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Abstract

In many real scenarios, data are often divided into
a handful of artificial super categories in terms of ex-
pert knowledge rather than the representations of images.
Concretely, a superclass may contain massive and vari-
ous raw categories, such as refuse sorting. Due to the
lack of common semantic features, the existing classifica-
tion techniques are intractable to recognize superclass with-
out raw class labels, thus they suffer severe performance
damage or require huge annotation costs. To narrow this
gap, this paper proposes a superclass learning framework,
called SuperClass Learning with Representation Enhance-
ment(SCLRE), to recognize super categories by leverag-
ing enhanced representation. Specifically, by exploiting
the self-attention technique across the batch, SCLRE col-
lapses the boundaries of those raw categories and enhances
the representation of each superclass. On the enhanced
representation space, a superclass-aware decision bound-
ary is then reconstructed. Theoretically, we prove that by
leveraging attention techniques the generalization error of
SCLRE can be bounded under superclass scenarios. Exper-
imentally, extensive results demonstrate that SCLRE outper-
forms the baseline and other contrastive-based methods on
CIFAR-100 datasets and four high-resolution datasets.

1. Introduction
In recent decades, basic-level raw categorization (e.g.

cats vs dogs, apples vs bananas) has greatly developed
[9, 27] while high-level or super-coarse-grained visual cat-
egorization (e.g., recyclable waste vs kitchen waste, crea-
tures vs non-creatures) has received little attention. In many
real scenarios, there often exist a handful of high-level cat-
egories, wherein numerous images from diverse basic-level
categories share one common label. We tend to define this
kind of super-coarse-grained class as Superclass.
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Figure 1. Illustration of superclass learning. The samples from
a same superclass will be scatteredly distributed in the embed-
ding space. The process of superclass learning is to break old
domains and construct new domains. Red indicates the superclass
of kitchen waste, and blue indicates the superclass of recyclable
waste.

Refuse sorting, as an example, is such a recognization
problem with four superclasses, i.e., kitchen waste, recy-
clable waste, hazardous waste, and others waste. One task
of refuse sorting is to accurately collect various items, such
as rotten fruits, bones, raw vegetables, and eggshells, into
kitchen waste. Traditional recognition needs to identify
what exact basic-level categories they are, then sort them
out. Obviously, it is wasteful and unrealistic for superclass
identification.

Essentially, high-level superclasses contain two charac-
teristics, remarkably distinct from basic-level classes. First,
the basic-level classes contained in superclass problems are
usually scattered and share few common features. As de-
picted in the top-left corner subgraph of Fig. 1, the fruit
apple, bone, and eggs are remote from each other in fea-
ture spaces, though all of them belong to kitchen waste.
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Second, the instances from two distinct superclasses may
share common features. Just as illustrated in Fig. 1, fruit
apple, from kitchen waste, and toy apple, from recyclable
waste, are close to each other as they share common seman-
tic features. Obviously, the above-mentioned characteristics
indicate that the smoothness assumption [27] under basic-
level classification (nearby images tend to have the same
label) does not hold in the superclass scenarios. Thus, the
existing classification techniques based on smoothness as-
sumption are not practically deployable and scalable and
they may suffer severe performance damage in superclass
settings. Accordingly, it is valuable and promising to inves-
tigate superclass identification.

To tackle the superclass problems, we have to address
two main challenges. First, we need to break the origi-
nal decision boundaries of basic-level classes and disclose
a superclass-aware boundary at the basic class level. As
depicted in bottom subgraph (a) of Fig. 1, the boundary of
the apple domain is original, however, it is useless and even
harmful for the refuse sorting as both fruit apples and toy
apples belong to this domain. To get the required domain
boundary, the apple domain needs to be separated into the
fruit domain and toy domain by leveraging their individ-
ual local features, as depicted in the bottom subgraph (b)
of Fig. 1. In superclass scenarios, it is not enough to in-
vestigate the boundary at a basic class level. Consequently,
the second challenge is to reconstruct a decision boundary
at a superclass level. To achieve this end, it is necessary to
merge the domain of classes, such as fruit apples, eggs, and
bones into a new rotten superclass domain, as depicted in
the bottom subgraph (c) of Fig. 1.

In this paper, we propose a SuperClass Learning frame-
work with Representation Enhancement. Considering that
the semantic representation at the basic class level is not
workable for superclass recognition, we propose one cross-
instance attention module which could seize the representa-
tion across the instances with the same superclass label. By
leveraging contrastive adjustment loss, the attention mech-
anism enhances this representation. Moreover, to overcome
the imbalance distribution of superclasses, we adopt target
adjustment loss to reconstruct a superclass-aware decision
boundary on the enhanced representation space.

In summary, this paper makes the following contribu-
tions:

• We propose an under-study but realistic problem, su-
perclass identification, that has notably distinct distri-
bution from basic-level categorization.

• We propose a novel representation enhancement
method by leveraging cross-instance attention and then
exploit it in superclass identification. And by theo-
retical analyses, we verify that this self-attention tech-
nique can bound the generalization error of superclass

recognition.

• Extensive experiments demonstrate that SCLRE out-
performs the SOTA classification techniques on one
artificial superclass dataset and three real datasets.

The remainder of the paper is organized as follows: in
Sec. 2 we briefly review related work and in Sec. 3 we de-
scribe our method for superclass recognition. Then, exten-
sive experiments and generalization error analysis are con-
ducted in Secs. 4 and 5. Finally, Sec. 6 draws a brief con-
clusion.

2. Related Work
Contrastive Learning. The contrastive framework has

achieved great success on instance-level problems. Chen
et al [3] designed a simple framework to get visual repre-
sentations in a contrastive way. He et al [14] developed
a dynamic dictionary with queues and moving averages to
improve contrastive encoder quality. To learn basic-level
features and discover more semantic structures for the em-
bedding space, Li et al [22] bridge contrastive learning with
clustering. More recently, Caron et al [2] presented a con-
trastive framework without the need for pairwise compar-
ison computation. To get rid of the limitation of negative
samples, Grill et al [12] use two neural networks and pre-
dict the representation of the same image under a different
augmented view. Chen et al [4] further designed a stop-
gradient operation to prevent collapsing. Contrastive learn-
ing has also been applied to various research domains and
evolved quickly [11, 33, 34]. Instead of focusing on the
basic-level boundary, we construct a high-level superclass-
aware boundary.

Supervised Contrastive Loss. Traditional contrastive
frameworks encode data either unsupervised or self-
supervised and apply supervised information in down-
stream tasks. Khosla et al [19] extend the contrastive mode
to a fully-supervised setting and use label information more
effectively. To address the impact of long-tailed distribution
data, Li et al [23] propose a targeted contrastive loss and
guide the encoder to obtain representations based on sev-
eral preset anchors. Recently, supervised contrastive learn-
ing is used in broader research domains both in computer
vision and natural language processing [16, 25, 35]. We are
inspired by the function of pulling close or away features in
these supervised contrastive losses, and therefore propose
a new loss, which will pull the features by the superclass
labels for better performance in classification.

Self-Attention Module. Self-attention module has been
widely used in deep learning. It was first mentioned by
Vaswani et al [29] as a part of the transformer model and
is widely used in the natural language processing field
[5, 21, 24, 26]. Recently, the attention module and trans-
former also obtained great success in the computer vision
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Figure 2. Illustration of SCLRE. The images first generate their
representations through a convolutional neural network, then mix
with each other in a trainable cross-instance attention module for
enhancement. After enhancement, the representations are then ad-
justed according to their superclass labels and the target anchors.

field. Dosovitskiy et al [6] organize image patches as a
sequence and propose a vision transformer. Furthermore,
He et al [13] propose a masked auto-encoder based on vi-
sion transformers. Self-attention modules can also be inte-
grated into convolutional neural networks to improve per-
formance [1, 18, 31]. Fu et al [10] address the fine-grained
image recognition problem by using an attention network to
find the unique and pivotal features in samples(for example,
one kind of bird’s tail color). Different from focusing the
attention relationship in one sample, we propose a cross-
instance attention(CIA) module that cares more about the
relationship between instances.

3. Method

Superclass Learning with Representation Enhance-
ment(SCLRE) framework is proposed for superclass image
recognition. It exploits the self-attention technique across
instances to perform a representation enhancement, thus it
achieves the goal to break the basic-level boundary in rep-
resentations. Then SCLRE reconstructs a new superclass-
aware boundary in the enhanced representation space by a
series of adjustment losses.

Fig. 2 shows the overview of SCLRE. Sec. 3.1 presents
the process of breaking basic-level boundary , while
Sec. 3.2 describes the details of constructing the new high-
level superclass-aware boundary.

(a) (b) (c)

Figure 3. Different segmentation strategies of cross-instance
attention module. We experiment on three kinds of segmentation
strategies and choose the best for the experiment.

3.1. Representation Enhancement

To break the basic-level boundary of representations and
obtain valuable enhancements, we mix the representations
by leveraging a cross-instance attention module. Unlike the
existing attention techniques [32], the cross-instance atten-
tion module cares more about the relationship between rep-
resentations of the instances, rather than the feature repre-
sentation inside the instance.

Enhanced Representation. Let X be the data space,
RD be the D-dimensional embedding space, an encoder f :
X → RD be a mapping from the data space to the embed-
ding space, and an enhancement process EnH : RD → RD

be a mapping from the embedding space to the embedding
space. For each xj ∈ X , the representation zj = f(xj),
and Z ∈ Rn×D is the representation matrix for the batch
with size n. The enhanced representation vj is an output of
EnH. More specifically, vj is defined as follows:

vj = EnH(zj ;Z) = aj × Z, (1)

where aj is a trainable vector for representation zj com-
puted by cross-instance attention module. Actually, the
vector aj is the j-th row of the attention distribution ma-
trix(ADM) computed in the following Q-K-V mode multi-
head attention module [29]:

ADM(Z) = softmax

(
QKT

√
dk

)
. (2)

The matrix Q = Z × WQ, where WQ ∈ RD×dq . Matrix
K = Z ×WK , where WK ∈ RD×dk and dq = dk.

The enhancement process breaks the basic-level bound-
ary by merging the semantic features of instances. Cross-
instance attention module automatically explores the key
instances for representation enhancement and integrates
them to obtain a superclass-aware enhanced representation.
Moreover, we conduct strict theoretical analysis on the gen-
eralization ability of our model in Sec. 5, and discover that
the cross-instance module can tightly bound the generaliza-
tion error of SCLRE.

Data Segmentation Strategy. In the cross-instance
attention module, the segmentation strategy of input data
is important for representation enhancement. For each in-
stance, the segmentation strategy determines whose repre-
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sentations will be received as an enhancement. We con-
sidered three kinds of segmentation strategies for the input
data in the cross-instance attention module. Fig. 3 illustrates
the details of the strategies. In (a), images are gathered in
terms of their superclass label, we put the same label im-
ages into one batch. In (b), we randomly and evenly select
images from the different superclasses and gather them into
the batch. In (c), we keep the distribution of the dataset and
randomly select the samples to form the batch. The result
shows that (c) selecting the samples according to the distri-
bution of the dataset benefits the model most, so we fixed
this strategy in the following part of this work.

3.2. SCLRE Loss

To reconstruct the high-level superclass-aware boundary
of representations, we design a SCLRE loss to adjust the
representations after the attention-weighted enhancement.
We keep using the letter v in Eq. (1) to demonstrate rep-
resentations being enhanced by the cross-instance attention
module, and we call it enhanced representation. After that,
we adjust the representations by taking three aspects into
consideration.

Category Classification Loss. We first adopt the cross-
entropy loss as the base to obtain a category-level adjust-
ment and prevent the model from collapsing:

Lce = − 1

N

N∑
i=1

K∑
k=1

yi,k logM(vi)k, (3)

where N demonstrates batch size, yi demonstrates the su-
perclass label of the i-th sample in one-hot embedding,
M(vi) demonstrates the output prediction of vi, and the
footscript k demonstrates the k-th component of a vector.

Contrastive Adjustment Loss. Besides classification
loss, the samples belonging to the same superclass may
share few common features. To obtain a representation-
level adjustment, we design a contrastive adjustment loss to
pull close the samples in the same superclass and pull away
samples in distinct superclasses. We directly regard sam-
ples from the same superclass as positive pairs and samples
from other superclasses as negative pairs. For one sample
vi and one of its positive sample v+ (i.e. vi and v+ belongs
to the same superclass), the contrastive adjustment loss is:

ℓ(vi, v
+) = − log exp(s(vi,v

+)/τ)
exp(s(vi,v+)/τ)+

∑
v− /∈P (vi)

exp(s(vi,v−)/τ) .

(4)
By summing up all the losses of positive pairs and for a

batch with size N , we can get the total loss as:

Lca =

N∑
i=1

1

||P (vi)|| − 1

∑
v+∈P (vi)\{vi}

ℓ(vi, v
+), (5)

where P (vi) stands for all the other data that share the
same superclass label with vi in the batch, i.e. P (vi) =

{vk|p(vk) = p(vi)}, p means the superclass label. s(·, ·)
stands for the similarity between two vectors, we use cosine
similarity for measurement, i.e. s(vs, vt) =

vT
s vt

||vs||·||vt|| . τ

is the temperature hyperparameter. ||P (vi)|| stands for the
size of set P (vi), and it aims to normalize the total loss.

Targeted Adjustment Loss. Since superclass learning
naturally faces the problem of lack of classification cen-
ters due to the scattered distribution of representations, then
follows damage to the constructing process when the con-
trastive adjustment loss works. To address this problem, we
design a targeted adjustment loss to give each superclass a
pre-defined category center(i.e. target anchors). We first
generate the target anchors and make them far away from
each other inspired by [23]. Then we pull every sample
close to its pre-defined target anchor by minimizing the fol-
lowing targeted adjustment loss:

Lta = − 1

N

N∑
i=1

log
exp(s(vi, t(vi))/τ)∑
t∈T exp(s(vi, t)/τ)

, (6)

where N stands for batch size, s(·, ·) stands for cosine sim-
ilarity function, T is the set of all the target anchors, and
t(vi) demonstrates the target anchor allocated to vi.

SCLRE Adjustment Loss. To construct the high-level
superclass-aware boundary with both category-level and
instance-level adjustments and overcome the problem of
lack of classification center, the total loss of SCLRE is a
weighted summation of the above three losses(i.e. Eqs. (3),
(5) and (6)):

LSCLRE = (1− α)Lce + αLca + λLta, (7)

where α and λ range from 0 to 1. Lce and Lca are designed
as a combination to help the encoder explore the concept of
superclasses, a larger α means a stronger adjustment strat-
egy and weaker classification ability. Lta is designed to
help the model overcome the imbalanced distribution, and
a larger λ means stronger guidance towards the destination
of adjustment.

SCLRE adjustment loss can help the model learn more
about the concept of the superclass and the high-level cat-
egorization boundary. By balancing the influence of cross-
entropy loss and contrastive adjustment loss, the model can
adjust representations properly. By controlling the utiliza-
tion of targeted adjustment loss, the model can run smoothly
and converge steadily.

4. Experiment

In this section, we conduct extensive experiments on sev-
eral artificially constructed superclass datasets to demon-
strate the effectiveness of our proposed approach, SCLRE.
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Figure 4. Illustration of superclass construction. We integrate
the initial class labels of the original dataset to superclass labels,
according to field knowledge. The constructed dataset contains a
handful of superclasses.

4.1. Experiment Setup

Datasets. In this study, superclass datasets are arti-
ficially reorganized from three benchmarks, CIFAR-100,
mini-ImageNet [30] and VOC [8], and two real-world
datasets, FMoW [20] and Adience [7]. CIFAR-100 contains
50000 training images and 10000 test images from 100 cat-
egories with a size of 32 × 32 × 3. mini-ImageNet [30]
contains 60000 images in total with a size of 84 × 84 × 3,
which are evenly distributed among 100 classes. VOC [8]
contains 2501 training images, 2510 validation images and
4952 test images from 20 categories. The real-world dataset
FMoW [20] is about a hybrid domain generalization and
subpopulation shift problem, which consists of 76863 train-
ing images, 11483 validation images and 11327 test images
with a size of 224 × 224 × 3. And the real-world dataset
Adience [7] contains 26,580 images from 2,284 people.

In our experiments, superclass datasets are artificially
constructed by integrating the initial classes, just as il-
lustrated in Fig. 4. To be concrete, We reorganize the
100 classes of CIFAR-100 into 3 superclasses, 4 super-
classes, and 7 superclasses, respectively, forming three dis-
tinct superclass datasets, CIFAR100-3, CIFAR100-4, and
CIFAR100-7. The superclasses in the three data sets are
based on movement mode, life form, and are more complex
than the original 20 coarse classes in CIFAR-100. For mini-
Imagenet and VOC, we reorganize their subclasses into 2
superclasses based on life form. For FMoW, we drop the
original labels and turn to predict the geographical location
of the images. For Adience, we utilize the age groups as the
superclass labels. Thus, those 7 superclass datasets can well
simulate the distribution of real-world superclass problems.
More reorganization details are listed in the Appendix.

Compared Methods. We compare SCLRE with the
baseline model, i.e., ResNet [15], and two SOTA contrastive
techniques SupCon [19], and SimCLR [3]. As contrastive

Dataset Method Accuracy(%)

CIFAR100-3

Baseline 72.8
SupCon [19] 78.1
SimCLR [3] 79.0

SCLRE 80.1

CIFAR100-4

Baseline 76.0
SupCon [19] 80.1
SimCLR [3] 80.6

SCLRE 84.0

CIFAR100-7

Baseline 68.9
SupCon [19] 72.7
SimCLR [3] 73.9

SCLRE 78.1

Table 1. Classification accuracy on low pixels dataset: CIFAR-
100. We compared the classification accuracy on CIFAR100-3,
CIFAR100-4, and CIFAR100-7 datasets.

techniques perform excellently in representation learning.
We adopt the default optimal settings in the training details.

SupCon: In our experiments, SupCon adopts ResNet-
50 as backbone, and SupCon loss as the super-classification
loss.

SimCLR: It is a known self-supervised contrastive
learning framework. In superclass recognization, we keep
using ResNet-50 as the backbone and use a supervised
downstream task to keep the instance-level features pure,
wherein the upstream instance-level results are a kind of
learning of the basic level class labels.

Implementation details. We adopt ResNet-50 [15] as
our default backbone and we reduce the feature dimen-
sion from 2048 to 128 with an extra Multi-Layer Percep-
tron(MLP) projection head. We train the network using the
SGD with a momentum of 0.9 and a batch size of 64. We
set the learning rate as 0.001 and the training stage as 200
epochs. Additionally, we resize all the images to 32×32
pixels. For our SCLRE method, we set the key K = 256,
value V = 128 and 8 multi-heads are adopted in the atten-
tion module.

4.2. Classification Evaluation

Accuracy on CIFAR-100 Datasets. Tab. 1 shows the
classification accuracies of SCLRE and the compared meth-
ods on CIFAR100-3, CIFAR100-4, and CIFAR100-7, re-
spectively. And we have the following observations: 1) It
is observed that SCLRE has a great improvement compared
with the baseline. This shows that the cross-instance at-
tention module can effectively activate the contrastive ad-
justment loss. 2) SCLRE has higher classification accura-
cies than SimCLR on superclass datasets. This shows that
the instance-level semantic information learned by SimCLR
may fail in the superclass problem because the images from
the same superclass may have quite different, even con-
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Figure 5. Visualization results by t-SNE. We sampled part of the test set and encode them into representations, then visualize them in the
embedding space by t-SNE. (a) We directly generate the representations using the backbone as a baseline. (b) We use the upstream encoder
of SimCLR. (c) We use the encoder of SupCon. (d) We use part of SCLRE by removing the targeted adjustment loss. (e) We use the entire
SCLRE.

tradictory semantic information. Comparatively, SCLRE
works well by the superclass-aware decision boundary.

Accuracy on High-Resolution Datasets. Tab. 2 shows
the evaluation results on three high-resolution datasets,
from which we observe the following facts. 1) we observe
that, on the real-world dataset FMoW, SCLRE outperforms
other methods by a large margin. On FMoW, the geographic
location of building images is adopted as the superclass la-
bel, rather than their type. The methods without represen-
tation enhancement may perform worse due to the lack of
superclass-aware common features. This further confirms
the importance of representation enhancement in the super-
class problems. 2) SCLRE also outperforms other meth-
ods on real-world dataset Adience, which contains 26580
face images from 2284 people. In case every single per-
son is a raw class, the results confirm that SCLRE is also
workable in large-scale situations. 3) Moreover, we observe
that on FMoW and Adience, SimCLR performs even worse
than the baseline. Because the instance-level representation
by SimCLR is conflicted with the given superclass labels.
4) The performance on mini-ImageNet appears to be less
attractive.This may be because the mini-ImageNet dataset
is divided into 2 distinct superclasses: animals and non-
animals. For such kind of distribution, basic-level methods

mini-ImageNet [30] FMoW [20] Adience [7] VOC [8]
Baseline 87.7 56.5 65.7 78.3
SupCon 87.0 58.3 66.2 78.2
SimCLR 90.1 51.5 52.9 80.0
SCLRE 89.3 64.8 68.7 81.5

Table 2. Classification accuracy on high-resolution datasets.
We compared the accuracy on datasets with more complex and
informative content.

can also easily sort them out by exploring the obvious com-
mon features inside each superclass(e.g. whether the im-
age contains eyes), which makes it more like a traditional
instance-level problem, and SimCLR may perform compa-
rably or even slightly better than SCLRE.

4.3. Visualization

Here we generate the visualization results on representa-
tion space by the t-SNE technique [28]. The CIFAR100-3,
CIFAR100-4, and CIFAR100-7 datasets are adopted for the
visualization experiments.

We observe the following facts from Fig. 5. 1) It is ob-
served that in columns (a) and (b) the images are scattered
in their respective representation space, although the images
(b) cluster slightly closer than the ones in (a). This further
shows that the instance-level representation of SimCLR is
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little related to superclass labels. Consequently, in super-
class scenarios, SimCLR performs a little better than base-
line but worse than SCLRE, just as illustrated in Tab. 1. 2)
We observed that the images in column (c) have a more ob-
vious cluster structure than in columns (a) and (b). This
shows that the use of superclass labels is important for con-
structing clear boundaries. But due to the diverse and com-
plex superclass contents, the representations are mostly in-
accurate and thus result in less favorable results as reported
in Tab. 1. 3) It is also observed that the images in columns
(d) and (e) are notably closer than the ones in (a), (b), and
(c). This shows that the enhanced representation of SCLRE
is superclass-aware. 4) Furtherly, we observe that the im-
ages in column (e) are obviously closer than the ones in
column (d). This shows that the targeted adjustment loss,
one important component of SCLRE, can furtherly cluster
images in the same superclasses, accordingly, it benefits re-
constructing a superclass-aware decision boundary.

4.4. Sensitivity Analysis

We discuss the hyperparameters α and λ of SCLRE
by evaluating their sensitivity on the CIFAR100-7 dataset.
When analyzing α, to avoid the influence of target anchors,
we removed targeted adjustment loss by fixing λ to 0. We
test the sensitivity of α by ranging it from 0 to 1. When
analyzing λ, we fix α to 0.5 to avoid its influence.

α 0 0.1 0.3 0.5 0.7 1
Accuracy 69.2 72.1 73.7 75.1 73.6 -

Table 3. Sensitivity analysis of α. We range α from 0 to 1 and
calculate the accuracy of SCLRE respectively. When α = 1, the
cross-entropy loss is invalid and the model will lose its classifica-
tion ability.

λ 0 0.1 0.2 0.4 0.8 1
Accuracy 75.1 76.7 77.9 76.9 78.1 76.0

Table 4. Sensitivity analysis of λ. We range λ from 0 to 1 and
calculate the accuracy of SCLRE respectively.

Batch Size 64 128 256 512
Accuracy 76.7 76.9 77.3 77.9

Table 5. Sensitivity analysis of batch size. We vary batch size
from 64 to 512 and calculate the accuracy of SCLRE respectively.

Sensetivity of α. Tab. 3 shows the sensitivity of α. Be-
sides extreme situations, we find that α has a little influence
on the accuracy. The optimal value of α falls around 0.5
and we fix it in our experiments.

In the case of α = 0, the contrastive adjustment loss is
invalid and the model degenerates into the baseline. In the
case of α = 1, the cross-entropy loss is invalid and then the
model is not workable for classification.

Architecture Params.(M) FLOPs(G) Acc.(%)
Baseline 23.51 1.30 68.9

+CIA 37.21 1.31 69.2
+Lca - - 72.7

+CIA, Lca - - 75.1
SCLRE

(+CIA,Lca,Lta) 37.21 1.32 77.9

Table 6. Ablation study on SCLRE. We calculated the model
size (Params.), computational complexity (FLOPs) and accuracy
contributions of four components of SCLRE.

Sensetivity of λ. Tab. 4 demonstrates the sensitivity
analysis of λ. λ is a hyperparameter that controls the in-
fluence of targeted adjustment loss.

Unlike α, there are two most proper λ values which fall
around 0.2 and 0.8. When λ is too small or too large, the
performance is both less satisfactory. As a too large λ may
be harmful to the accuracy of the model, a too small λ may
be short of guidance and has limited performance improve-
ment.

Sensetivity of Batch Size. Intuitively, a larger batch size
can bring more abundant samples of superclasses, thus mak-
ing it easier to construct superclass-aware representations.
The experimental results are conducted to verify this state-
ment. Tab. 5 illustrated the results of the sensitivity study of
the batch size. The results show that a larger batch size can
improve the performance of SCLRE, though the improve-
ment is not significant.

4.5. Ablation Study

Here ablation studies are conducted to demonstrate the
contribution of each component in our proposed SCLRE.
Just as designed in Sec. 3, SCLRE is composed of the
baseline model, contrastive adjustment loss (Lca), cross-
instance attention module(CIA), and targeted adjustment
loss(Lta). The baseline model is the same as our SCLRE
without Lca, Lta and CIA.

According to the results reported in Tab. 6, we have the
following observations:

1) It is observed that only CIA itself has an observable
contribution to the performance improvements, but CIA
joint with Lca brings notable improvements. This indicates
that the CIA module is workable to break the basic class
boundary with the great assistance of Lca. They enhance
the representation of the superclass by cross-instance at-
tention mechanism. 2) With CIA, Lca and Lta, SCLRE
achieves the optimal improvements. It shows that the
targeted adjustment loss does function on reconstructing
superclass-aware boundary on the enhanced representation
space.
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ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152
Baseline 83.9 83.7 78.2 83.4 82.6
SCLRE 86.8 87.6 82.9 87.7 87.2

Improve.(%) +2.9 +2.9 +4.7 +4.3 +4.6

Table 7. Robustness research of SCLRE on different backbones. We calculated the accuracy on a CIFAR100-3 superclass dataset of
baseline and SCLRE. We also calculated the improvement SCLRE gets in the different backbones.

4.6. Robustness for Different Backbones

We investigate the robustness of SCLRE by changing the
backbone to other convolutional neural networks. Tab. 7
shows the result of the experiments on robustness. The
experiments are performed on a CIFAR100-3 superclass
dataset and we vary the backbone from smaller networks
to larger networks. The result shows that SCLRE can make
stable improvements on different backbones.

5. Analysis of Generalization Ability
We conduct an analysis of the generalization ability of

SCLRE and prove that the cross-instance attention module
can further compress the upper bound of the generalization
error. The details of the proof are in the Appendix.

Based on the contrastive adjustment loss in Sec. 3.2, and
with ignoring the constant items, we can rewrite the con-
trastive loss into an expectation form:

Lca ∝ −Ev,v′E v1,v2∈P (v)

v−∈P (v
′
)

log
exp(vT1 v2)

exp(vT1 v2) + exp(vT1 v
−)

= −EvEv1,v2∈P (v)v
T
1 v2︸ ︷︷ ︸

L1

+ Ev,v′E v1,v2∈P (v)

v−∈P (v
′
)

log
(
exp(vT1 v2) + exp(vT1 v

−)
)

︸ ︷︷ ︸
L2

where L1 measures the alignment between two transformed
features and L2 is the regularizer preventing the collapse of
representation.

Lemma 1. As a conclusion in [17], if L2 is trained to be
small than the threshold, which is easily satisfied, the gen-
eralization error of downstream classifier Gf has an upper
bound:

Err(Gf ) ⩽ (1− σ) + η(ϵ)
√
2− 2EvEv1,v2∈P (v)v

T
1 v2

= (1− σ) + η(ϵ)
√
2 + 2L1

Lemma 2. Sample pairs with the same coarse label con-
sist of two parts: those share the same fine label (O1) and
those have different fine labels (O2). The former can be
closely aligned after contrastive learning. We focus on the
latter and prove that:

EvEv1,v2∈P (v)v
T
1 v2 ⩾ Cφ +

(1− ρ)K

M1M2
s(a1, a2)

where Cφ is a constant determined by the data distribution.
M1,M2,K are constants. ρ is the ratio of sample pairs with
same fine label in all positive pairs.

Theorem 1. The generalization error has another upper
bound based on attention vectors according to lemma 1 and
lemma 2:

Err(Gf ) ⩽ (1− σ)+

√
2η(ϵ)

√
1− Cφ − (1− ρ)K

M1M2
Ev1,v2∈O2s(a1, a2))

The attention vector is a representation of the importance
between samples. When we define a superclass, the repre-
sentation vector z with the same coarse label will be pulled
together by the contrastive loss. During this process, sam-
ples in the superclass will focus on the same important en-
hanced representations, thus leading to similar vectors and
declining the upper bound of generalization error.

6. Conclusion

In this study, we explore the high-level categories recog-
nition problem, i.e., superclass categorization. And a super-
class learning framework, that exploits self-attention tech-
niques cross the instances to enhance the representation, is
proposed. Thus, the distribution of superclass is modified
in the enhanced representation space and a new superclass-
aware decision boundary is then reconstructed. In theory,
the generalization error of SCLRE can be bounded by at-
tention constraints. In extensive experiments, SCLRE out-
performs the SOTA classification methods.

In the near future, we would like to tackle the superclass
problems under the scenarios without full annotation by
leveraging semi-supervised learning and active learning.
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