
Meta-Learning with a Geometry-Adaptive Preconditioner

Suhyun Kang1*, Duhun Hwang1*, Moonjung Eo1, Taesup Kim2, Wonjong Rhee1,3†

1 Department of Intelligence and Information, Seoul National University
2 Graduate School of Data Science, Seoul National University

3 IPAI and AIIS, Seoul National University
{su_hyun, yelobean, eod87, taesup.kim, wrhee}@snu.ac.kr

Abstract

Model-agnostic meta-learning (MAML) is one of the most
successful meta-learning algorithms. It has a bi-level opti-
mization structure where the outer-loop process learns a
shared initialization and the inner-loop process optimizes
task-specific weights. Although MAML relies on the stan-
dard gradient descent in the inner-loop, recent studies have
shown that controlling the inner-loop’s gradient descent with
a meta-learned preconditioner can be beneficial. Existing
preconditioners, however, cannot simultaneously adapt in
a task-specific and path-dependent way. Additionally, they
do not satisfy the Riemannian metric condition, which can
enable the steepest descent learning with preconditioned
gradient. In this study, we propose Geometry-Adaptive Pre-
conditioned gradient descent (GAP) that can overcome the
limitations in MAML; GAP can efficiently meta-learn a
preconditioner that is dependent on task-specific param-
eters, and its preconditioner can be shown to be a Rieman-
nian metric. Thanks to the two properties, the geometry-
adaptive preconditioner is effective for improving the inner-
loop optimization. Experiment results show that GAP out-
performs the state-of-the-art MAML family and precondi-
tioned gradient descent-MAML (PGD-MAML) family in a
variety of few-shot learning tasks. Code is available at:
https://github.com/Suhyun777/CVPR23-GAP.

1. Introduction

Meta-learning, or learning to learn, enables algorithms
to quickly learn new concepts with only a small number
of samples by extracting prior-knowledge known as meta-
knowledge from a variety of tasks and by improving the gen-
eralization capability over the new tasks. Among the meta-
learning algorithms, the category of optimization-based
meta-learning [8, 17, 20, 21, 48] has been gaining popularity

*Equal contribution.
†Corresponding author.

due to its flexible applicability over diverse fields including
robotics [55, 59], medical image analysis [40, 54], language
modeling [37,42], and object detection [46,61]. In particular,
Model-Agnostic Meta-Learning (MAML) [20] is one of the
most prevalent gradient-based meta-learning algorithms.

Many recent studies have improved MAML by adopting
a Preconditioned Gradient Descent (PGD1) for inner-loop
optimization [34, 36, 44, 49, 53, 57, 66]. In this paper, we
collectively address PGD-based MAML algorithms as the
PGD-MAML family. A PGD is different from the ordinary
gradient descent because it performs a preconditioning on
the gradient using a preconditioning matrix P, also called a
preconditioner. A PGD-MAML algorithm meta-learns not
only the initialization parameter θ0 of the network but also
the meta-parameter ϕ of the preconditioner P.

For the inner-loop optimization, P was kept static in
most of the previous works (Figure 1(b)) [34, 36, 44, 57,
66]. Some of the previous works considered adapting the
preconditioner P with the inner-step k (Figure 1(c)) [49]
and some others with the individual task (Figure 1(d)) [53].
They achieved performance improvement by considering
individual tasks and inner-step, respectively, and showed
that both factors were valuable. However, both factors have
not been considered simultaneously in the existing studies.

When a parameter space has a certain underlying struc-
ture, there exists a Riemannian metric corresponding the pa-
rameter space [3, 4]. If the preconditioning matrix is the Rie-
mannian metric, the preconditioned gradient is known to be-
come the steepest descent on the parameter space [2–4,6,27].
An illustration of a toy example is shown in Figure 2. The
optimization path of an ordinary gradient descent is shown
in Figure 2(a). Compared to the ordinary gradient descent, a
preconditioned gradient descent with a preconditioner that
does not satisfy the Riemannian metric condition can actually
harm the optimization. For the example in Figure 2(b), the
preconditioner affects the optimization into an undesirable
direction and negatively affects the gradient descent. On the

1PGD in our work should not be confused with Projected Gradient
Descent [13].

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16080



(a) MAML (b) Non-adaptive P(ϕ) (c) Adaptive P(k;ϕ) (d) Adaptive P(Dtr
τ ;ϕ) (e) Adaptive P(θτ,k;ϕ)

Figure 1. Diagram of MAML and PGD-MAML family. For the inner-loop adaptation in each diagram, the dotted lines of the same color
indicate that they use a common preconditioning matrix (preconditioner). (a) MAML adaptation: no preconditioner is used (i.e., P = I).
(b) P(ϕ): a constant preconditioner is used in the inner-loop where the preconditioner’s meta-parameter ϕ is meta-learned. (c) P(k;ϕ):
a constant preconditioner is used for each inner-step k. Preconditioner for each step is meta-learned, but P(k, ϕ) is not task-specific. (d)
P(Dtr

τ ;ϕ): a constant preconditioner is used for each task. Preconditioner for each task is meta-learned, but P(Dtr
τ ;ϕ) is not dependent on k.

(e) GAP adapts P(θτ,k;ϕ): a fully adaptive preconditioner is used where it is task-specific and path-dependent. Instead of saying ‘dependent
on k’, we specifically say it is path-dependent because the exact dependency is on the task-specific parameter set θτ,k that is considerably
more informative than k.

(a) Gradient Descent (GD) (b) Preconditioned GD
(Non-Riemannian metric)

(c) Preconditioned GD
(Riemannian metric)

Figure 2. A toy example for illustrating the effect of Riemannian
metric (see Supplementary Section A). When the curvature of the
parameter space is poorly conditioned, (a) gradient descent can suf-
fer from the difficulty of finding the solution, (b) a preconditioned
gradient descent with a preconditioner that does not satisfy the
Riemannian metric condition can suffer further, and (c) a precondi-
tioned gradient descent with a preconditioner that is a Riemannian
metric can perform better.

contrary, if the preconditioner is the Riemannian metric cor-
responding the parameter space, the preconditioned gradient
descent can become the steepest descent and can exhibit a
better optimization behavior as shown in Figure 2(c). While
the Riemannian metric condition (i.e., positive definiteness)
is a necessary condition for steepest descent learning, the
existing studies on PGD-MAML family did not consider
constraining preconditioners to satisfy the condition for Rie-
mannian metric.

In this study, we propose a new PGD method named
Geometry Aaptive Preconditioned gradient descent (GAP).

Specifically, GAP satisfies two desirable properties which
have not been considered before. First, GAP’s precondi-
tioner PGAP is a fully adaptive preconditioner that can adapt
to the individual task (task-specific) and to the optimization-
path (path-dependent). The full adaptation is made possible
by having the preconditioner depend on the task-specific
parameter θτ,k (Figure 1(e)). Second, we prove that PGAP
is a Riemannian metric. To this end, we force the meta-
parameters of PGAP to be positive definite. Thus, GAP guar-
antees the steepest descent learning on the parameter space
corresponding to PGAP. Owing to the two properties, GAP
enables a geometry-adaptive learning in inner-loop optimiza-
tion.

For the implementation of GAP, we utilize the Singular
Value Decomposition (SVD) operation to come up with
our preconditioner satisfying the desired properties. For the
recently proposed large-scale architectures, computational
overhead can be an important design factor and we provide
a low-computational approximation, Approximate GAP, that
can be proven to asymptotically approximate the operation
of GAP.

To demonstrate the effectiveness of GAP, we empiri-
cally evaluate our algorithm on popular few-shot learning
tasks; few-shot regression, few-shot classification, and few-
shot cross-domain classification. The results show that GAP
outperforms the state-of-the-art MAML family and PGD-
MAML family.

The main contributions of our study can be summarized
as follows:
• We propose a new preconditioned gradient descent

method called GAP, where it learns a preconditioner
that enables a geometry-adaptive learning in the inner-
loop optimization.

• We prove that GAP’s preconditioner has two desir-
able properties: (1) It is both task-specific and path-
dependent (i.e., dependent on task-specific parameter
θτ,k). (2) It is a Riemannian metric.

16081



• For large-scale architectures, we provide a low-
computational approximation that can be theoretically
shown to approximate the GAP method.

• For popular few-shot learning benchmark tasks, we
empirically show that GAP outperforms the state-of-
the-art MAML family and PGD-MAML family.

2. Background
2.1. Model-Agnostic Meta-Learning (MAML)

The goal of MAML [20] is to find the best initializa-
tion that the model can quickly adapt from, such that the
model can perform well for a new task. MAML consists of
two levels of main optimization processes: inner-loop and
outer-loop optimizations. Consider the model fθ(·) with pa-
rameter θ. For a task τ = {Dtr

τ , D
val
τ } sampled from the task

distribution p(T ), the inner-loop optimization is defined as:

θτ,K = θτ,0 − α

K−1∑
k=0

∇θτ,kL
in
τ (θτ,k;D

tr
τ ) s.t θτ,0 = θ, (1)

where θτ,k is task-specific parameters for task τ , and α is
the learning rate for inner-loop optimization, Lin

τ is the inner-
loop’s loss function, and K is the number of gradient descent
steps. With Dval

τi in each task, we can define outer-loop opti-
mization as

θ ← θ − β∇θEτ

[
Lout

τ (θτ,K ;Dval
τ )

]
, (2)

where β is the learning rate for outer-loop optimization, and
Lout
τ is the outer-loop’s loss function.

2.2. Preconditioned Gradient Descent (PGD)

PGD is a method that minimizes the empirical risk
through a gradient update with a preconditioner that rescales
the geometry of the parameter space. Given model parame-
ters θ and task τ = {Dtr

τ , D
val
τ }, we can define the precondi-

tioned gradient update with a preconditioner P as follows:

θτ,k+1 = θτ,k − αP∇θτ,kLτ (θτ,k;D
tr
τ )

k = 0, 1, · · · and θτ,0 = θ
, (3)

where Lτ (θτ,k;D
tr
τ ) is the empirical loss for task τ and

parameters θτ,k. Setting P = I recovers Eq. (3) to the
basic gradient descent (GD). Choice of P for exploiting
the second-order information includes the inverse Fisher in-
formation matrix F−1 which leads to the natural gradient
descent (NGD) [4]; the inverse Hessian H−1 which corre-
sponds to the Newton’s method [31]; and the diagonal matrix
estimation with the past gradients which results in the adap-
tive gradient methods [18, 28]. They often reduce the effect
of pathological curvature and speed up the optimization [5].

2.3. Unfolding: reshaping a tensor into a matrix

In this study, the concept of unfolding is used to trans-
form the gradient tensor of convolutional kernels into a
matrix form. Tensor unfolding, also known as matriciza-
tion or flattening, is the process of reshaping the elements
of an N -dimensional tensor X ∈ RI1×···×IN into a ma-
trix [29]. The mode-n unfolding of an N -dimensional tensor
X ∈ RI1×···×IN is defined as:

X −−−−−−−−→
mode-n unfolding

X[n] ∈ RIn×IM , where IM =
∏
k ̸=n

Ik (4)

For example, the weight tensor of a convolutional layer is rep-
resented as a 4-D tensor (W ∈ RCout×Cin×kh×kw ), where it is
composed of kernels and it can be unfolded into a matrix as
one of the following four forms: (1) W[1] ∈ RCout×(Cinkhkw),
(2) W[2] ∈ RCin×(Coutkhkw), (3) W[3] ∈ Rkh×(CoutCinkw), (4)
W[4] ∈ Rkw×(CoutCinkh).

2.4. Riemannian manifold

An n-dimensional Riemannian manifold is defined by a
manifold M and a Riemannian metric g : M → Rn×n,
which is a smooth function from each point x ∈ M to a
positive definite matrix [32]. The metric g(x) defines the
inner product of two tangent vectors for each point of the
manifold ⟨·, ·⟩ : TxM× TxM → R, where TxM is the
tangent space of x. For v,w ∈ TxM, the inner product can
be expressed ⟨v,w⟩ = vT g(x)w. A Riemannian manifold
can be characterized by the curvature of the curves defined
by a metric. The curvature of a Riemannian manifold can be
computed at each point of the curves, while some manifolds
have curvatures of a constant value. For example, the unit
sphere S has constant positive curvature of +1.

3. Methodology
In this section, we propose a new preconditioned gradi-

ent descent method called GAP in the MAML framework.
In Section 3.1, we introduce GAP in the inner-loop opti-
mization and describe how to meta-train GAP in the outer-
loop optimization. In Section 3.2, we prove that GAP has
two desirable properties. In Section 3.3, we provide a low-
computational approximation that can be useful for large-
scale architectures.

3.1. GAP: Geometry-Adaptive Preconditioner

3.1.1 Inner-loop optimization

We consider an L-layer neural network fθ(·) with parameters
θ = {W1, · · · ,Wl, · · · ,WL}. In the standard MAML with
task τ ∼ p(T ), each Wl is adapted with the gradient update
as below:

Wl
τ,K ← Wl

τ,0 − α ·
K−1∑
k=0

Gl
τ,k s.t Wl

τ,0 = Wl, (5)

16082



Algorithm 1 Geometry-Adaptive Preconditioned gradient
descent (GAP)
Require: p(T ): distribution over tasks
Require: α, β1, β2: learning rates
1: Randomly initialize θ = {W1, · · · , WL}.
2: Initialize ϕ = {M1, · · · ,ML} as identity matrix.
3: while not converged do
4: Sample a batch of tasks Ti ∼ p(T )
5: for all τ ∈ Ti do
6: for inner-loop step k = 0 to K − 1 do
7: for layer l = 1 to L do
8: Compute Gl

τ,k = ∇Wl
τ,k
Lin

τ (θτ,k;D
tr
τ ) using Dtr

τ

9: Reshape Gl
τ,k to Gl

τ,k via Eq. (6)
10: Transform Gl

τ,k to G̃l
τ,k using Ml via Eq. (8)

11: Reshape G̃l
τ,k back to the original form of gradient tensor, G̃

l

τ,k

12: Compute l-layer adapted weight: Wl
τ,k+1 = Wl

τ,k − α · G̃l

τ,k

13: end for
14: end for
15: Compute Lout

τ (θτ,K ;Dval
τ ) by evaluating Lout

τ w.r.t Dval
τ .

16: end for
17: Update the weights and meta parameters:
18: θ ← θ − β1∇θ

∑
τ∈T L

out
τ (θτ,K ;Dval

τ )

19: ϕ← ϕ− β2∇ϕ

∑
τ∈T L

out
τ (θτ,K ;Dval

τ )

20: end while

where Gl
τ,k = ∇Wl

τ,k
Lin
τ (θτ,k;D

tr
τ ) is the gradient with re-

spect to Wl
τ,k and α is the learning rate for inner-loop opti-

mization. In the GAP, we first use the mode-1 unfolding to re-
shape the gradient tensor into a matrix form (see Section 2.3).
For a convolutional layer (i.e., Gl

τ,k ∈ RCout×Cin×k×k), we
reshape the gradient tensor as below:

Gl
τ,k −−−−→

mode-1
unfolding

{
Gl

τ,k ∈ RCout×Cink
2

if Cout ≤ Cink
2

Gl
τ,k ∈ RCink

2×Cout if Cink
2 < Cout,

(6)

where Gl
τ,k denotes (Gl

τ,k)[1] for the notational brevity.
Note that we chose mode-1 unfolding because it performs
best among the four unfolding forms as shown in Table 1. For
a linear layer in a matrix form, there is no need for an unfold-
ing. Second, we transform the singular values of the gradient
matrix using additional meta parameters ϕ = {Ml}Ll=1. The
meta parameter Ml are diagonal matrices with positive ele-
ments defined as:

Ml =

{
diag(Sp(ml

1), · · · , Sp(ml
Cout)) if Cout ≤ Cink

2

diag(Sp(ml
1), · · · , Sp(ml

Cink
2)) if Cink

2 < Cout
,

(7)
where ml

i ∈ R and Sp(x) = 1
2 · log(1 + exp (2 ∗ x)). They

are applied to the gradient matrix as follows:

G̃l
τ,k = Ul

τ,k(M
l ·Σl

τ,k)V
l
τ,k

T
, (8)

where Gl
τ,k = Ul

τ,kΣ
l
τ,kV

l
τ,k

T is the singular value decom-
position (SVD) of Gl

τ,k. Finally, we reshape G̃l
τ,k back to

its original gradient tensor form G̃
l

τ,k (i.e., inverse unfold-
ing). The resulting preconditioned gradient descent of GAP

mode-1 mode-2 mode-3 mode-4

54.86± 0.85 53.02± 0.87 51.23± 0.76 51.45± 0.77

Table 1. Performance comparison of unfolding types. We performed
the experiment with 5-way 1-shot on mini-ImageNet and used the
standard Conv-4 backbone.

becomes the following:

Wl
τ,K ← Wl

τ,0 − α ·
K−1∑
k=0

G̃
l

τ,k s.t Wl
τ,0 = Wl, (9)

where G̃
l

τ,k is the preconditioned gradient based on the meta
parameters ϕ.

3.1.2 Outer-loop optimization

For outer-loop optimization, GAP follows the typical process
of MAML. Unlike MAML, however, GAP meta-learns two
meta parameter sets θ and ϕ as follows:

θ ← θ − β1∇θEτ

[
Lout
τ (θτ,K ;Dval

τ )
]
, (10)

ϕ← ϕ− β2∇ϕEτ

[
Lout
τ (θτ,K ;Dval

τ )
]
, (11)

where β1 and β2 are the learning rates for the outer-loop
optimization. We initialize Ml as an identity matrix for all l.
The training procedure is provided in Algorithm 1.

3.2. Desirable properties of GAP

In this section, we prove that GAP’s preconditioner PGAP
satisfies two desirable properties.

Theorem 1. Let G̃l
τ,k ∈ Rm×n be the ‘l-layer k-th inner-

step’ gradient matrix transformed by meta parameter Ml for
task τ . Then preconditioner PGAP induced by G̃l

τ,k is a Rie-
mannian metric and depends on the task-specific parameters
θτ,k.

The proof and closed form of PGAP are provided in Sup-
plementary Section B. The following two properties emerge
from the theorem.

Property 1. Dependency on task-specific parameters:
Theorem 1 formally shows that PGAP depends on the task-
specific parameters θτ,k. While the previous studies consid-
ered a non-adaptive preconditioner P(ϕ) [34, 36, 44, 49, 57,
66] and a partially adaptive preconditioner P(k;ϕ) [49] or
P(Dtr

τ ;ϕ) [53], PGAP can be considered to be the most ad-
vanced adaptive preconditioner because it is fully adaptive
(i.e., task-specific and path-dependent) by being dependent
on θτ,k as shown in Figure 1.

Property 2. Riemannian metric: If the parameter space
has a certain underlying structure, the ordinary gradient of
a function ∇L does not represent its steepest direction [4].

16083



To define the steepest direction on the parameter space, we
need a Riemannian metric g(w), which is a positive-definite
matrix defined for each parameter w. A Riemannian metric
defines the steepest descent direction by −g(w)−1∇L [4].
If a preconditioning matrix is a Riemannian metric, it de-
fines the geometry of the underlying structure and enables
steepest descent learning. Because we prove that PGAP is a
Riemannian metric for each parameter in Theorem 1, PGAP
is theoretically guaranteed to enable steepest descent learn-
ing on its corresponding parameter space. PGAP consists of
two factors, a unitary matrix of the inner-loop gradient Uτ,k

and a meta-parameter M; M enables us to reflect the shared
geometry information across the tasks. Task-specific and
path-dependent geometry information can be reflected in the
metric through Uτ,k. Two factors allow our Riemannian met-
ric to have higher function complexity than a constant metric.
For example, we can consider various structures other than
a unit-sphere that corresponds to the constant metric of +1.
Even though PGAP is guaranteed to be a Riemannian metric,
it is crucial that the meta-learned PGAP corresponds to the
true parameter space or at least PGAP is close enough to be
useful. We will discuss this issue in Section 5.

3.3. Approximate GAP: a low-computational ap-
proximation of GAP

As presented in Section 3.1, GAP uses an SVD operation.
The SVD operation can be burdensome for large-scale net-
works because it implies that the computational cost can be
significantly increased. In recent studies, the use of a large-
scale architecture has been emphasized as the key factor for
improving the performance of meta-learning [25]. To make
use of GAP for large-scale architectures without causing a
computational problem, we provide an efficient approxima-
tion, named Approximate GAP, under an assumption.

Assumption 1. The elements of the gradient matrix follow
an i.i.d. normal distribution with zero means.

Following [39, 60], we adopt the assumption to have the
gradient matrix become orthogonal as n increases. Although
the utilization of the assumption is a limiting factor, we em-
pirically confirmed that the row vectors of the gradient ma-
trix are indeed asymptotically orthogonal as n increases (see
Figure 3). For the assumption, our approximation can be
established as the following.

Theorem 2. Let G ∈ Rm×n be a gradient matrix and G̃
be the gradient transformed by meta parameter M. Under
the Assumption 1, as n becomes large, G̃ asymptotically
becomes equivalent to MG as follows:

G̃ ∼= MG (12)

Note that we have chosen the larger dimension of the gra-
dient matrix as n when reshaping with Eq. (6). We provide

Figure 3. The average of cosine similarity between row vectors of
gradient matrix as n increases.

Algorithm train time (secs) test time (secs) GPU-memory (MB)

MAML 35796.61 52.66 10185
GAP 50916.63 120.44 10279
Approximate GAP 36684.72 53.62 10217

Table 2. Comparison of training time, GPU memory, and test time
for MAML, GAP, and Approximate GAP. We performed the exper-
iment with 5-way 1-shot on mini-ImageNet and used 600 tasks in
the test. We used the standard Conv-4 backbone.

the proof in Supplementary Section B. This approximation
has a clear trade-off between scalability and adaptiveness.
Approximate GAP efficiently reduces the computational cost
as shown in Table 2, whereas the preconditioner PGAP be-
comes not adaptive but constant. However, Approximate
GAP still guarantees the preconditioner to be a Riemannian
metric. As shown in Table 4 & 5, Approximate GAP in-
curs a slight performance drop but it still achieves a high
performance owing to the Riemannian metric property.

4. Experiments
In this section, we show the superiority of GAP by com-

paring it with the state-of-the-art PGD-MAML family and
the MAML family. Hyper-parameter setups used in our ex-
periments can be found in Supplementary Section C.1.

4.1. Few-shot regression

Datasets and experimental setup. The goal of few-shot
regression is to fit an unknown target function for the given
K sample points from the function. For the evaluation of
few-shot regression, we use the sinusoid regression bench-
mark [20]. In this benchmark, sinusoid is used as the target
function. Each task has a sinusoid y(x) = A sin(ωx+ b) as
the target function, where the parameter values are within
the following range: amplitude A ∈ [0.1, 5.0], frequency
ω ∈ [0.8, 1.2], and phase b ∈ [0, π]. For each task, input data
point x is sampled from [−5.0, 5.0]. In the experiment, we
use a simple Multi-Layer Perceptron (MLP), following the
setting in [20]. The details of the architecture are provided
in Supplementary Section C.2.1.

Results. We evaluate GAP and compare it with MAML
family and PGD-MAML family on a regression task. As

16084



Algorithm 5-shot 10-shot 20-shot

MAML [20] 1.13± 0.18 0.77± 0.11 0.48± 0.08
Meta-SGD† [36] 0.90± 0.16 0.53± 0.09 0.31± 0.05
MT-Net [34] 0.76± 0.09 0.49± 0.05 0.33± 0.04
ALFA [9] 0.92± 0.19 0.62± 0.16 0.34± 0.07
L2F [10] 0.71 ± N/A 0.37 ± N/A 0.16 ± N/A
PAMELA† [49] 0.54± 0.06 0.41± 0.04 0.17± 0.03
MeTAL [8] 0.74± 0.18 0.44± 0.11 0.21± 0.06

GAP† 0.16± 0.04 0.04± 0.01 0.01± 0.01

Table 3. Few-shot regression for the sinusoid regression benchmark
with a 2-layer MLP backbone. We report MSE ± 95% confidence
intervals(ci) for 600 tasks following the setup in [20]. † denotes
PGD-MAML family.

shown in Table 3, GAP consistently achieves the lowest
mean squared error (MSE) scores, with the lowest confi-
dence intervals in all three cases. The performance of GAP
is improved by 89% on 10-shot and 94% on 20-shot com-
pared to the performance of state-of-the-art algorithms.

4.2. Few-shot classification

Datasets and experimental setup. For the few-shot
classification, we evaluate two benchmarks: (1) mini-
ImageNet [56]; this dataset has 100 classes and it is a subset
of ImageNet [16], and we use the same split as in [51],
with 64, 16 and 20 classes for train, validation and test, re-
spectively. (2) tiered-ImageNet [52]; this is also a subset of
ImageNet with 608 classes grouped into 34 high-level cate-
gories, and divided into 20, 6 and 8 for train, validation, and
test, respectively. For all the experiments, our model follows
the standard Conv-4 backbone used in [56]. The details of the
architecture are provided in Supplementary Section C.2.2.
Following the experimental protocol in [20], we use 15 sam-
ples per class in the query-set to compute the meta gradients.
In meta training and meta testing, the inner-loop optimiza-
tion is updated in five and ten steps, respectively.

Results. Table 4 & 5 present the performance of GAP, the
state-of-the-art PGD-MAML family, and the state-of-the-art
MAML-family on mini-ImageNet and tiered-ImageNet un-
der two typical settings: 5-way 1-shot and 5-way 5-shot. The
GAP outperforms all of the previous PGD-MAML family
and MAML family. Compared to the state-of-the-art MAML
family, GAP improves the performance with a quite signif-
icant margin for both mini-ImageNet and tiered-ImageNet
datasets. Compared to the state-of-the-art PGD-MAML fam-
ily, GAP shows that the 1- and 5-shot accuracy can be in-
creased by 1.4 % and 1.5 % on mini-ImageNet dataset, and
by 0.7 % and 0.68 % on tiered-ImageNet dataset, respec-
tively. We also evaluated Approximate GAP that is intro-
duced in Section 3.3. The results show that the approximated
version can perform comparably to the original GAP. Al-
though Approximate GAP shows slightly lower accuracies
than the original, its performance is superior to most of the
existing algorithms because of its Riemannian metric prop-
erty.

Algorithm 5-way 1-shot 5-way 5-shot

MAML [20] 47.89± 1.20 64.59± 0.88
Meta-SGD† [36] 50.47± 1.87 64.00± 0.90
BMAML [64] 53.80± 1.46 64.23± 0.69
ANIL [48] 46.70± 0.40 61.50± 0.50
LLAMA [23]. 49.40± 1.83 N/A
PLATIPUS [21] 50.13± 1.86 -
T-net [34] 50.86± 1.82 N/A
MT-net [34] 51.70± 1.84 N/A
MAML++ [7] 52.15± 0.26 68.32± 0.44
iMAML-HF [50] 49.30± 1.88 N/A
WarpGrad [22] 52.30± 0.90 68.40± 0.60
MC1† [44] 53.74± 0.84 68.01± 0.73
MC2† [44] 54.08± 0.88 67.99± 0.73
MH-C† [66] 48.64± 0.33 64.52± 0.51
MH† [66] 49.41± 0.96 67.16± 0.42
BOIL [43] 49.61± 0.16 66.46± 0.37
ARML [63] 50.42± 1.79 64.12± 0.90
ALFA [9] 50.58± 0.51 69.12± 0.47
L2F [10] 52.10± 0.50 69.38± 0.46
ModGrad† [53] 53.20± 0.86 69.17± 0.69
PAMELA† [49] 53.50± 0.89 70.51± 0.67
SignMAML [19] 42.90± 1.50 60.70± 0.70
CTML [45] 50.47± 1.83 64.15± 0.90
MeTAL [8] 52.63± 0.37 70.52± 0.29
ECML [24] 48.94± 0.80 65.26± 0.67
Sharp-MAML_up [1] 49.56 ± N/A 63.06 ± N/A
Sharp-MAML_low [1] 49.72 ± N/A 63.18 ± N/A
Sharp-MAML_both [1] 50.28 ± N/A 65.04 ± N/A
FBM [62] 50.62± 1.79 64.78± 0.35
CxGrad [33] 51.80± 0.46 69.82± 0.42
HyperMAML [47] 51.84± 0.57 66.29± 0.43
EEML [35] 52.42± 1.75 68.40± 0.95
MH-O† [66] 52.50± 0.61 67.76± 0.34
Sparse-MAML† [57] 50.35± 0.39 67.03± 0.74
Sparse-ReLU-MAML† [57] 50.39± 0.89 64.84± 0.46
Sparse-MAML+† [57] 51.04± 0.59 67.03± 0.74

Approximate GAP† 53.52± 0.88 70.75± 0.67
GAP† 54.86± 0.85 71.55± 0.61

Table 4. 5-way few-shot classification accuracy (%) on mini-
ImageNet with a Conv-4 backbone. We report mean ± 95% con-
fidence intervals(ci) for 600 tasks according to [20]. † denotes
PGD-MAML family.

Algorithm 5-way 1-shot 5-way 5-shot

Meta-SGD† [36] 50.92± 0.93 69.28± 0.80
MAML [20] 51.70± 1.80 70.30± 1.80
MT-net [34] 51.95± 1.83 N/A
WarpGrad [22] 57.20± 0.90 74.10± 0.70
BOIL [43]. 48.58± 0.27 69.37± 0.12
ALFA [9] 53.16± 0.49 70.54± 0.46
L2F [10] 54.40± 0.50 73.34± 0.44
ARML [63] 52.91± 1.83 N/A
PAMELA† [49] 54.81± 0.88 74.39± 0.71
Sparse-ReLU-MAML† [57] 53.18± 0.52 69.06± 0.28
Sparse-MAML† [57] 53.47± 0.53 68.83± 0.65
Sparse-MAML+† [57] 53.91± 0.67 69.92± 0.21
MeTAL [8] 54.34± 0.31 70.40± 0.21
CxGrad [33] 55.55± 0.46 73.55± 0.41
ECML [24] 47.34± 0.88 64.77± 0.75

Approximate GAP† 56.86± 0.91 74.41± 0.72
GAP† 57.60± 0.93 74.90± 0.68

Table 5. 5-way few-shot classification accuracy (%) on tiered-
ImageNet dataset with a Conv-4 backbone. We report mean ±
95% confidence intervals(ci) for 600 tasks according to [20]. †

denotes PGD-MAML family.

16085



tiered-ImageNet CUB Cars

Algorithm 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML [20] 51.61± 0.20 65.76± 0.27 40.51± 0.08 53.09± 0.16 33.57± 0.14 44.56± 0.21
ANIL [48] 52.82± 0.29 66.52± 0.28 41.12± 0.15 55.82± 0.21 34.77± 0.31 46.55± 0.29
BOIL [43] 53.23± 0.41 69.37± 0.23 44.20± 0.15 60.92± 0.11 36.12± 0.29 50.64± 0.22
BMAML [64] N/A N/A 33.52± 0.36 51.35± 0.16 N/A N/A
ALFA [9] N/A N/A N/A 58.35± 0.25 N/A N/A
L2F [10] N/A N/A N/A 60.89± 0.22 N/A N/A
MeTAL [8] N/A N/A N/A 58.20± 0.24 N/A N/A
HyperMAML [47] N/A N/A 36.52± 0.61 49.43± 0.14 N/A N/A
CxGrad [33] N/A N/A N/A 63.92± 0.44 N/A N/A
Sparse-MAML† [57] 53.47± 0.53 68.83± 0.65 41.37± 0.73 60.58± 1.10 35.90± 0.50 52.63± 0.56
Sparse-ReLU-MAML† [57] 53.77± 0.94 68.12± 0.69 42.89± 0.45 57.53± 0.94 36.04± 0.55 49.95± 0.42
Sparse-MAML+† [57] 53.91± 0.67 69.92± 0.21 43.43± 1.04 62.02± 0.78 37.14± 0.77 53.18± 0.44

Approximate GAP† 57.47± 0.99 71.66± 0.76 43.77± 0.79 62.92± 0.73 37.00± 0.75 53.28± 0.76
GAP† 58.56± 0.93 72.82± 0.77 44.74± 0.75 64.88± 0.72 38.44± 0.77 55.04± 0.77

Table 6. 5-way few-shot cross domain classification accuracy (%) with a Conv-4 backbone, meta training on mini-ImageNet dataset, and
meta-testing on tiered-ImageNet, CUB, or Cars datasets. We report mean ± 95% confidence intervals(ci) for 600 tasks according to [20]. †

denotes PGD-MAML family.

4.3. Cross-domain few-shot classification

The cross-domain few-hot classification introduced
by [14] addresses a more challenging and practical few-shot
classification scenario in which meta-train and meta-test
tasks are sampled from different task distributions. These
scenarios are designed to evaluate meta-level overfitting of
meta-learning algorithms by creating a large domain gap be-
tween meta-trains and meta-tests. In particular, an algorithm
can be said to be meta-overfitting if it relies too much on the
prior knowledge of previously seen meta-train tasks instead
of focusing on a few given examples to learn a new task.
This meta-level overfitting makes the learning system more
likely to fail to adapt to new tasks sampled from substantially
different task distributions.

Datasets and experimental setup. To evaluate the level
of meta-overfitting for GAP, we evaluate a cross-domain
few-shot classification experiment. The mini-ImageNet is
used for the meta-train task, and the tiered-ImageNet [52],
CUB-200-2011 [58], Cars [11] datasets are used for the meta-
test task. The CUB dataset has 200 fine-grained classes and
consists of a total of 11,788 images; it is further divided into
100 meta-train classes, 50 meta-validation classes, and 50
meta-test classes. The Cars [30] dataset consists of 16,185
images of 196 classes of cars; it is split into 8,144 training
images and 8,041 testing images, where each class has been
split roughly in 50-50. The classes are typically at the level of
Make, Model, Year, e.g., 2012 Tesla Model S or 2012 BMW
M3 coupe. As with the few-shot classification experiment,
we use the standard Conv-4 backbone and follow the same
experimental protocol.

Results. Table 6 presents the cross-domain few-shot per-
formance for GAP, MAML family, and PGD-MAML fam-
ily. GAP significantly outperforms the state-of-the-art al-

gorithms on 5-way 1-shot and 5-way 5-shot cross-domain
classification tasks. In particular, for the tiered-ImageNet
dataset, the performance was improved by 8.6% and 4.1%
on 1-shot and 5-shot classification tasks, respectively. Be-
cause GAP can simultaneously consider a task’s individuality
and optimization trajectory in the inner-loop optimization,
it can overcome meta-overfitting better than the existing
methods. However, Approximate GAP shows more perfor-
mance degradation in cross-domain few-shot classification
than in few-shot classification. In particular, when the do-
main difference with the meta-train is more significant (i.e.,
the tiered-ImageNet dataset) than when the domain differ-
ence with the meta-train is marginal (i.e., CARS and CUB
datasets), it shows a more considerable performance drop.
We can see that full adaptation plays an important role in
cross-domain few-shot classification.

5. Discussion
Number of meta parameters: Recent MAML family and
PGD-MAML family require a large increase in the number
of meta-learning parameters as shown in Table 7. One ad-
vantage of GAP is that it requires only a very small increase
in the number of meta parameters, when compared to the
baseline of MAML. This is possible because we transform a
gradient tensor into a gradient matrix, perform the SVD of
the matrix, and assign only a small number of meta param-
eters that correspond to the diagonal matrix of the gradient
matrix. For the Conv-4 network, GAP requires only 0.2%
increase of the meta parameters. Although the increase in
the number of meta parameters is negligible, SVD of the
gradient matrix can incur a large computational burden for
large networks. This is addressed by Approximate GAP.

Approximate GAP vs. simple constant preconditioners:
Approximate GAP is a low-complexity method where SVD

16086



Algorithm # of params % increase

MAML [20] 1.2109× 105

Meta-SGD [36] 2.4218× 105 100.0%
MC [44] 2.7106× 106 2140.4%
PAMELA [49] 1.6239× 105 34.1%
MH [66] 7.2196× 107 59586.7%
Sparse-MAML [57] 2.4218× 105 100.0%

GAP 1.2131× 105 0.2%

Table 7. Comparison of the number of parameters for MAML,
existing methods, and GAP.

Algorithm Structure
Riemannian metric

(i.e., positive definite) Acc. (%)

Meta-SGD diag(a1, ·, an) X 50.47%
Meta-SGD with positive definiteness diag(a1, ·, an) O 52.39%

Approximate GAP blkdiag(M, · · · ,M) O 53.52%

Table 8. Performance comparison of three constant (i.e., non-
adaptive) preconditioners for 5-way 1-shot on mini-ImageNet:
Meta-SGD, Meta-SGD modified to satisfy positive definiteness,
and our Approximate GAP.

Algorithm 1-shot 5-shot

GAP w/o PGAP 48.23± 0.80 65.80± 0.75
GAP w/ PGAP 54.86± 0.85 71.55± 0.61

Table 9. Ablation study of PGAP on mini-ImageNet. Performance
of the GAP-trained model is significantly affected by not applying
PGAP.

operation is avoided by approximating GAP with a constant
diagonal preconditioner. A natural question to ask is how
does Approximate GAP compare with other constant di-
agonal preconditioners. To answer this question, we have
compared Approximate GAP with Meta-SGD and a modi-
fied Meta-SGD. Meta-SGD [36] is a well-known constant
diagonal preconditioner (i.e., diag(a1, · · · , an)) that does
not need to be positive definite and we also investigate its
modification with a constraint on positive definiteness. The
results are shown in Table 8. It can be observed that enforcing
positive definiteness can improve Meta-SGD. Furthermore,
an additional improvement can be achieved by Approximate
GAP. While both modified Meta-SGD and Approximate
GAP are positive definite, Approximate GAP is different be-
cause it inherits an additional constraint from GAP – a block
diagonal structure where a constant diagonal matrix M is re-
peated (i.e., blkdiag(M, · · · ,M)). The inherited constraint
provides a gain over the modified Meta-SGD.

Does GAP learn a useful preconditioner: While a Rie-
mannian metric can be helpful, it does not mean any Rie-
mannian metric will result in an improvement. For the true
parameter space with a specific underlying structure, the cor-
responding Riemannian metric needs to be applied to enable
steepest descent [3, 4]. For the special case of a two-layer
neural network with a mean squared error (MSE) loss, it

was proven that Fisher information matrix is the correspond-
ing Riemannian metric [4]. For a general neural network,
however, a proper Riemannian metric is unknown and it
needs to be learned. In our work, we have devised a method
to guarantee a Riemannian metric and have used the outer-
loop optimization to learn the Riemannian metric. In general,
the learned Riemannian metric is unlikely to correspond
perfectly to the true parameter space. Then, an important
question is if the Riemannian metric learned by GAP is close
enough to the desired one and if it is useful. To investigate
this issue, we performed an ablation study by not applying
the preconditioner PGAP. After training a GAP model, we
have evaluated the performance with and without applying
PGAP. The results are shown in Table 9 and clearly the pre-
conditioner learned with the outer-loop optimization plays
an essential role for improving the performance.

Why is preconditioner helpful for meta-learning: When
the batch size is small, the resulting empirical gradient can be
noisy [53, 65]. A typical few-shot learning has only a small
number of samples for the inner-loop optimization, and its
gradient can be noisy. On the other hand, it was shown in [5]
that preconditioned gradient descent with a positive definite
preconditioner can achieve a lower risk than gradient descent
when the labels are noisy, the model is mis-specified, or the
signal is misaligned with the features. Under a misalignment,
a properly chosen positive definite preconditioner can gener-
alize better than gradient descent [5]. Considering the noisy
gradient of inner loop optimization, it can be surmised that a
positive definite preconditioner that is adaptive (i.e., a Rie-
mannian metric) can be helpful for improving MAML. Note
that the noisy case is in contrast to the case of supervised
learning with a large amount of data [5].

6. Conclusion

In this work, we have proposed GAP that is a PGD-
MAML algorithm utilizing SVD operation. Thanks to the
fully adaptive property, GAP can handle individual tasks
with a wide diversity within the MAML framework. Addi-
tionally, GAP can enable steepest descent on the parameter
space owing to the Riemannian metric property.

Acknowledgements

This work was supported by ETRI [23ZR1100, A
Study of Hyper-Connected Thinking Internet Tech-
nology by autonomous connecting, controlling and
evolving ways], NRF (NRF-2020R1A2C2007139), IITP
[NO.2021-0-01343, Artificial Intelligence Graduate
School Program (Seoul National University)], and the
New Faculty Startup Fund from Seoul National University.

16087



References
[1] Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and

Tianyi Chen. Sharp-maml: Sharpness-aware model-agnostic
meta learning. arXiv preprint arXiv:2206.03996, 2022. 6

[2] Shunichi Amari. A theory of adaptive pattern classifiers.
IEEE Transactions on Electronic Computers, (3):299–307,
1967. 1

[3] Shun-ichi Amari. Neural learning in structured parameter
spaces-natural riemannian gradient. Advances in neural infor-
mation processing systems, 9, 1996. 1, 8

[4] Shun-Ichi Amari. Natural gradient works efficiently in learn-
ing. Neural computation, 10(2):251–276, 1998. 1, 3, 4, 5,
8

[5] Shun-ichi Amari, Jimmy Ba, Roger Grosse, Xuechen Li, At-
sushi Nitanda, Taiji Suzuki, Denny Wu, and Ji Xu. When does
preconditioning help or hurt generalization? arXiv preprint
arXiv:2006.10732, 2020. 3, 8

[6] Shun-Ichi Amari and Scott C Douglas. Why natural gradient?
In Proceedings of the 1998 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat.
No. 98CH36181), volume 2, pages 1213–1216. IEEE, 1998.
1

[7] Antreas Antoniou, Harrison Edwards, and Amos Storkey.
How to train your maml. arXiv preprint arXiv:1810.09502,
2018. 6

[8] Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho,
Jaesik Min, and Kyoung Mu Lee. Meta-learning with task-
adaptive loss function for few-shot learning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 9465–9474, 2021. 1, 6, 7

[9] Sungyong Baik, Myungsub Choi, Janghoon Choi, Heewon
Kim, and Kyoung Mu Lee. Meta-learning with adaptive
hyperparameters. Advances in Neural Information Processing
Systems, 33:20755–20765, 2020. 6, 7

[10] Sungyong Baik, Seokil Hong, and Kyoung Mu Lee. Learning
to forget for meta-learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2379–2387, 2020. 6, 7

[11] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and An-
drea Vedaldi. Meta-learning with differentiable closed-form
solvers. arXiv preprint arXiv:1805.08136, 2018. 7

[12] Irénée-Jules Bienaymé. Considérations à l’appui de la
découverte de Laplace sur la loi de probabilité dans la
méthode des moindres carrés. Imprimerie de Mallet-
Bachelier, 1853. 13

[13] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe.
Convex optimization. Cambridge university press, 2004. 1

[14] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank
Wang, and Jia-Bin Huang. A closer look at few-shot classifi-
cation. arXiv preprint arXiv:1904.04232, 2019. 7

[15] Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul
Cohen, and Yoshua Bengio. Torchmeta: A meta-learning
library for pytorch. arXiv preprint arXiv:1909.06576, 2019.
14

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 6

[17] Lin Ding, Peng Liu, Wenfeng Shen, Weijia Lu, and Shengbo
Chen. Gradient-based meta-learning using uncertainty
to weigh loss for few-shot learning. arXiv preprint
arXiv:2208.08135, 2022. 1

[18] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgra-
dient methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011. 3

[19] Chen Fan, Parikshit Ram, and Sijia Liu. Sign-maml: Efficient
model-agnostic meta-learning by signsgd. arXiv preprint
arXiv:2109.07497, 2021. 6

[20] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International conference on machine learning, pages 1126–
1135. PMLR, 2017. 1, 3, 5, 6, 7, 8, 14

[21] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic
model-agnostic meta-learning. Advances in neural informa-
tion processing systems, 31, 2018. 1, 6

[22] Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu,
Francesco Visin, Hujun Yin, and Raia Hadsell. Meta-
learning with warped gradient descent. arXiv preprint
arXiv:1909.00025, 2019. 6

[23] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and
Thomas Griffiths. Recasting gradient-based meta-learning as
hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018. 6

[24] Markus Hiller, Mehrtash Harandi, and Tom Drummond. On
enforcing better conditioned meta-learning for rapid few-shot
adaptation. arXiv preprint arXiv:2206.07260, 2022. 6

[25] Shell Xu Hu, Da Li, Jan Stühmer, Minyoung Kim, and Tim-
othy M Hospedales. Pushing the limits of simple pipelines
for few-shot learning: External data and fine-tuning make a
difference. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9068–9077,
2022. 5

[26] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learning,
pages 448–456. PMLR, 2015. 14

[27] Sham M Kakade. A natural policy gradient. Advances in
neural information processing systems, 14, 2001. 1

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3, 14

[29] Tamara G Kolda and Brett W Bader. Tensor decompositions
and applications. SIAM review, 51(3):455–500, 2009. 3

[30] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d
object representations for fine-grained categorization. In Pro-
ceedings of the IEEE international conference on computer
vision workshops, pages 554–561, 2013. 7

[31] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-
Robert Müller. Efficient backprop. In Neural networks: Tricks
of the trade, pages 9–48. Springer, 2012. 3

[32] John M Lee. Smooth manifolds. Springer, 2012. 3, 12
[33] Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song. Con-

textual gradient scaling for few-shot learning. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 834–843, 2022. 6, 7

16088



[34] Yoonho Lee and Seungjin Choi. Gradient-based meta-
learning with learned layerwise metric and subspace. In
International Conference on Machine Learning, pages 2927–
2936. PMLR, 2018. 1, 4, 6

[35] Geng Li, Boyuan Ren, and Hongzhi Wang. Eeml: Ensemble
embedded meta-learning. arXiv preprint arXiv:2206.09195,
2022. 6

[36] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-
sgd: Learning to learn quickly for few-shot learning. arXiv
preprint arXiv:1707.09835, 2017. 1, 4, 6, 8

[37] Zequn Liu, Ruiyi Zhang, Yiping Song, and Ming Zhang.
When does maml work the best? an empirical study on model-
agnostic meta-learning in nlp applications. arXiv preprint
arXiv:2005.11700, 2020. 1

[38] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv preprint arXiv:1608.03983,
2016. 14

[39] Ahmed M Abdelmoniem, Ahmed Elzanaty, Mohamed-Slim
Alouini, and Marco Canini. An efficient statistical-based gra-
dient compression technique for distributed training systems.
Proceedings of Machine Learning and Systems, 3:297–322,
2021. 5

[40] Gabriel Maicas, Andrew P Bradley, Jacinto C Nascimento,
Ian Reid, and Gustavo Carneiro. Training medical image
analysis systems like radiologists. In International Confer-
ence on Medical Image Computing and Computer-Assisted
Intervention, pages 546–554. Springer, 2018. 1

[41] George Marsaglia. Choosing a point from the surface of a
sphere. The Annals of Mathematical Statistics, 43(2):645–
646, 1972. 13

[42] Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Faltings. Meta-
learning for low-resource natural language generation in task-
oriented dialogue systems. arXiv preprint arXiv:1905.05644,
2019. 1

[43] Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, and Se-Young
Yun. Boil: Towards representation change for few-shot learn-
ing. arXiv preprint arXiv:2008.08882, 2020. 6, 7

[44] Eunbyung Park and Junier B Oliva. Meta-curvature. Advances
in Neural Information Processing Systems, 32, 2019. 1, 4, 6,
8

[45] Danni Peng and Sinno Pan. Clustered task-aware meta-
learning by learning from learning paths. 2021. 6

[46] Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy M
Hospedales, and Tao Xiang. Incremental few-shot ob-
ject detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
13846–13855, 2020. 1

[47] M Przewięźlikowski, P Przybysz, J Tabor, M Zięba, and P
Spurek. Hypermaml: Few-shot adaptation of deep models
with hypernetworks. arXiv preprint arXiv:2205.15745, 2022.
6, 7

[48] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol
Vinyals. Rapid learning or feature reuse? towards un-
derstanding the effectiveness of maml. arXiv preprint
arXiv:1909.09157, 2019. 1, 6, 7

[49] Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, and Mubarak Shah. Meta-learning

the learning trends shared across tasks. arXiv preprint
arXiv:2010.09291, 2020. 1, 4, 6, 8

[50] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and
Sergey Levine. Meta-learning with implicit gradients. Ad-
vances in neural information processing systems, 32, 2019.
6

[51] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. 2016. 6

[52] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. arXiv preprint arXiv:1803.00676, 2018.
6, 7

[53] Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash
Harandi. On modulating the gradient for meta-learning. In
European Conference on Computer Vision, pages 556–572.
Springer, 2020. 1, 4, 6, 8

[54] Rishav Singh, Vandana Bharti, Vishal Purohit, Abhinav Ku-
mar, Amit Kumar Singh, and Sanjay Kumar Singh. Metamed:
Few-shot medical image classification using gradient-based
meta-learning. Pattern Recognition, 120:108111, 2021. 1

[55] Xingyou Song, Yuxiang Yang, Krzysztof Choromanski, Ken
Caluwaerts, Wenbo Gao, Chelsea Finn, and Jie Tan. Rapidly
adaptable legged robots via evolutionary meta-learning. In
2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3769–3776. IEEE, 2020. 1

[56] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
Advances in neural information processing systems, 29, 2016.
6, 14

[57] Johannes Von Oswald, Dominic Zhao, Seijin Kobayashi, Si-
mon Schug, Massimo Caccia, Nicolas Zucchet, and João
Sacramento. Learning where to learn: Gradient sparsity in
meta and continual learning. Advances in Neural Information
Processing Systems, 34:5250–5263, 2021. 1, 4, 6, 7, 8

[58] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,
and Serge Belongie. The caltech-ucsd birds-200-2011 dataset.
2011. 7

[59] Shuhuan Wen, Zeteng Wen, Di Zhang, Hong Zhang, and Tao
Wang. A multi-robot path-planning algorithm for autonomous
navigation using meta-reinforcement learning based on trans-
fer learning. Applied Soft Computing, 110:107605, 2021.
1

[60] Simon Wiedemann, Temesgen Mehari, Kevin Kepp, and Wo-
jciech Samek. Dithered backprop: A sparse and quantized
backpropagation algorithm for more efficient deep neural
network training. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops,
pages 720–721, 2020. 5

[61] Xiongwei Wu, Doyen Sahoo, and Steven Hoi. Meta-rcnn:
Meta learning for few-shot object detection. In Proceedings
of the 28th ACM International Conference on Multimedia,
pages 1679–1687, 2020. 1

[62] Peng Yang, Shaogang Ren, Yang Zhao, and Ping Li. Calibrat-
ing cnns for few-shot meta learning. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 2090–2099, 2022. 6

16089



[63] Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin
Ding, Ruirui Li, and Zhenhui Li. Automated relational meta-
learning. arXiv preprint arXiv:2001.00745, 2020. 6

[64] Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim,
Yoshua Bengio, and Sungjin Ahn. Bayesian model-agnostic
meta-learning. Advances in neural information processing
systems, 31, 2018. 6, 7

[65] Yikai Zhang, Hui Qu, Chao Chen, and Dimitris Metaxas.
Taming the noisy gradient: train deep neural networks with
small batch sizes. In The Twenty-Eighth International Joint
Conference on Artificial Intelligence (IJCAI), 2019. 8

[66] Dominic Zhao, Johannes von Oswald, Seijin Kobayashi, João
Sacramento, and Benjamin F Grewe. Meta-learning via hy-
pernetworks. 2020. 1, 4, 6, 8

16090


