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Abstract

A central challenge in human pose estimation, as well
as in many other machine learning and prediction tasks, is
the generalization problem. The learned network does not
have the capability to characterize the prediction error, gen-
erate feedback information from the test sample, and cor-
rect the prediction error on the fly for each individual test
sample, which results in degraded performance in general-
ization. In this work, we introduce a self-correctable and
adaptable inference (SCAI) method to address the general-
ization challenge of network prediction and use human pose
estimation as an example to demonstrate its effectiveness
and performance. We learn a correction network to correct
the prediction result conditioned by a fitness feedback er-
ror. This feedback error is generated by a learned fitness
feedback network which maps the prediction result to the
original input domain and compares it against the original
input. Interestingly, we find that this self-referential feed-
back error is highly correlated with the actual prediction
error. This strong correlation suggests that we can use this
error as feedback to guide the correction process. It can
be also used as a loss function to quickly adapt and opti-
mize the correction network during the inference process.
Our extensive experimental results on human pose estima-
tion demonstrate that the proposed SCAI method is able to
significantly improve the generalization capability and per-
formance of human pose estimation.

1. Introduction

Human pose estimation (HPE) aims to correctly predict
and localize human body joints. A variety of downstream
applications are based on human pose estimation, such as
motion capture [7, 27], activity recognition [1, 6, 37], per-
son tracking [36,4 1] and video surveillance [ 8]. Recently,
deep learning-based methods for human pose estimation
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have achieved remarkable success [2,4,12,26,28,30]. How-
ever, in complex or unseen scenarios, pose estimation re-
mains very challenging due to occlusions, cluttered back-
ground, and large variations of appearance and scenes, es-
pecially for those distal keypoints at the end locations of
body parts, such as wrists and ankles, which have large de-
grees of motion freedom and often suffer from severe oc-
clusions [13,39].

We recognize that one major challenge in current human
pose estimation, as well as in many other prediction tasks,
is generalization. Network models, which have been well
learned on the training set, often experience significant per-
formance degradation on the test samples which are col-
lected from different environments or scenarios. For exam-
ple, in human pose estimation, there are different types of
occlusions of body parts due to complex scene structures
and free-style motions of human bodies. More importantly,
the occlusion scenarios of the test samples could be much
different from those in the training samples. This often
leads to the significant performance degradation of human
pose estimation from the training data to the test data. For
example, in our experiment, the average prediction accuracy
on the training samples is 95.5%. However, on the test set,
this accuracy drops to 67%. For those distal keypoints at tip
locations of body parts which often experience more signif-
icant occlusions, their average performance drop is much
more significant, from 95.3% to 57%.

To address this performance degradation or generaliza-
tion problem, there are two major questions that need to be
carefully answered: (1) how can we tell if the prediction
is accurate or not during testing and how to characterize
the prediction error? This is difficult because the ground
truth values of the test samples are not available during test-
ing. Specifically, in pose estimation, we do not have the
labeled ground truth locations of the body keypoints. (2)
How to correct the prediction error based on the specific
characteristics of the test sample? Current network models,
once successfully trained with labeled samples at the train-
ing side, remain fixed during testing, performing the feed-

5537



forward-only inference process to generate the prediction
result. There is no mechanism for us to examine the spe-
cific characteristics of the test sample and use them as feed-
back to correct the prediction error or adjust the network
model. We believe that this unique capability of sample-
specific prediction error characterization, error correction,
and model optimization is very important for the general-
ization performance of learned network models. It also has
the potential to significantly improve the prediction accu-
racy of test samples.

To address these two challenging issues, in this work,
we propose to explore a learning-based feedback-control or
correction method for prediction, with applications to hu-
man pose prediction. Specifically, let ¥ = ®(u) be the
prediction network which is tasked to predict the true value
of v from input u. To answer the first question, we design
and learn a fitness feedback network I which compares the
prediction result ¥ = ®(u) of the prediction network ®
against the original input u and generate a self-referential
feedback error. Very interestingly, in this work, we find that
this self-referential feedback error is highly correlated with
the prediction error of the network ®. Note that, when com-
puting the self-referential error, we do not need the ground
truth data. It can be directly computed on the input sample
using the prediction-feedback networks. This allows us to
characterize the prediction error of test samples.

Under the guidance of self-referential error feedback, we
train a prediction error correction network C to adjust the
inference results during the prediction process to improve
the prediction accuracy for the test samples. Besides, we
find that the self-referential error and the fitness feedback
network (FFN) can be used to construct a self-referential
loss function on the test samples to quickly adapt and opti-
mize the network model during the inference stage, making
the model learnable on the test side. We apply the above
self-correctable and adaptable inference (SCAI) method to
human pose estimation. Our extensive experimental results
on benchmark datasets demonstrate that the proposed SCAI
method is able to significantly improve the generalization
capability of the underlying prediction algorithm. It out-
performs the existing state-of-the-art methods on human
pose estimation by large margins. For example, on the MS
COCO-testdev dataset, our method improves upon the cur-
rent best method by up to 1.4%, which is quite significant.

2. Related Work

In this section, we review related works on human pose
estimation, pose refinement, network generalization, and
model adaptation.

(1) Human pose estimation. There are two major cat-
egories of methods developed for human pose estimation:
top-down and bottom-up approaches. Top-down methods
[4,13,20,28,31] first detect all persons in an image and

then predict keypoint locations for each person. For exam-
ple, Chen et al. [4] utilized a human detector to generate
bounding boxes as the inputs into a feature pyramid network
for keypoint estimation. Bottom-up methods [19, 24, 40]
first detect the joints for all persons in the input image and
then group them into individual persons. For example, Li e?
al. [19] grouped detected keypoints into instances based on
a greedy assignment algorithm. Luo et al. [24] introduced
scale-adaptive and weight-adaptive heatmap regression to
alleviate large differences in human scales.

(2) Pose refinement. A number of methods have been
developed for pose refinement [3,9,25]. Fieraru et al. [9]
refined the estimation by exploiting dependencies between
the input image and the body structure of the human pose
through a network. Moon et al. [25] trained a refinement
network with synthetic poses generated from error distri-
bution as input. Wang et al. [35] extracted guidance key-
points from coarse pose estimation and applied a GCN as a
refinement module to seek mutual information among key-
points. It should be noted that these refinement methods did
not consider the sample distribution shift between the train
set and test set and have not addressed the generalization
problem effectively. Kan er al. [15] developed a prediction-
verification network and perform a local search within the
neighborhood of the prediction result. This multi-iteration
search method is very time-consuming.

(3) Generalization and adaptation. Generalization is a
significant challenge for existing network learning methods.
Test-time adaptation [32,34] aims to improve generalization
ability of the deep learning models when the test set exhibits
a different data distribution from that of the train set. Sun et
al. [32] firstly trained self-supervised tasks on the test sam-
ples with model parameters optimized and then performed
inference. Tung et al. [33] performed test-time optimiza-
tion with self-supervised losses driven by re-projection er-
rors of keypoint, segmentation, and motion against detected
2D versions respectively. Li et al. [22] constructed a trans-
formation between the self-supervised and the supervised
keypoints, so the model can be fine-tuned toward the self-
supervised objective of image reconstruction during infer-
ence. However, the self-supervised objectives of test-time
adaptation utilized by these methods require specific condi-
tions, such as projection from 3D to 2D or a set of images of
the same person. Our method can predict human pose given
general 2D images. Besides, our proposed self-referential
error is highly correlated with the pose prediction error,
which can be used to guide the prediction correction pro-
cess and to construct self-referential loss for network model
adaptation during test time.

3. Method

We first present our SCAI method to address the gener-
alization challenge in generic network learning and predic-
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Figure 1. An overview of our self-correctable and adaptable inference (SCAI) method.

tion. We then explain how this method can be applied to the
specific problem of human pose estimation.

3.1. Self-Correctable and Adaptable Inference

In this section, we present the proposed self-correctable
inference and adaptable inference method.

(1) Overview. As illustrated in Figure 1, let ¥ = ®(u)
be the prediction network which is tasked to predict the true
value of v from input u. We learn a prediction error correc-
tion network C to produce a correction Av which adjusts
the prediction results ¥ to v = ¥ + Av, aiming to improve
the prediction accuracy on the test samples. To guide such
correction, we design an FFN TI' with the original input u
and the corrected prediction v as inputs to generate a self-
referential error. This error is used as important feedback to
guide the correction network C to perform adaptive correc-
tion of the predicted result. Besides, we find that the self-
referential feedback error can be also used to define a loss
function to quickly adapt and optimize the network model
during the inference stage, making the model learnable on
the test side.

(2) Self-Correctable Inference. A deep neural network
@, already being fully optimized on the training set, often
suffers from significant performance degradation when ap-
plied to new or unseen test samples. The prediction model
remains fixed during testing, performing the feed-forward-
only inference process to generate the vanilla prediction re-
sults ¥ = ®(u). As discussed above, we propose to learn
a correction network C to correct the prediction error and
improve the prediction results from ¥ to v conditioned by
an error feedback eg

Av=C(V|es), v=V+ Av. (1)

Note that the conditional error feedback eg is very important
for the correction network. Without this feedback, the cor-
rection network cannot achieve any performance improve-
ment since the original prediction network @® is already
well-trained and fully optimized. Adding another feed-
forward correction network simply does not help.

Now, the question is how can we generate a useful feed-
back signal eg for the correction network C? To address

this issue, we propose to introduce a fitness feedback net-
work I'. It aims to evaluate how good the corrected predic-
tion result is. Note that we do not know the ground truth
of the prediction result. Our idea is to map the prediction
result to the original input domain and compare it against
the original input which has its ground truth value. Specif-
ically, the fitness feedback network I takes two inputs, the
corrected prediction v and the original input u. The output
of I' is the so-called self-referential feedback error eg:

es = TI(V,u). )

which is used to guide the correction network C. From Sec-
tion 3.2, specifically, Figure 3, we will see that, with suc-
cessful training, eg is highly correlated with the prediction
error. This strong correlation allows us to use e as feedback
to guide the correction of the prediction result. Otherwise,
if the correction is weak, the correction process becomes
unreliable and cannot achieve improved prediction perfor-
mance.

(3) Self-Adaptable Inference. As its unique feature,
the feedback error is self-referential. In other words, when
computing this error, we do not need the ground truth value
of the prediction. We only need the prediction network
®, the fitness feedback network I, the correction network
C, and the input. This implies that we can also compute
this feedback error eg during the network inference process.
Once computed, its norm can be used as a loss function to
quickly adapt and optimize the correction network C model
during the inference stage using gradient back-propagation.
During the update, the prediction network ® and the FFN
I' remain fixed. It should be noted that this adaptation and
optimization is only for the current test sample. Certainly,
it can be extended to a batch or a cluster of test samples
to reduce the complexity. In the following section, we will
use human pose estimation as an example to explain the
specific training procedures and loss function design for the
proposed SCAI method.

3.2. SCAI for Human Pose Estimation

In this work, we use human pose estimation as an exam-
ple to implement the proposed SCAI method and demon-
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Figure 2. (a) Structural grouping of body keypoints. (b) Main network models. (c) Training process and (d) inference process of our SCAI
method for human pose estimation. Only the refinement of the distal keypoints heatmap Hp is depicted as an example.

strate its performance. The major question is: how should
we re-structure the pose estimation problem so that we can
apply the proposed prediction-feedback-correction scheme?

(1) Structural groups of body keypoints. Human pose
estimation refers to the detection of body keypoint loca-
tions based on an input RGB image I with dimensions
W x H x 3. The task involves identifying K keypoints
X = {X1,Xy,..., Xk} with high precision. Heatmap-
based methods transform this problem into estimating K
heatmaps { Hy, Ha, ..., H } of size W’ x H'. The location
of a keypoint can be determined using different methods,
such as grouping or peak finding, based on the correspond-
ing heatmap [39]. For instance, the pixel with the highest
heatmap value can be selected as the keypoint location.

To enhance the generalization and prediction perfor-
mance of human pose estimation using the proposed SCAI
method, we adopt the approach introduced by Kan et al.
[15] to partition the body keypoints into six structural
groups, as depicted in Figure 2(a). Each structural group
corresponds to a body part, with keypoints that are con-
nected during motion. The group is further divided into
a distal keypoint Xp at the tip location of the body part,
such as the wrists and ankles, and proximal keypoints
Xa,Xp, Xc. We observe that distal keypoints often have
larger errors in prediction due to more significant freedom
of motion and possible occlusion by other objects. Our
main objective is to leverage the proposed SCAI approach
to improve the prediction accuracy and generalization capa-
bility of these distal keypoints.

(2) SCAI Network Design. Given a set of key-
point heatmaps {H 4, Hg, Hc, Hp} estimated by a base-
line model, e.g. HRNet [30], our task is to refine heatmaps
{Hp,Hc, Hp}. Let us consider the refinement of heatmap
Hp of the distal keypoint Xp as an example. The input
to the prediction network ® is u = {H4, Hg, Hc}, the
heatmaps for the proximal keypoints. The prediction output
isv=H p. The correction network C is used to refine the
prediction result into ¥ = Hp. The output of FEN T is the
feedback error eg to guide the correction.

As illustrated in Figure 2(b), the prediction net-
work @ predicts the distal keypoint heatmap Hp =
®(H4,Hp, He) using heatmaps of proximal keypoints

{Ha,Hp,Hc}. The correction network C aims to gener-
ate a corrected and improved estimation of Hp conditioned
by the feedback error eg

Hp = Hp + C(Hples). (3)

Here, eg is generated by the fitness feedback network~I‘,
which has two inputs, the corrected prediction result Hp
and the original inputs [H 4, Hg, H¢|:

es = [([Ha, Hp, Hc, Hp). 4)

In the following experiment, we demonstrate that the Lo-
norm of self-referential feedback error eg is highly corre-
lated with the actual network prediction error. In this hu-
man pose estimation experiment, we choose 400 batches of
25600 test samples to show this correlation. In Figure 3, the
vertical axis shows the average prediction accuracy of the
body keypoints in each batch of test samples. The horizon-
tal axis shows their average self-referential error. Each dot
represents one test batch. We can see that there is a very
strong correlation between them, the corresponding corre-
lation coefficient is —0.84.
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Figure 3. Strong correlation between self-referential error and net-
work prediction accuracy.

(3) SCAI Network Training. In the following, we
explain how these three networks are trained with la-
beled samples. Note that, at the training side, all
the predicted keypoints have their ground truth values
{H},Hf;, H}., H},}. Therefore, for the prediction network
®, its loss function is given by Lg = ||[Hp — H}||2, which
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is the Lo distance between the predicted heatmap and the
ground truth value [30]. For the fitness feedback network
T, it maps the prediction result Hp to the original input
domain {H4, Hg, Hc'} and compare it against the original
input. So, during the training stage, its loss function can
be expressed in the form of self-referential error, given by
Lr = ||Ha — H%]|2. For the correction network C, its loss
function is given by

Lo=a-LY+b- L5+ (LL - L2), 5)

where £ = |Hp — Hpll2, LY = |Ha — H%|l2 and
L2 = ||Ha — H}||2, with a, b and X representing the
weights for the three losses, respectively. £, is defined by
the distance between the mapping from the corrected pre-
diction Hp and the original input. £ is defined by the dis-
tance between the mapping from the uncorrected prediction
Hp and the original input. Here, the last term £ — £2 is
used to ensure the effectiveness of correction: the corrected
result has a smaller self-referential error than the original
prediction. Specifically, if the correction network improves
the accuracy of keypoint prediction, the self-referential er-
ror evaluated by FFN will be smaller than the one without
correction, that is, £, value is smaller than £Z,. Thus, the
loss term £}, — LZ is able to guide the training of the cor-
rection network to effectively refine the keypoint prediction.

During the training process, the prediction network ® is
pre-trained using the training samples {[(Ha, Hg, Hc) —
Hpl}. The FEN is also pre-trained with training samples
{[(Hg,Hc,Hp) — Hal}. Here, — represents the net-
work prediction. During the training stage, the prediction
network @ is fixed. The pre-trained model of the FFN I
is used as its initial model. The FFN and the correction
networks are then jointly trained using their loss functions.
Similar to the refinement of proximal keypoint X p, we can
also develop correction networks for keypoints X g and X
to optimize their heatmaps Hp and H¢, respectively. More
training details are shown in Supplemental Materials.

(4) Self-referential Adaptable Inference for Human
Pose Estimation. Note that the self-referential error is com-
puted based on the input samples and does not require the
ground truth data of any body keypoints. Therefore, on the
test side, we use this self-referential error as a loss function
to update the network model. Specifically, in this work, we
choose to update the correction network C while other net-
works, including the prediction network ® and the FNN
I' remain fixed. It should be noted that this model refine-
ment is performed separately for each batch of test images.
When moving to a new batch, the initial models obtained
from the training set are restored and then refined. In other
words, the models learned from one batch are not used for
the next test batch to ensure flexible model adaptation. Fig-
ure 4(a) shows the decreasing self-referential error and the
convergence behavior of this model learning and adapta-

tion process. Figure 4(b) shows that the accuracy of the
test batch is consistently improved with the training epochs.
This demonstrates that our self-referential adaptable infer-
ence method is able to use the test samples as feedback to
update the network models and improve the prediction per-
formance, providing natural and enhanced generalization
capability for the learning and prediction network.
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Figure 4. The figure on the left is the loss decay curve of SCAI
during training in the inference process, and the figure on the right
is the test result corresponding to each epoch.

4. Experiments

This section presents a thorough evaluation of the pro-
posed SCAI method, which includes experimental results,
performance comparisons with state-of-the-art methods,
and ablation studies.

4.1. Datasets

In this section, we present the performance compar-
isons and ablation studies of our proposed SCAI method
on two challenging datasets, namely the MS COCO [23]
and CrowdPose [20]. The MS COCO dataset is a widely-
used benchmark for human pose estimation, comprising
64K images with 270K annotated persons and 17 keypoints.
The dataset includes diverse poses of multiple persons with
varying body scales and occlusion patterns, making it chal-
lenging for human pose estimation models. Our models
are trained on the train2017 split, which consists of 57K
images with 150K persons, and ablation studies are con-
ducted on the val2017 split. The CrowdPose dataset con-
tains 20K images with 80K annotated persons and 14 key-
points. It includes crowded scenes and poses with various
challenges. Unlike MS COCO, we partition the keypoints
into 4 groups instead of 6 groups. We train our models on
the train set, which has 10K images and 35.4K persons and
evaluate them on the validation set (2K images with 8K per-
sons) and the test set (8K images with 29K persons).

4.2. Experimental Settings

For fair comparisons, we use the HRNet and ResNet as
our baseline, from which pre-predicted results are produced
to be further refined by our method. We follow the same
training configuration in existing works [30, 39]. The cor-
rection network is trained with a full convolution network.
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Table 1. Comparison with the state-of-the-art methods on COCO test-dev. The best results are in bold and the second best results are

underlined.

Method Backbone Size AP APS AP  APM  APL AR
CFEN [14] - - 72.6  86.1 69.7 78.3 64.1 -

CPN(ensemble) [4] ResNet-Incep. 384x288 73.0 91.7 80.9 69.5 78.1  79.0
CSM+SCARB [28] RI152 384x288 743 91.8 81.9 70.7 80.2 80.5
CSANet [42] R152 384x288 745 91.7 82.1 71.2 80.2 80.7
HRNet [30] HR48 384x288 75,5 925 83.3 71.9 81.5 80.5
MSPN [21] MSPN 384x288 76.1 934 83.8 72.3 81.5 81.6
PoseFix [25] HR48+R152 384x288 76.7 92.6 84.1 73.1 82.6 815
DARK [43] HR48 384x288 76.2 925 83.6 72.5 824 8l1.1
UDP [13] HR48 384x288 76.5 927 84.0 73.0 824 81.6
Graph-PCNN [35]  HR48 384x288 76.8 92.6 84.3 73.3 827 81.6
SCIO [15] HR48 384x288 79.2 93.5 85.8 74.1 84.2 81.6
SCAI (Ours) HR48 384x288 80.6 94.8 87.0 78.1 84.8 83.1
Performance Gain +14 +1.3 +1.2 -0.2 +0.6 +1.5

We use the Adam [17] optimizer for training. More experi-
mental details are provided in the Supplemental Materials.

Table 2. Comparison with the state-of-the-art methods on
CrowdPose test-dev. The best results are in bold and the sec-
ond best results are underlined.

Method Backbone AP  Apmed
Mask-RCNN [12] ResNet101  60.3 -
AlphaPose [5] - 61.0 614
OccNet [10] ResNet50 65.5 66.6
JC-SPPE [20] ResNet101  66.0 66.3
HigherHRNet [5] HR48 67.6 -
MIPNet [16] HR48 700 71.1
SCIO [15] HR48 71.5 72.2
SCAI (Ours) HR48 72.4 73.2
Performance Gain +0.9 +1.0

Table 3. Comparison with state-of-the-art of three baselines on
COCO test-dev.

Method Backbone AP APM AR
SimpleBaseline R152 737 703 790
+ SCAI R152 788 755 825
Performance Gain +5.1 452 +3.5
HRNet HR32 749 713  80.1
+ SCAI HR32 799 768 825
Performance Gain +5.0 +55 +24
HRNet HR48 755 719 805
+ SCAI HR48 80.6 781 83.1
Performance Gain +5.1 +6.2 +2.6

4.3. Performance Comparisons

In Table 1, we compare the performance of our SCAI
method with the following state-of-the-art methods on
the COCO test set: the CFN [14], CPN (ensemble) [4],
CSM+SCARB [28], CSANet [42], HRNet [30], MSPN
[21], PoseFix [25], DARK [43], UDP [13], Graph-PCNN
[35] and SCIO [15] methods. We can see that our SCAI
method outperforms the current state-of-the-art methods by
large margins, up to 1.4%.

Table 2 presents the results of our SCAI method com-
pared to other state-of-the-art methods on the challenging
CrowdPose dataset. The methods compared include Mask-
RCNN [12], SimpleBaseline [39], AlphaPose [8], OccNet
[10], JC-SPPE [20], HigherHRNet [5], MIPNet [16], and
SCIO [15]. Our SCAI method achieves an improvement
in average precision by up to 0.9% compared to the cur-
rent best method SCIO [15]. This indicates that our method
can provide more accurate pose estimation for multi-person
scenes with challenging occlusion scenarios.

Table 3 provides a comparison of our SCAI method with
other state-of-the-art methods that use different baseline
networks such as R152, HR32, and HR48 networks. Our
SCAI method consistently outperforms other methods, even
when different baseline networks are employed.

As Figure 5 shows, compared to the local search pro-
posed in SCIO [15], our method converges much faster and
is able to stably correct the heatmap to be more accurate
during the optimization process.

4.4. Ablation Studies

To assess the efficacy of our proposed SCAI method and
analyze the influence of individual algorithmic components,
we performed various ablation experiments on the COCO
test-dev dataset. Our method incorporates two key inno-
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Figure 5. Comparlson between the local search and the correction from SCIO and SCAI, where ¢ represents the number of iterations.

vations, namely self-correctable inference (SCI) and self-
adaptable inference (SAI). Self-correctable inference con-
sists of three essential parts: the correction network, self-
referential error, and the joint training of the correction net-
work and FFN. In Table 4, we present the results of our
ablation studies. The first row shows the performance of
the baseline method. The second row indicates the per-
formance when incorporating the correction network, while
the third and fourth rows correspond to the addition of the
self-referential error and joint training components, respec-
tively. The last row reports the results when including the
self-adaptable inference component. Our findings demon-
strate that each algorithmic component makes a substantial
contribution to the overall performance of our method.

Table 4. Ablation study on different algorithmic components on
COCO test-dev dataset.

Method AP APM AR
Baseline 755 719 805
Baseline + SCI
+ Correction Network 785 739 814
+ Self-Referential Error 789 758 81.6
+ Joint Training 79.8 77.8 82.6
Baseline + SCI + SAI
+ Self-Adaptive Inference 80.6  78.1  83.1

Table 5 presents an analysis of the impact of varying loss
weights in Equation (5) on our experimental results. The
results suggest that the optimal weights for the parameters
a, b, and X are 0.85, 0.65, and 0.45, respectively.

Table 5. Ablation study on different loss parts and their weights in
Equation (5).

a b X | AP APM AR
085 0.65 030|802 776 827
085 0.65 0.60 | 80.4 779 829
085 0.65 045|806 781 83.1
100 0.65 045|805 781 83.1
085 0.40 045|804 779 83.1

Figure 6 presents a comparison of the pose estimation
results refined by our proposed SCAI method against those
produced by the baseline method. To this end, we randomly
selected four images from the COCO val2017 dataset. The
pose estimation results from the baseline method are dis-
played in the top row. In the bottom row, we show the re-
fined keypoint estimations produced by our SCAI method.
As can be observed, our method successfully corrects the
keypoints circled in red, such as the left knee of the person
in the third column. This indicates the effectiveness of our
approach in refining pose estimation results.

Baseline

SCAI (Ours)

Figure 6. Four examples of refinement of predicted keypoints. The
top row is the original estimation. The bottom row is the estima-
tion from SCAIL

In our self-correctable network design, we aim to cor-
rect the prediction output so as to minimize the self-
referential error. Figure 7 shows two examples where the
self-referential error can be used as a feedback reference
to guide the correction network to pull the prediction re-
sult toward the point with the minimum self-referential er-
ror. More importantly, this point is often very close to the
ground truth (circle) since the self-referential feedback error
is highly correlated with the keypoint prediction error.

S. Further Discussions and Summary of
Unique Contributions

In this section, we provide further discussion of our pro-
posed SCAI method compared with related work and sum-
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Figure 7. Two examples of corrected keypoints from SCAI. The
distribution shows keypoints error by the ground truth (red dot),
prediction network (yellow square) and our method SCAI (green
triangle), where the blue curves represent errors of randomly se-
lected from correction process.

marize its unique contributions.

(1) Unique Differences from Related Work. This work
is related to the SCIO [15]. In our design, we borrowed
the structural grouping of the human body keypoints from
the paper. We also used its verification network to pre-
train our fitness feedback network. Compared to this paper,
the main part of our algorithm, namely, the self-correctable
and adaptable inference method, including the correction
network, fitness feedback network, and inference-time net-
work optimization, are totally new. From the experimental
results, we can see that our SCAI algorithm outperforms
the method in Kan er al. [15] by large margins. Kan et
al. [15] performed a local search to refine the prediction re-
sult with very high computational complexity. In this work,
we learned a correction network to correct the prediction er-
ror which is much more effective and has much lower com-
putational complexity. Also, as mentioned in section 4.3,
our method performs more accurate keypoint estimation on
the optimization process during the inference stage.

This work is also related to cycle consistency [44] , recip-
rocal learning [29] and dual learning [1 |,38]. Compared to
these methods, our method is uniquely different and novel
since our method establishes the correctable and adaptable
inference with the ability to correct the prediction result and
update the network model during the inference stage. How-
ever, such correction processes and adaptable inference are
not available in the above existing methods and they only
used cycle constraints for model training and testing.

(2) Algorithm complexity. Table 6 demonstrates that
our proposed SCAI method introduces additional computa-
tional complexity. Specifically, the FFN and correction net-
work increase the complexity of the baseline pose estima-
tion model. It is worth noting that these two networks oper-
ate on the previously predicted heatmaps and thus their net-

work structures and complexity are relatively modest. The
self-referential adaptation requires updating the correction
network multiple times for the entire batch, thereby increas-
ing the overall computational burden. However, compared
to SCIO, our model offers improved inference speed. In
our future work, we aim to explore more efficient methods
of self-adaptable inference.

Table 6. Complexity analysis on COCO val set.

Method ‘ Parameters (M)  Speed (fps)
HRNet [30] 64 125
SCIO [15] 193 72
SCAI (Ours) 357 81

(3) Summary of contributions. The major contribu-
tions of this work can be summarized as follows: (a)
We demonstrate that it is theoretically possible to learn a
feedback-correction network to refine the prediction results
of a well-trained network, outperforming the SOTA and
SCIO by 1.4%, which is quite significant. (b) We have
introduced a correction network which is able to correct
the prediction error for the test sample guided by the self-
referential feedback error. This error was generated by a
learned fitness feedback network. We found that this self-
referential error is highly correlated with the actual network
prediction error. (c) Using the self-referential error, we have
introduced a new loss function to perform quick adaptation
and optimization of the correction network during the in-
ference stage. (d) We apply the proposed self-correctable
and adaptable inference method to human pose estimation
and have achieved remarkable performance gain and signif-
icant improvement of generalization capability of the pose
estimation network.

6. Conclusion

In this work, we have developed a self-correctable and
adaptable inference method to address the generalization
challenge of network prediction and use human pose esti-
mation as an example to demonstrate its effectiveness and
performance. We have introduced the self-referential feed-
back error on the network input samples by constructing
a feedback fitness network, so that it is able to evaluate if
the prediction is accurate or not, without the need to know
the ground truth. Guided by the self-referential error, we
learn a prediction correction network which is able to adjust
the prediction result during the dynamic inference process.
The self-referential error is employed as a loss function for
network adaptation during the inference phase. Our com-
prehensive experimental results on human pose estimation
attest to the ability of the SCAI method to enhance both the
generalization ability and performance of human pose esti-
mation to a significant degree.
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