1.5%. To assess if this
approach is complimentary to instruction augmentation, we
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Pretraining Data

RxR VAL-UNSEEN

R2R VAL-UNSEEN

SizeR2R RxR S-MP M-MP M-Gib SE3DS Iterations NE SR NDTW SDTW NE SR SPL
1 Base v 4 630K 11.16 232  40.1 19.0 7.58 335 319
2 Base v/ v v 1.68M 11.17 250 403 21.0 6.50 41.0 39.0
3 Base v/ v v v 2.94M 753 450 569 39.2 7.07 403 372
4 Base v 4 v 2.00M 690 502  60.3 43.9 6.07 50.0 465
5 Base v v v v v 1.94M 6.68 509 61.6 45.0 534 522 490
6 Base v/ v v v 4 3.00M 590 556 644 49.0 524 525 479
7 Base vV v v v 4 v 2.80M 575 559 651 49.3 5.08 542 50.1
8 Large/ v v v v v 4.80M 572 583 66.1 51.7 4.87 556 528
9 Large/ v v v v 5.14M 556 594 67.0 52.7 484 574 546

Table 2. Comparison of pretraining settings. Best results (without finetuning) are obtained by combining the R2R and RxR datasets with
Marky-generated instructions in both Matterport3D (M-MP) and Gibson (M-Gib) environments, without Speaker-generated instructions
(S-MP), and with synthesis of observations from novel viewpoints using SE3DS (row 9).

use the proposed SE3DS (Simple and Effective 3D Synthe-
sis) model to augment panoramas from the Matterport envi-
ronments. Following [27], we create 200 variations of each
environment which are randomly sampled during training.
In each environment variation, with 50% probability a pano
will be spatially-perturbed by up to 1.5m and re-rendered at
the new location using SE3DS.

S. Experiments

Pretraining settings In Table 2 we explore pretraining
using varying amounts and types of augmented data. Dur-
ing pretraining, we monitor one-step action prediction accu-
racy on ground-truth trajectories using held-out instructions
from RxR and R2R Val-Unseen. Each setting is trained un-
til convergence, requiring more iterations (Its) for larger
models and datasets. We select the best checkpoint based
on one-step prediction accuracy then perform a full evalua-
tion using standard VLN path-fidelity metrics [1,23]: Nav-
igation Error (NE |, the average distance in meters be-
tween the agent’s final position and the goal), Success Rate
(SRT, the proportion of trajectories with NE < 3m), Suc-
cess rate weighted by normalized inverse Path Length (SPL
1), normalized dynamic time warping (NDTW1), and suc-
cess weighted DTW (SDTWT).

Speaker vs. Marky Consistent with previous work, we
find that data augmentation with synthetic instructions from
the [15] Speaker model improves performance (row 2 vs. 1,
+2% SR on RxR and +8% on R2R), but instructions from
Marky [63] are far more effective (row 4 vs. 1, +27% SR
on RxR and +17% on R2R). This is consistent with human
evaluations of instruction quality, confirming that improve-
ments in instruction-generation flow through to instruction-
following performance. Interestingly, we find that combin-
ing the Speaker model with Marky leads to worse perfor-
mance on both RxR and R2R (row 3 vs. 4, and also row 8
vs. 9), which we attribute to the introduction of noise from
the lower-quality Speaker instructions.

Gibson, SE3DS and model size Augmentation with
Marky instructions in Gibson environments (row 6 v. 3)
provides a substantial boost (+11% SR on RxR and +12%
on R2R), suggesting that the returns from scaling synthetic
instructions to more environments are not exhausted. Us-
ing SE3DS to synthesize image observations from novel
viewpoints improves +6% SR on RxR and +12% on R2R
(row 5 vs. 3), but this benefit is substantially reduced (+0%
SR on RxR and +2% on R2R, row 7 vs. 6) if Gibson is
included, presumably because new environments also in-
crease viewpoint variety. Most experiments use the mTS5-
base [68] model; switching to mT5-large provides a further
performance boost (+2% SR on RxR and +1% on R2R, row
8 vs. 7). Our best pretraining results on both RxR and R2R
are achieved using an mT5-large model with all the previ-
ously mentioned data, but leaving out the Speaker instruc-
tions (row 9). We use this checkpoint in all finetuning ex-
periments. This agent pretrains for 5.14M iterations, which,
using a batch size of 128, represents over 650M steps of ex-
perience (over 700M including finetuning).

Finetuning In Tables 3 and 4 we compare results for
our MARVAL agent after finetuning to previous work
on the RxR and R2R datasets. On both datasets, fine-
tuning with behavioral cloning on just human-annotated
data (Finetuned-BC) substantially improves the pretrained
model. The improvement from using DAGGER over behav-
ioral cloning is small but consistent. On the RxR dataset,
MARVAL outperforms all prior work. Evaluating on novel
instruction-trajectories in seen environments (Val-Seen), we
improve over the state-of-the-art by 8%, reaching 79.1
NDTW. In new, unseen environments (Test), we improve by
2%, achieving 66.8 NDTW. Self-training with Marky syn-
thetic instructions in the Test environments (a form of privi-
leged access, but still without human annotations) improves
performance by an additional 2% to 68.6 NDTW.

RxR vs. R2R  On the English-only R2R dataset (Table 4),
MARVAL achieves strong performance but not state-of-
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VAL-SEEN VAL-UNSEEN TEST (UNSEEN)

Agent NE SR NDTW SDTW NE SR NDTW SDTW NE SR NDTW SDTW
LSTM [30] 10.7 252 422 20.7 109 228 389 18.2 12.0 21.0 36.8 16.9
EnvDrop+ [58] - - - - - 426 557 - - 383 511 324
CLEAR-C [33] - - - - - - - - - 403 537 34.9
HAMT [10] - 594 653 50.9 - 565 631 48.3 6.2 531 599 45.2
EnvEdit* [34] - 672 711 58.5 - 628 685 54.6 51 604 64.6 51.8
MARVAL (Pretrained) 362 727 770 65.9 5.56 594 67.0 52.7 - - - -
MARVAL (Finetuned-BC) 325 754 79.0 68.7 480 63.7 70.6 56.9 - - - -
MARVAL (DAGGER) 3.01 759 791 68.8 449 648 70.8 57.5 55 60.7 66.8 53.5
MARVAL (Pre-Explore)t 333 737 776 66.6 419 665 722 59.1 52 618 68.6 54.8
Human [30] - - - - - - - - 09 939 795 76.9

*Results from an ensemble of three agents.

Table 3. Results on RxR. Our MARVAL agent trained with imitation learning — behavioral cloning (BC) or DAGGER - outperforms
all existing RL agents. Pre-Exploration in the eval environments (f a form of privileged access, but still without human annotations) can
provide a further boost.

VAL-SEEN VAL-UNSEEN TEST (UNSEEN)
Agent TL NE SR SPL TL NE SR SPL TL NE SR SPL
PREVALENT [18] 10.32 3.67 69 65 10.19 471 58 53 10.51 530 54 51
RecBERT [22] 11.13 290 72 68 1201 393 63 57 1235 4.09 63 57
EnvDrop+ [58] - - - - - - 59.2 529 - - 59 53
AirBERT [16] 11.09 2.68 75 70 11.78 4.01 62 56 1241 413 62 57
HAMT [10] 11.15 2.51 76 72 1146 229 66 61 1227 393 65 60

REM [38]

EnvEdit* [34]

MARVAL (Pretrained)
MARVAL (Finetuned-BC)
MARVAL (DAGGER)

10.88 248 754 71.8 1244 3.89 63.6 579 13.11 3.87 65 59
11.18 232 769 739 11.13  3.24 68.9 64.4 1190 359 68 o064
1032 373 68.2 649 971 484 574 546 - - - -

1043 3.11 723 689 9.72 420 63.0 60.0 - -
10.60 299 730 69.1 10.15 4.06 64.8 60.7 1022 418 62 58

1190 1.61 86 76

Human [3] - - - - - - - -

*Results from an ensemble of three agents.

Table 4. Results on R2ZR. MARVAL achieves strong performance but not state-of-the-art, which we attribute to domain differences between
the R2R and RxR (which was used to train Marky).

the-art. Surprisingly, the Val-Unseen success rate (SR) of
64.8% is the same for both RxR and R2R, whereas typi-
cally RxR performance is lower since the trajectories are
longer and more varied. Noting that Marky was trained on
RxR, we attribute lower relative performance on R2R to
domain differences between R2R and RxR. While the av-
erage length of instructions in R2R is 26 words, RxR has
an average of 87 words — 3 times more. This is partly
because RxR instructions are more verbose, often describ-
ing objects in more detail and including state verification.
Further, cultural differences arising from the data collection
process (annotators from USA or from India) may also con-
tribute to the distribution shift due to subtle differences in
the vocabulary and structure of language used to form the
instructions. We note however, that while our augmentation
approach focuses on scaling up in terms of high quality in-
structions, EnvEdit [34] focuses on generalization through

augmentation of visual features. These two approaches may
ultimately prove to be complementary.

6. Conclusion

We build a purely imitation learning agent that achieves
state-of-the-art results on the RxR benchmark. This result
paves a new path towards improving instruction-following
agents, emphasizing large-scale imitation learning with
generic architectures, along with a focus on developing syn-
thetic instruction generation capabilities — which are shown
to directly improve instruction-following performance. We
find that aligning synthetic instructions to the target domain
is essential, as seen through the gap in performance on R2R.
On RxR, the performance improvement over the state-of-
the-art is much larger in seen environments (+8%) than un-
seen test environments (+2%). Scaling to even more indoor
environments might improve generalization further.

10820



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

Peter Anderson, Angel Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir R. Zamir. On Evaluation of Embodied Navigation
Agents. ArXiv preprint, 2018. 7

Peter Anderson, Ayush Shrivastava, Joanne Truong, Arjun
Majumdar, Devi Parikh, Dhruv Batra, and Stefan Lee. Sim-
to-real transfer for vision-and-language navigation. In CoRL,
2021. 2

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Siinderhauf, Ian D. Reid, Stephen Gould, and
Anton van den Hengel. Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions in real
environments. In CVPR, 2018. 1,2,3,5,6,8

Jacob Andreas and Dan Klein. Alignment-based composi-
tional semantics for instruction following. In EMNLP, 2015.
2

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learn-
ing of semantic parsers for mapping instructions to actions.
TACL, 2013. 2

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob An-
dreas, Yoshua Bengio, Joyce Chai, Mirella Lapata, Ange-
liki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas
Pinto, and Joseph Turian. Experience grounds language. In
EMNLP, 2020. 2

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-
D data in indoor environments. 3DV, 2017. 2, 5, 6

David L. Chen and Raymond J. Mooney. Learning to inter-
pret natural language navigation instructions from observa-
tions. In AAAI 2011. 2

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely,
and Yoav Artzi. TOUCHDOWN: natural language naviga-
tion and spatial reasoning in visual street environments. In
ICCV,2019. 1,2

Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and
Ivan Laptev. History aware multimodal transformer for
vision-and-language navigation. In NeurIPS, 2021. 2, 3,
4,5,8

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi,
Cordelia Schmid, and Ivan Laptev. Think global, act local:
Dual-scale graph transformer for vision-and-language navi-
gation. In CVPR, 2022. 3,5

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni,
Piotr Padlewski, Daniel Salz, Sebastian Goodman, Adam
Grycner, Basil Mustafa, Lucas Beyer, Alexander Kolesnikov,
Joan Puigcerver, Nan Ding, Keran Rong, Hassan Akbari,
Gaurav Mishra, Linting Xue, Ashish Thapliyal, James Brad-
bury, Weicheng Kuo, Mojtaba Seyedhosseini, Chao Jia,
Burcu Karagol Ayan, Carlos Riquelme, Andreas Steiner,
Anelia Angelova, Xiaohua Zhai, Neil Houlsby, and Radu
Soricut. PaLI: A jointly-scaled multilingual language-image
model. ArXiv preprint, 2022. 2

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

10821

formers for language understanding. In NAACL-HLT, 2019.
2,4

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 3

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,
Jacob Andreas, Louis-Philippe Morency, Taylor Berg-
Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.
Speaker-follower models for vision-and-language naviga-
tion. In NeurIPS, 2018. 3,5, 6,7

Pierre-Louis Guhur, Makarand Tapaswi, Shizhe Chen, Ivan
Laptev, and Cordelia Schmid. Airbert: In-domain pretrain-
ing for vision-and-language navigation. /ICCV, 2021. 3, 8
Meera Hahn, Jacob Krantz, Dhruv Batra, Devi Parikh, James
Rehg, Stefan Lee, and Peter Anderson. Where are you? lo-
calization from embodied dialog. In EMNLP, 2020. 2
Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and
Jianfeng Gao. Towards learning a generic agent for vision-
and-language navigation via pre-training. In CVPR, 2020. 3,
4,8

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 3,6

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term
Memory. Neural Computation, 1997. 5

Yicong Hong, Cristian Rodriguez Opazo, Yuankai Qi, Qi
Wu, and Stephen Gould. Language and visual entity rela-
tionship graph for agent navigation. In NeurIPS, 2020. 1
Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-
Opazo, and Stephen Gould. VLNBERT: A recurrent vision-
and-language bert for navigation. CVPR, 2021. 1, 3, 8
Gabriel Ilharco, Vihan Jain, Alexander Ku, Eugene Ie, and
Jason Baldridge. Effective and general evaluation for in-
struction conditioned navigation using dynamic time warp-
ing. NeurlPS Visually Grounded Interaction and Language
Workshop, 2019. 7

Aashi Jain, Mandy Guo, Krishna Srinivasan, Ting Chen,
Sneha Kudugunta, Chao Jia, Yinfei Yang, and Jason
Baldridge. MURAL: Multimodal, multitask representations
across languages. In EMNLP Findings, 2021. 3

Jindong Jiang, Lunan Zheng, Fei Luo, and Zhijun Zhang.
Rednet: Residual encoder-decoder network for indoor rgb-d
semantic segmentation. ArXiv preprint, 2018. 6

Aishwarya Kamath, Mannat Singh, Yann LeCun, Ishan
Misra, Gabriel Synnaeve, and Nicolas Carion. Mdetr - mod-
ulated detection for end-to-end multi-modal understanding.
ICCV, 2021. 1

Jing Yu Koh, Harsh Agrawal, Dhruv Batra, Richard Tucker,
Austin Waters, Honglak Lee, Yinfei Yang, Jason Baldridge,
and Peter Anderson. Simple and effective synthesis of indoor
3d scenes. In AAAI 2023. 1,2,3,6,7

Jing Yu Koh, Honglak Lee, Yinfei Yang, Jason Baldridge,
and Peter Anderson. Pathdreamer: A world model for indoor
navigation. In ICCV, 2021. 3, 6



[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

Joseph B Kruskal. On the shortest spanning subtree of a
graph and the traveling salesman problem. Proceedings of
the American Mathematical Society, 1956. 6

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and
Jason Baldridge. Room-Across-Room: Multilingual vision-
and-language navigation with dense spatiotemporal ground-
ing. In EMNLP, 2020. 1, 2, 5, 6, 8

Taku Kudo and John Richardson. SentencePiece: A sim-
ple and language independent subword tokenizer and detok-
enizer for neural text processing. In EMNLP, 2018. 4

Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg,
Mohit Bansal, and Jingjing Liu. Less is more: Clipbert for
video-and-language learning via sparse sampling. In CVPR,
2021. 1

Jialu Li, Hao Tan, and Mohit Bansal. CLEAR: Improving
vision-language navigation with cross-lingual, environment-
agnostic representations. In Findings of the Association for
Computational Linguistics: NAACL, 2022. 3, 8

Jialu Li, Hao Tan, and Mohit Bansal. EnvEdit: Environment
editing for vision-and-language navigation. In CVPR, 2022.
3,8,13

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jian-
wei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu
Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, and
Jianfeng Gao. Grounded language-image pre-training. In
CVPR, 2022. 1

Xiujun Li, Chunyuan Li, Qiaolin Xia, Yonatan Bisk, Asli
Celikyilmaz, Jianfeng Gao, Noah A. Smith, and Yejin Choi.
Robust navigation with language pretraining and stochastic
sampling. In EMNLP, 2019. 2

Xiujun Li, Chunyuan Li, Qiaolin Xia, Yonatan Bisk, Asli
Celikyilmaz, Jianfeng Gao, Noah A. Smith, and Yejin Choi.
Robust navigation with language pretraining and stochastic
sampling. In EMNLP, 2019. 4

Chong Liu, Fengda Zhu, Xiaojun Chang, Xiaodan Liang,
and Yi-Dong Shen. Vision-language navigation with random
environmental mixup. ICCV, 2021. 8

Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib,
Zsolt Kira, Richard Socher, and Caiming Xiong. Self-
monitoring navigation agent via auxiliary progress estima-
tion. In ICLR, 2019. 4

Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter An-
derson, Devi Parikh, and Dhruv Batra. Improving vision-
and-language navigation with image-text pairs from the web.
In ECCV, 2020. 1,2, 3,4

Harsh Mehta, Yoav Artzi, Jason Baldridge, Eugene Ie,
and Piotr Mirowski. Retouchdown: Adding touchdown to
streetlearn as a shareable resource for language grounding
tasks in street view. ArXiv preprint, 2020. 2

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. Lis-
ten, attend, and walk: Neural mapping of navigational in-
structions to action sequences. In AAAL 2016. 2

Dipendra Misra, John Langford, and Yoav Artzi. Mapping
instructions and visual observations to actions with rein-
forcement learning. In EMNLP, 2017. 2

Volodymyr Mnih, Adria Puigdomeénech Badia, Mehdi Mirza,
Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver,

(45]

[46]

[47]

(48]

[49]

[50]

(51]

(52]

(53]

(54]

[55]

(561

(571

(58]

10822

and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In ICML, 2016. 2, 5

Abhinav Moudgil, Arjun Majumdar, Harsh Agrawal, Stefan
Lee, and Dhruv Batra. Soat: A scene-and object-aware trans-

former for vision-and-language navigation. NeurIPS, 2021.
1

Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang,
William Yang Wang, Chunhua Shen, and Anton van den
Hengel. REVERIE: remote embodied visual referring ex-
pression in real indoor environments. In CVPR, 2020. 2
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In /ICML, 2021.
3

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. JMLR, 2020. 2, 3

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In ICML, 2021. 1

Ram Ramrakhya, Eric Undersander, Dhruv Batra, and Ab-
hishek Das. Habitat-web: Learning embodied object-search
strategies from human demonstrations at scale. In CVPR,
2022. 2

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with re-
gion proposal networks. In NeurIPS, 2015. 3

Stéphane Ross and Drew Bagnell. Efficient reductions for
imitation learning. In AISTATS, 2010. 5

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A re-
duction of imitation learning and structured prediction to no-
regret online learning. In AISTATS, 2011. 2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge.
1JCV,2015. 3

Manolis Savva, Jitendra Malik, Devi Parikh, Dhruv Batra,
Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik
Wijmans, Bhavana Jain, Julian Straub, Jia Liu, and Vladlen
Koltun. Habitat: A platform for embodied Al research. In
ICCV, 2019. 6

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural
machine translation of rare words with subword units. In
ACL, 2016. 3

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In ACL,
2018. 2

Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal,
Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, and Kurt
Keutzer. How much can CLIP benefit vision-and-language
tasks? ArXiv, 2021. 3,8



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

Hao Tan and Mohit Bansal. LXMERT: Learning cross-
modality encoder representations from transformers. In
EMNLP, 2019. 1

Hao Tan, Licheng Yu, and Mohit Bansal. Learning to nav-
igate unseen environments: Back translation with environ-
mental dropout. In NAACL-HLT, 2019. 3,5

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In ICML,
Proceedings of Machine Learning Research, 2019. 3

Jesse Thomason, Michael Murray, Maya Cakmak, and Luke
Zettlemoyer. Vision-and-dialog navigation. In CoRL, 2019.
2

Su Wang, Ceslee Montgomery, Jordi Orbay, Vighnesh Birod-
kar, Aleksandra Faust, [zzeddin Gur, Natasha Jaques, Austin
Waters, Jason Baldridge, and Peter Anderson. Less is
more: Generating grounded navigation instructions from
landmarks. In CVPR, 2022. 1,2, 3,5,6,7

Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao,
Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and
Lei Zhang. Reinforced cross-modal matching and self-
supervised imitation learning for vision-language navigation.
In CVPR, 2019. 5

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia
Tsvetkov, and Yuan Cao. SimVLM: Simple visual language
model pretraining with weak supervision. ArXiv, 2021. 1
Terry Winograd. Procedures as a representation for data in a
computer program for understanding natural language. Tech-
nical report, Massachusetts Institute of Technology, 1971. 1
Fei Xia, Amir Roshan Zamir, Zhi-Yang He, Alexander Sax,
Jitendra Malik, and Silvio Savarese. Gibson env: Real-world
perception for embodied agents. In CVPR, 2018. 2, 5,6
Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin
Raffel. mT5: A massively multilingual pre-trained text-to-
text transformer. In NAACL, 2021. 3,7

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han,
Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and
Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation. ArXiv preprint, 2022. 1
Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang,
Lei Zhang, Lijuan Wang, Yejin Choi, and Jianfeng Gao.
VinVL: Revisiting visual representations in vision-language
models. CVPR, 2021. 1

Yubo Zhang, Hao Tan, and Mohit Bansal. Diagnosing the en-
vironment bias in vision-and-language navigation. In IJCAI,
2020. 6

Ming Zhao, Peter Anderson, Vihan Jain, Su Wang, Alexan-
der Ku, Jason Baldridge, and Eugene Ie. On the evaluation of
vision-and-language navigation instructions. In FACL, 2021.
3

Wanrong Zhu, Yuankai Qi, Pradyumna Narayana, Kazoo
Sone, Sugato Basu, Xin Eric Wang, Qi Wu, Miguel Eckstein,
and William Yang Wang. Diagnosing Vision-and-Language
Navigation: What Really Matters. In NAACL-HLT, 2022. 1

10823



