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Abstract

Visual dialog (VisDial) is a task of answering a sequence
of questions grounded in an image, using the dialog history
as context. Prior work has trained the dialog agents solely
on VisDial data via supervised learning or leveraged pre-
training on related vision-and-language datasets. This paper
presents a semi-supervised learning approach for visually-
grounded dialog, called Generative Self-Training (GST), to
leverage unlabeled images on the Web. Specifically, GST
first retrieves in-domain images through out-of-distribution
detection and generates synthetic dialogs regarding the im-
ages via multimodal conditional text generation. GST then
trains a dialog agent on the synthetic and the original Vis-
Dial data. As a result, GST scales the amount of training
data up to an order of magnitude that of VisDial (1.2M →
12.9M QA data). For robust training of the synthetic di-
alogs, we also propose perplexity-based data selection and
multimodal consistency regularization. Evaluation on Vis-
Dial v1.0 and v0.9 datasets shows that GST achieves new
state-of-the-art results on both datasets. We further observe
the robustness of GST against both visual and textual ad-
versarial attacks. Finally, GST yields strong performance
gains in the low-data regime. Code is available at https:
//github.com/gicheonkang/gst-visdial.

1. Introduction
Recently, there has been extensive research towards de-

veloping visually-grounded dialog systems [12, 13, 34, 36]
due to their significance in many real-world applications
(e.g., helping visually impaired person). Notably, Visual Di-
alog (VisDial) [12] has provided a testbed for studying such
systems, where a dialog agent should answer a sequence
of image-grounded questions. For instance, the agent is ex-
pected to answer open-ended questions like “What color is
it?” and “How old does she look?”. This task requires a
holistic understanding of visual information, linguistic se-
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mantics in context (e.g., it and she), and most importantly,
the grounding of these two.

Most of the previous approaches in VisDial [9, 10, 18, 20,
25, 26, 30, 31, 35, 49, 54, 55, 64, 67, 78, 84] have trained the
dialog agents solely on VisDial data via supervised learning.
More recent studies [8,53,77] have employed self-supervised
pre-trained models such as BERT [14] or ViLBERT [48]
and finetuned them on VisDial data. The models are typi-
cally pre-trained to recover masked inputs and predict the
semantic alignment between two segments. This pretrain-
then-transfer learning strategy has shown promising results
by transferring knowledge from the models pre-trained on
large-scale data sources [4, 71, 85] to VisDial.

Our research question is the following: How can the dia-
log agent expand its knowledge beyond what it can acquire
via supervised learning or self-supervised pre-training on
the provided datasets? Some recent studies have shown that
semi-supervised learning and pre-training have complemen-
tary modeling capabilities in image [86] and text classifica-
tion [16]. Inspired by them, we consider semi-supervised
learning (SSL) as a way to address the above question.

Let us assume that large amounts of unlabeled images
are available. SSL for VisDial can be applied to generate
synthetic conversations for the unlabeled images and train
the agent with the synthetic data. However, there are two
critical challenges to this approach. First, the target output
for VisDial (i.e., multi-turn visual QA data) is more complex
than that of the aforementioned studies [16,86]. Specifically,
they have addressed the classification problems, yielding
class probabilities as pseudo labels [39]. In contrast, SSL
for VisDial should generate a sequence of pseudo queries
(i.e., visual questions) and pseudo labels (i.e., corresponding
answers) in natural language to train the answering agent.
It further indicates that the target output should be generated
while considering the multimodal and sequential nature of
the visual dialog task. Next, even if SSL yields synthetic
dialogs via text generation, there may be noise, such as
generating irrelevant questions or incorrect answers to given
contexts. A robust training method is required to leverage
such noisy synthetic dialog datasets.
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In this paper, we study the above challenges in the con-
text of SSL, especially self-training [6, 16, 21, 28, 32, 39, 44,
52, 60, 65, 72, 73, 79, 80, 86], where a teacher model trained
on labeled data predicts the pseudo labels for unlabeled
data. Then, a student model jointly learns on the labeled
and the pseudo-labeled datasets. Unlike existing studies in
self-training that have mainly studied uni-modal, discrimi-
native tasks such as image classification [72, 80, 86] or text
classification [16, 32, 52], we extend the idea of self-training
to the task of multimodal conditional text generation.

To this end, we propose a new learning strategy, called
Generative Self-Training (GST), that artificially generates
multi-turn visual QA data and utilizes the synthetic data
for training. GST first trains the teacher model (answerer)
and the visual question generation model (questioner) using
VisDial data. It then retrieves a set of unlabeled images
from a Web image dataset, Conceptual 12M [7]. Next, the
questioner and the teacher generate a series of visual QA
pairs for the retrieved images. Finally, the student is trained
on the synthetic and the original VisDial data. We also pro-
pose perplexity-based data selection (PPL) and multimodal
consistency regularization (MCR) to effectively train the
student with the noisy dialog data. PPL is to selectively
utilize the answers whose perplexity of the teacher is below
a threshold. MCR encourages the student to yield consis-
tent predictions when the perturbed multimodal inputs are
given. As a result, GST successfully augments the synthetic
VisDial data (11.7M QA pairs), thus mitigating the need to
scale up the size of the human-annotated VisDial data, which
is prohibitively expensive and time-consuming.

Our key contributions are three-fold. First, we propose
Generative Self-Training (GST) that generates multi-turn
visual QA data to leverage unlabeled Web images effectively.
Second, experiments show that GST achieves new state-
of-the-art performance on VisDial v1.0 and v0.9 datasets.
We further demonstrate two important results: (1) GST is
indeed effective when the human-annotated visual dialog
data is extremely scarce (improving up to 11.09 absolute
points on NDCG), and (2) PPL and MCR are effective when
training the noisy synthetic dialog data. Third, to validate
the robustness of GST, we evaluate our proposed method
under three different visual and textual adversarial attacks,
i.e., FGSM, coreference, and random token attacks. We
observe that GST significantly improves the performance
compared with the baseline models against all adversarial
attacks, especially boosting NDCG scores from 21.60% to
45.43% in the FGSM attack [19].

2. Related work
Visual dialog. Visual Dialog (VisDial) [12] has been pro-
posed as an extended version of Visual Question Answering
(VQA) [3,4,33], where a dialog agent should answer a series
of interdependent questions using an image and the dialog

history. Prior work has developed a variety attention mecha-
nisms [18, 20, 30, 35, 49, 54, 55, 64, 67, 78] considering the
interactions among the image, dialog history, and question.
Some studies [31, 84] have attempted to discover the seman-
tic structures of the dialog in the context of graph neural
networks [63] using the soft attention mechanisms [5]. From
the learning algorithm perspective, all of them have relied on
supervised learning on VisDial data. More recently, a line of
research [8,53,77] has employed self-supervised pre-training
to leverage the knowledge of related vision-and-language
datasets [4,71,85]. However, our approach is based on semi-
supervised learning and produces the task-specific data (i.e.,
visual dialogs) for unlabeled images to train the dialog agent.

Sequence generation in vision-and-language tasks. Many
studies have generated natural language for the visual inputs
such as image captioning [3, 81], video captioning [23, 56],
visual question generation (VQG) [17, 24, 29, 37, 47, 57],
visual dialog (VisDial) [12, 18], and video dialog [2, 38].
Furthermore, recent studies [40, 82] have produced text data
for vision-and-language pre-training. GST is similar to these
studies in that the model generates the text data, but our
focus is on studying the effect of semi-supervised learning
(SSL) on top of such pre-training approaches. To the best
of our knowledge, GST is the first approach to show the
efficacy of SSL throughout a wide range of visual QA tasks.

Neural dialog generation. In NLP literature, extensive
studies have been conducted regarding neural dialogue gen-
eration for both open-domain dialogue [41,42,62,68,70,83]
and task-oriented dialogue [22, 76]. Our approach is simi-
lar to neural dialogue generation in that the model should
generate a corresponding response based on the dialog his-
tory and the current utterance. However, we aim to produce
visually-grounded dialogs, and thus the image-groundedness
of the question and the semantic correctness of the answer
are important. On the other hand, neural dialogue genera-
tion considers many different aspects: specificity, response-
relatedness [66], interestingness [50], and diversity [41].

3. Approach

3.1. Preliminaries

Self-training. We have a labeled dataset L = {(xn, yn)}Nn=1

and an unlabeled dataset U = {x̃m}Mm=1. Typically, self-
training trains a teacher model PT on the labeled dataset L.
The teacher then predicts the pseudo label ỹ for the unla-
beled data x̃ ∼ U , constructing the pseudo-labeled dataset
L̃ = {(x̃m, ỹm)}Mm=1. Finally, a student model PS is trained
on L∪ L̃. Many variants have been studied on this setup: (1)
selecting the subset of the pseudo-labeled dataset [21,72,80],
(2) adding noise to inputs [21,72,79,80,86], and (3) iterating
the above setup multiple times [21, 80].
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Figure 1. An overview of Generative Self-Training (GST).

Visual dialog. The visual dialog (VisDial) dataset [12]
contains an image v and a visually-grounded dialog d =
{ c︸︷︷︸

d0

, (q1, a
gt
1 )︸ ︷︷ ︸

d1

, · · · , (qT , agtT )︸ ︷︷ ︸
dT

} where c denotes an image

caption. T is the number of rounds for each dialog. At round
t, a dialog agent is given a triplet (v, d<t, qt) as an input, con-
sisting of the image, the dialog history, and a visual question.
d<t denotes all dialog rounds before the t-th round. The
agent is then expected to predict a ground-truth answer agtt .
There are two broad classes of methods in VisDial: genera-
tive and discriminative. Generative models aim to generate
the ground-truth answer by maximizing the log-likelihood of
agtt . In contrast, discriminative models are trained to retrieve
the ground-truth answer from a list of answer candidates agtt
∈
{
a1t , · · · , a100t

}
. Our main focus is the generative models

since they do not need pre-defined answer candidates and are
thus more practical to be deployed in real-world applications.

3.2. Generative Self-Training (GST)

This subsection describes our approach, called GST,
which generates multi-turn visual QA data and utilizes
the generated data for training. An overview of GST is
shown in Figure 1. We have a human-labeled VisDial
dataset L = {(vn, dn)}Nn=1 where vn is a given image, and
each dialog dn = { cn︸︷︷︸

dn,0

, (qn,1, a
gt
n,1)︸ ︷︷ ︸

dn,1

, · · · , (qn,T , agtn,T )︸ ︷︷ ︸
dn,T

}

consists of an image caption c and T rounds of QA
pairs. In the following, we omit the superscript gt in the
ground-truth answer for brevity. GST first trains a teacher
PT and a questioner PQ with the labeled dataset L via
supervised learning. It then retrieves unlabeled images
U = {ṽm}Mm=1 from the Conceptual 12M dataset [7] using

a simple outlier detection model, the multivariate normal
distribution. Next, the questioner and the teacher generate
the visually-grounded dialog d̃ for the unlabeled image ṽ
via multimodal conditional text generation, finally yielding
a synthetic dialog dataset L̃ = {(ṽm, d̃m)}Mm=1. We call
this dataset the silver VisDial data to distinguish it from
the human-labeled VisDial dataset [12] (short for the gold
VisDial data). Finally, a student PS is trained on a combina-
tion of the gold and the silver VisDial data while applying
perplexity-based data selection (PPL) and multimodal
consistency regularization (MCR) to the silver VisDial data.
We describe the details of each process in the following parts.

Teacher & questioner training. First, a series of question-
and-answer pairs for the unlabeled images should be gen-
erated to train the answering agent. Accordingly, GST first
trains the answer generator, the teacher model PT , on the
gold VisDial dataset. Specifically, the teacher learns to
generate the ground-truth answer’s word sequence at =
(wt,1, · · · , wt,S), given the context triplet ct ≜ (v, d<t, qt),
consisting of the image, the dialog history, and the question.
It is optimized by minimizing the negative log-likelihood of
the ground-truth answer. Formally,

LT = − 1

NT

N∑
n=1

T∑
t=1

logPT (an,t|cn,t)

= − 1

NTS

N∑
n=1

T∑
t=1

S∑
s=1

logPT (ws|cn,t, w<s)

(1)

where N , T , and S denote the number of data tuples in gold
VisDial data, dialog rounds, and the sequence length of the
ground-truth answer, respectively. w<s indicates all word
tokens before the s-th token in the answer sequence. Similar
to the teacher, the questioner is trained to generate the
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question at round t, given the image and the dialog history
until round t − 1 (i.e., PQ(qt|v, d<t)). The questioner is
also optimized by minimizing the negative log-likelihood
of the follow-up question. Note that the teacher and
the questioner are trained separately to prevent possible
unintended co-adaptation [34]. Both the teacher and the
questioner are based on encoder-decoder architecture, where
an encoder aggregates the context triplet, and a decoder
generates the target sentence. We implement the models
by integrating a pre-trained vision-and-language encoder,
ViLBERT [48], with the transformer decoder [61]. We refer
readers to Appendix A for a detailed architecture.

Unlabeled in-domain image retrieval (IIR). Inspired by
the work [16] that highlighted the importance of using
in-domain data, GST retrieves in-domain image data from
the Conceptual 12M dataset [7] with an out-of-distribution
(OOD) detection model. Specifically, we extract the D
dimensional feature vector for each image in the gold
VisDial dataset by using the Vision Transformer (ViT) [15]
in the CLIP model [58], yielding a feature matrix for the
entire images X = (X1, · · · , XN )⊤ ∈ RN×D. Based on
the matrix, we build the multivariate normal distribution
whose dimension is D, i.e., X ∼ ND(µ,Σ). We regard this
normal distribution as the empirical distribution of the gold
VisDial images and perform OOD detection by identifying
the probability of each feature vector for the unlabeled
image. Consequently, the top-M unlabeled images are
retrieved out of 12 million Web images (M ≈ 3.6 million).

Visually-grounded dialog generation. This step mimics a
scenario where two people have a conversation about the
given images. Given the retrieved images U = {ṽm}Mm=1,
our goal is to generate the visually-grounded dialogs
{d̃m}Mm=1 where each dialog d̃ consists of the image caption
and T rounds of QA pairs. In an actual implementation, we
use the image captions in the Conceptual 12M dataset [7]
and thus do not generate the captions. The QA pairs are
sequentially generated. Concretely, the image ṽ, the caption
c̃, and the generated QA pairs until round t− 1 are used as
inputs when the questioner generates the question at round t
(i.e., q̃t). After then, the teacher produces the corresponding
answer ãt based on the image ṽ, the dialog history d̃<t, and
the question q̃t. Finally, GST produces the silver VisDial
dataset L̃ = {(ṽm, d̃m)}Mm=1.

Student training with noisy data. In Figure 1, the student
PS is trained on the combination of the silver and the gold
VisDial data. According to many studies [21, 72, 80, 86] in
self-training, selectively utilizing the samples in the pseudo-
labeled dataset is a common approach since the confidence
of the teacher model’s predictions varies from sample to
sample. To this end, we introduce a simple yet effective

data selection method for the sequence generation problem,
perplexity-based data selection (PPL). PPL is to utilize the
answers whose perplexity of the teacher is below a certain
threshold. Perplexity is defined as the exponentiated aver-
age negative log-likelihood of a sequence; the lower, the
better. We hypothesize that PPL, albeit noisy, can be an
indicator of whether the generated answer is correct or not,
as in [69]. Furthermore, inspired by the consistency regu-
larization [72, 79] widely utilized in recent SSL algorithms,
we also propose the multimodal consistency regularization
(MCR) to improve the generalization capability of the stu-
dent. MCR encourages the student to yield predictions sim-
ilar to the teacher’s predictions even when the student is
provided with perturbed multimodal inputs. Finally, we
design a loss function for the student as:

LS =

− 1

MT

M∑
m=1

T∑
t=1

1(PPL(ãm,t) < τ)logPS(ãm,t|M(c̃m,t))︸ ︷︷ ︸
MCR

− 1

NT

N∑
n=1

T∑
t=1

logPS(an,t|cn,t)

where PPL(ãt) = exp

{
− 1

S

S∑
s=1

logPT (w̃s|c̃t, w̃<s)

}
(2)

where M , 1, and τ denote the number of data tuples in sil-
ver VisDial data, indicator function, and selection threshold,
respectively. c̃m,t ≜ (ṽm, d̃m,<t, q̃m,t) denotes the context
for the silver VisDial data. The loss function is the sum of
the losses for the silver and the gold VisDial data. PPL and
MCR are applied to compute the loss of the silver VisDial
data. PPL is used in the indicator function above, select-
ing the synthetic answers whose perplexity of the teacher
is below the threshold τ . It implies that the unselected an-
swers are ignored during training. The teacher’s perplexity
of each answer is computed in the dialog generation step
above. Next, M denotes the stochastic function for MCR
that injects perturbations to the input space of the student.
Inspired by ViLBERT [48], we implement the stochastic
function by randomly masking 15% of image regions and
word tokens. Specifically, masked image regions have their
image features zeroed out, and the masked word tokens are
replaced with a special [MASK] token. The intuition behind
MCR is minimizing the distance between the perturbed (i.e.,
masked) predictions from the student and the unperturbed
predictions (i.e., ãm,t) from the teacher. It indicates that
the perturbation is not injected when the teacher generates
the synthetic answers. We believe MCR makes the student
robust to the input noise, and PPL encourages the student to
maintain a low entropy (i.e., confident) in noisy data training.
The student and the teacher have the same model capacity
and are based on the same model architecture.
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4. Experiments
4.1. Experimental setup

VisDial datasets. We evaluate our proposed approach on
the VisDial v1.0 and v0.9 datasets [12], collected by the
AMT chatting between two workers about MS-COCO [46]
images. Each dialog consists of a caption from COCO
and a sequence of ten QA pairs. The VisDial v0.9 dataset
has 83k dialogs on COCO-train and 40k dialogs on
COCO-validation images. More recently, Das et al. [12]
released additional 10k dialogs on Flickr images to use them
as validation and test splits for the VisDial v1.0 dataset. As
a result, the VisDial v1.0 dataset contains 123k, 2k, and
8k dialogs as train, validation, and test split. This dataset
is licensed under a Creative Commons Attribution 4.0
International License.

Evaluation protocol. We follow the standard evaluation
protocol established in the work [12] for evaluating visual
dialog models. The visual dialog models for both generative
and discriminative tasks have been evaluated by the retrieval-
based evaluation metrics: mean reciprocal rank (MRR),
recall@k (R@k), mean rank (Mean), and normalized
discounted cumulative gain (NDCG). Specifically, all
dialogs in VisDial contain a list of 100 answer candidates
for each visual question, and there is one ground-truth
answer in the answer candidates. The model sorts the
answer candidates by the log-likelihood scores and then is
evaluated by the four different metrics. MRR, R@k, and
Mean consider the rank of the single ground-truth answer,
while NDCG1 considers all relevant answers from the
100-answers list by using the densely annotated relevance
scores for all answer candidates. The community regards
NDCG as the primary evaluation metric.

The size of synthetic data. The size of the silver VisDial
data (i.e., M ) is 3.6M which is 30x larger than that of the
gold VisDial data (N = 0.12M). Note that the silver VisDial
data contains approximately 36M QA pairs since each
dialog contains 10 QA pairs. 11.7M QA pairs out of 36M
(∼32%) are actually utilized after applying perplexity-based
data selection when we set the selection threshold τ to 50.
Consequently, the total amount of the training data is nearly
12.9M QA pairs, combining the silver data (11.7M QA
pairs) with the original gold data (1.2M QA pairs).

Iterative training. We introduce the concept of iterative
training [21, 80], which iterates the self-training algorithm
a few times. The iterative training treats the student model
at i-th iteration as a teacher model at (i+1)-th iteration to
generate a new synthetic silver data and train a new student.
Specifically, the iterative training repeats the third and fourth

1https://visualdialog.org/challenge/2019#evaluation

steps in Figure 1, where the silver VisDial data accumulates
as the iteration proceeds. The student model at each itera-
tion is trained with the accumulated silver and gold data by
following the previous studies [21, 80]. We iterate GST up
to three times. Unless stated otherwise, the student model is
trained with three iterations.

4.2. Visual dialog results

Comparison with state-of-the-art. We compare GST
with the state-of-the-art approaches on the validation set of
the VisDial v1.0 and v0.9 datasets, consisting of UTC [8],
MITVG [9], VD-BERT [77], LTMI [54], KBGN [25],
DAM [26], ReDAN [18], DMRM [10], Primary [20],
RvA [55], CorefNMN [35], CoAtt [78], HCIAE [49], and
MN [12]. We decided to use the validation splits since all
previous studies benchmarked the models on those splits.
In Table 1, GST significantly outperforms all compared
methods on all evaluation metrics. Compared with the
state-of-the-art model, the student model improves MRR
3.20% (56.83 → 60.03) and R@1 3.26% (47.14 → 50.40)
on the VisDial v0.9 dataset. The improvement is consistently
observed on the VisDial v1.0 dataset, boosting NDCG
1.61% (63.86 → 65.47) and MRR 0.97% (52.22 → 53.19).
Moreover, it is noticeable that recent strong models (i.e.,
UTC, MITVG, and VD-BERT) are also built based on the
pre-trained weights of ViLBERT [48], transformer [75],
and BERT [14], respectively. Our proposed method also
achieves new state-of-the-art results on the discriminative
VisDial models. Details can be found in Appendix B.

GST in the low-data regime. Is GST also helpful when gold
data is scarce? We investigate this question to identify the
effect of GST in the low-data regime. We assume that only a
small subset of the gold VisDial data (1%, 5%, 10%, 20%,
and 30%) is available. Therefore, the size of the gold data
is 0.01N , 0.05N , 0.1N , 0.2N , and 0.3N , respectively. We
first train the teacher and the questioner on such scarce data,
and then these two agents generate a new silver VisDial data
for unlabeled images in the Conceptual 12M dataset [7] with
size 5N . The student is then trained on the newly generated
silver VisDial data and the small amount of the gold VisDial
data. The student is based on a single iterative training, and
PPL and MCR are still applied in this experiment. In Table 2,
GST yields huge improvements on both metrics, especially
NDCG, boosting up to 11.09 absolute points compared with
the teacher. We observe that the smaller the amount of gold
data, the larger the performance gap between the teacher
and the student on NDCG. It implies that GST is helpful,
especially when gold data is scarce. We speculate the results
in the low-data regime are particularly remarkable in other
dialog-based tasks [2, 45, 59, 74] since they are based on
relatively small-scaled datasets, and scaling up the size of
the human-dialog datasets is laborious and expensive.
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VisDial v0.9 (val) VisDial v1.0 (val)

Model MRR↑ R@1↑ R@5↑ R@10↑ Mean↓ NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
MN† [12] 52.59 42.29 62.85 68.88 17.06 51.86 47.99 38.18 57.54 64.32 18.60
HCIAE† [49] 53.86 44.06 63.55 69.24 16.01 59.70 49.07 39.72 58.23 64.73 18.43
CoAtt† [78] 55.78 46.10 65.69 71.74 14.43 59.24 49.64 40.09 59.37 65.92 17.86
CorefNMN [35] 53.50 43.66 63.54 69.93 15.69 - - - - - -
RvA [55] 55.43 45.37 65.27 72.97 10.71 - - - - - -
Primary [20] - - - - - - 49.01 38.54 59.82 66.94 16.60
DMRM [10] 55.96 46.20 66.02 72.43 13.15 - 50.16 40.15 60.02 67.21 15.19
ReDAN [18] - - - - - 60.47 50.02 40.27 59.93 66.78 17.40
DAM [26] - - - - - 60.93 50.51 40.53 60.84 67.94 16.65
KBGN [25] - - - - - 60.42 50.05 40.40 60.11 66.82 17.54
LTMI [54] - - - - - 63.58 50.74 40.44 61.61 69.71 14.93
VD-BERT [77] 55.95 46.83 65.43 72.05 13.18 - - - - - -
MITVG [9] 56.83 47.14 67.19 73.72 11.95 61.47 51.14 41.03 61.25 68.49 14.37
UTC [8] - - - - - 63.86 52.22 42.56 62.40 69.51 15.67

Student (ours) 60.03±.18 50.40±.15 70.74±.09 77.15±.13 12.13±.18 65.47±.14 53.19±.11 43.08±.10 64.09±.05 71.51±.13 14.34±.15

Table 1. Comparison with the state-of-the-art generative models on both VisDial v0.9 and v1.0 validation datasets. ↑ indicates higher is
better. ↓ indicates lower is better. NDCG is not supported in v0.9 dataset. † denotes that the models are re-implemented by the previous
work [18]. The standard deviations of our proposed models are reported ± with three different initialized models.

NDCG

Model 1% 5% 10% 20% 30%

Teacher 27.64 50.04 54.46 57.14 60.67

Student 38.73
(+11.09)

56.60
(+6.56)

58.62
(+4.16)

60.92
(+3.78)

63.09
(+2.42)

Table 2. Results of GST in the low-data regime. We report NDCG
scores based on the VisDial v1.0 validation split. We assume a
small subset of the gold VisDial data (∼30%) is available.

Question type analysis. We conduct a question-type anal-
ysis to identify what type of questions obtain benefits from
GST. We divided the question type into six categories,
Yes/No, Color, Objects, Counting, Time/Place, and Others.
In Table 3, the student model obtains more gains compared
with the teacher model in less frequent question types (e.g.,
Counting and Time / Place).

4.3. Adversarial robustness results

We introduce a comprehensive evaluation setup for
adversarial robustness in VisDial. Specifically, we propose
three different adversarial attacks: (1) the FGSM attack, (2)
a coreference attack, and (3) a random token attack. The
FGSM attack perturbs input visual features, and the others
attack the dialog history (i.e., textual inputs).

Baselines. We compare our student model against two ab-
lative baselines: (1) the teacher model and (2) the student
model utilizing the entire CC12M images without applying
the in-domain image retrieval (i.e., student-iter1-full). We
propose the student-iter1-full model to study the effect of
the discarded images and the corresponding synthetic dialog
data on adversarial robustness.

Model
Question Type

Yes / No Color Objects Counting Time / Place Others
(60.4%) (14.8%) (5.1%) (3.1%) (8.5%) (9.0%)

Teacher 66.87 60.61 53.67 49.44 69.36 61.32

Student 67.41
(+0.54)

61.85
(+1.24)

55.25
(+1.58)

51.76
(+2.32)

71.38
(+2.02)

63.02
(+1.70)

Table 3. Question type analysis on the VisDial v1.0 validation split.
The percentage denotes the data proportion of each category.

Adversarial robustness against the FGSM attack. The
Fast Gradient Signed Method (FGSM) [19] is a white-box
attack that perturbs the visual inputs based on the gradients
of the loss with respect to the visual inputs. Formally,

FGSM(x) = x+ ϵ · sign(∇xL(x, y)) (3)

where x and y denote the visual inputs and the corresponding
ground-truth labels, respectively. ϵ is a hyperparameter that
adjusts the intensity of perturbations. However, different
from the above setup, each question in VisDial can have one
or more relevant answers in the list of answer candidates.
We thus define the FGSM attack for VisDial as follows:

FGSM(v) = v + ϵ · sign(
C∑

c=1

r(at,c) · ∇vL(ct, at,c)) (4)

where C = 100 and r(·) denote the number of answer can-
didates and a function that returns the human-annotated rel-
evance scores for each answer candidate, respectively. The
relevance scores range from 0 to 1. ct and at,c are the context
triplet (i.e., ct ≜ (v, d<t, qt)) and the c-th answer candidate,
respectively. The Equation 4 indicates that the gradients of
the loss for all relevant answers are considered for the FGSM
attack.
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Model No Attack Coreference Attack Random Token Attack

10% 20% 30% 40%

Teacher 56.55 52.60 54.69±1.12 52.86±0.79 49.41±2.09 45.04±2.28

Student (iter1, full) 58.53 54.26 56.59±1.37 54.55±1.15 50.98±2.06 46.56±1.96

Student (iter1) 58.63 54.34 55.59±0.88 54.26±1.54 51.04±2.39 47.04±2.03

Student (iter2) 56.92 52.69 55.59±0.88 53.57±1.40 49.95±1.91 46.82±2.02

Student (iter3) 59.30 55.44 57.25±0.91 55.10±1.50 52.11±2.75 48.00±2.90

Table 4. Adversarial robustness results against the attacks on the dialog history. We apply two different dialog history attacks: a coreference
attack and a random token attack. The models are evaluated on the VisDialConv dataset [1] with the NDCG metric. The standard deviations
are reported ± with five different random seeds.

Figure 2. Adversarial robustness against FGSM attack on VisDial
v1.0 validation split. We report NDCG scores of each model.

As shown in Figure 2, we validate the models with four
different epsilon values ϵ ∈ {0.01, 0.02, 0.05, 0.1}. The
student model shows very significant improvements in
NDCG compared with the teacher model. Specifically, the
performance gap between the student model with three
iterations (i.e., student-iter3) and the teacher model widens
up to 23.83 absolute points (21.60 → 45.43) when ϵ is 0.1.
It illustrates that GST makes the visual dialog model robust
against the FGSM attack even though the student model
is not optimized for adversarial robustness. Furthermore,
we can clearly identify the efficacy of the iterative training
as the intensity of the perturbations increases. The NDCG
scores are boosted from 37.82% (iter1) to 45.43% (iter3)
at ϵ = 0.1. Finally, the student-iter1 model shows better
performance than the student-iter1-full model. It implies
that the additional use of the discarded images along with the
synthetic dialog does not bring any gains in the FGSM attack.

Adversarial robustness against the textual attacks. We
also study the adversarial robustness against textual attacks
to illustrate the effect of GST. We decide to perturb the dialog
history because it contains useful information to answer the

given question (e.g., cues for pronoun). However, according
to recent studies [1, 31] in VisDial, not all questions require
the dialog history to respond with the correct answers. So the
work [1] has proposed a challenging subset of the VisDial
validation dataset called VisDialConv. The VisDialConv
dataset only contains questions that necessarily require the
dialog history to answer (e.g., can you tell what it is for?).
The crowd-workers conducted a manual inspection to select
such context-dependent questions.

Based on the VisDialConv dataset, we apply two different
black-box attacks. First, we propose the coreference attack,
which substitutes the noun phrases or pronouns in the dia-
log history with their synonyms to fool the VisDial models.
Specifically, we leverage the off-the-shelf neural coreference
resolution tool2 and find words in the dialog history that refer
to objects such as those mentioned in a given question. We
also borrow the counter-fitting word embeddings [51] similar
to textfooler [27] to retrieve the synonyms. We greedily sub-
stitute the words with the synonyms with a minimum cosine
distance in the embedding space since we observe that the
other synonyms harm the original semantics of the dialog
history. In Table 4, the student-iter3 model outperforms the
teacher model on NDCG by a large margin (2.84%, 52.60
→ 55.44) in the coreference attack. Furthermore, we do
not see any merit in utilizing the entire CC12M [7] images
and the corresponding synthetic dialog data, comparing the
student-iter1-full with the student-iter1.

The random token attack randomly replaces the word or
sub-word tokens in the dialog history with a special [MASK]
token. The pre-trained BERTBASE model [14] then recovers
the masked tokens with masked language modeling (MLM)
similar to BERT-ATTACK [43]. Finally, the perturbed dialog
history is fed into the visual dialog models. We conduct this
experiment by adjusting the probability of random masking
up to 40%. As shown in Table 4, we evaluate each model
with five random seeds and report the arithmetic mean and
the standard deviations. The results demonstrate that GST is
relatively robust against the random token attack compared
with the baseline models.

2https://github.com/huggingface/neuralcoref based on the work [11].

6752



Figure 3. A visualization of the gold and the silver data on VisDial v1.0 validation split.

4.4. Analysis of the silver VisDial data

Comparison between silver and gold data. For qualitative
analysis of the silver data, we visualize the generated
conversations from our proposed models and the ones from
humans. We excerpt the human conversation from the
VisDial v1.0 validation dataset, and the questioner and the
student generate the machine conversation using the image
and the caption in the validation data. As shown in Figure 3,
diverse visual questions are generated in the silver VisDial
data. For example, in D10 of the last example, the questioner
asks about “a car” not mentioned by the human questioner
and not even presented in the image caption. The student
responds correctly to the question. Likewise, from D3 to D6
in the first example, the questioner deals with “a cell phone,”
whereas the human questioner deals with different topics.
However, we identify that the student sometimes fails to
generate correct answers (i.e., the red-colored text), showing
the importance of more precise visual grounding.

The diversity of silver questions. We further quantify the
generated question’s diversity by comparing the gold ques-
tions with the silver ones for the same images in the VisDial
v1.0 validation dataset. We extract N-grams for every ten
questions (i.e., per image) in the gold and silver data and
compare the N-grams between the two. We define the ques-
tion diversity as the percentage of unique silver N-grams
not observed in the gold N-grams. We identify the ques-
tion diversity by adjusting N from one to four. We generate
three silver datasets and report the mean and standard devia-
tions of the question diversity since the questioner performs
stochastic decoding (see Appendix D). In Table 5, the diver-
sity significantly increases as N increases (92.80% at N=4).
It indicates that the questioner mainly generates different
and distinctive 4-grams compared with the human questioner.
Furthermore, as shown in No Match at Table 5, the ques-

Model N-gram Diversity No Match
N=1 N=2 N=3 N=4

Questioner 28.06
±0.14

56.46
±0.09

76.98
±0.08

92.80
±0.08

95.38
±0.15

Table 5. The N-gram diversity of the generated questions on the Vis-
Dial v1.0 validation images. The standard deviations are reported
± with three silver datasets. No match denotes the percentage of
silver questions that do not precisely match the gold questions.

tioner rarely generates the same questions that belong to gold
questions. We analyze the answer diversity in Appendix C.

4.5. Ablation study

The results of an ablation study are in Appendix B.2.

5. Conclusion
We propose a semi-supervised learning approach for Vis-

Dial, called GST, that generates a synthetic visual dialog
dataset for unlabeled Web images via multimodal condi-
tional text generation. GST achieves the new state-of-the-art
performance on the VisDial v1.0 and v0.9 datasets. More-
over, we demonstrate the efficacy of GST in low-data regime
and adversarial robustness analysis. Finally, GST produces
diverse dialogs compared with the human dialog. We believe
the idea of GST is generally applicable to other multimodal
generative domains and expect GST to open the door to
leveraging unlabeled images in many visual QA tasks.
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