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Abstract

We propose a text-to-image generation algorithm based
on deep neural networks when text captions for images are
unavailable during training. In this work, instead of simply
generating pseudo-ground-truth sentences of training im-
ages using existing image captioning methods, we employ a
pretrained CLIP model, which is capable of properly align-
ing embeddings of images and corresponding texts in a joint
space and, consequently, works well on zero-shot recogni-
tion tasks. We optimize a text-to-image generation model
by maximizing the data log-likelihood conditioned on pairs
of image-text CLIP embeddings. To better align data in the
two domains, we employ a principled way based on a varia-
tional inference, which efficiently estimates an approximate
posterior of the hidden text embedding given an image and
its CLIP feature. Experimental results validate that the pro-
posed framework outperforms existing approaches by large
margins under unsupervised and semi-supervised text-to-
image generation settings.

1. Introduction

Recent advances in text-to-image (T2I) generation tech-
niques [6, 8, 17, 18, 21, 26–29, 36] have shown promising
results by employing generative adversarial networks [9],
autoregressive models [33], or diffusion models [11, 32] to
synthesize images based on their text captions. However,
these approaches require a paired dataset that consists of
images and their corresponding text captions, and, conse-
quently, incur significant annotation costs, especially for la-
beling image captions. To alleviate this limitation, unsu-
pervised learning methods for T2I generation have recently
drawn attention to the computer vision community, where
the models learn to generate images without paired text cap-
tions.

Existing T2I models [1, 2, 34, 38] based on unsupervised
learning exploit Contrastive Language-Image Pretraining
(CLIP) [25] to sidestep the absence of text captions dur-
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ing training. Specifically, after a text embedding is esti-
mated using a given image embedding, the T2I model is
trained to synthesize an image conditioned on the estimated
text embedding. However, although image and text embed-
dings extracted by CLIP are not accurately aligned, exist-
ing approaches assume that the distinction is ignorable [34]
or simple to recover by just adding Gaussian noises [38]
without considering the underlying structure of text embed-
dings. Thus, those algorithms may suffer from large dis-
crepancies between true and estimated text embeddings at
both training and testing.

To tackle the challenge, we propose a variational distri-
bution learning technique for unsupervised T2I generation,
where the lower-bound of the data log-likelihood is maxi-
mized in a principled way. Specifically, we first regard a text
embedding as a hidden random variable while an image and
its CLIP embedding are observable random variables. Then,
we decompose the variational lower-bound into three parts:
1) the similarity between the text embedding prior and pos-
terior, 2) the log-likelihood of the image embedding given
the text embedding, 3) the log-likelihood of the image given
the image and text embeddings in the trained T2I model.
Since the lower-bound formulation enforces the matching
between the prior and posterior distributions of text embed-
ding, our method achieves a more accurate estimation of the
embedding and reduces the discrepancy between the true
and estimated embeddings.

For the optimization of the variational objective, we em-
ploy a two-stage training strategy for T2I models. In the first
stage, we learn an encode-decoder architecture that takes
the image embedding as an input and the estimated text em-
bedding as a latent bottleneck. Then, our network estimates
two conditional distributions of CLIP embeddings, one for
the variational distribution of the text embedding given the
image embedding and the other for the model distribution of
the image embedding given the text embedding. The param-
eters of the two distributions are obtained from the first two
terms in the variational lower-bound objective. Note that
we relax the Kullback-Leibler (KL) divergence term in the
training objective of the first stage to an adversarial train-
ing loss, specifically, the Jensen-Shannon divergence. Since
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the KL divergence is only tractable for a confined family of
distributions, this relaxation allows more flexible choices
for the conditional and the prior distributions. In the sec-
ond stage, a T2I model learns the conditional distribution of
the images given the estimated text embeddings and the im-
age features. Altogether, the proposed method achieves out-
standing performance on widely adopted datasets [19, 31].
The main contributions of our work are summarized below:

• We propose a principled approach for unsupervised
and semi-supervised text-to-image generation tasks
based on a variational inference technique.

• We theoretically show that our method considers the
underlying structure of text embeddings, which can
eventually lead to better generalization performance.

• We empirically confirm that the proposed algorithm
outperforms the existing methods by large margins.

The rest of our paper is organized as follows. Section 2
overviews the related work about unsupervised training
methods in text-to-image generation. Section 3 describes
the main idea of our approach while Sections 4 and 5 dis-
cuss the procedures of the first and second training stages,
respectively. The experimental results are presented in Sec-
tion 6, and we finally conclude this paper in Section 7.

2. Related Work
Text-to-image generative models have shown astonish-

ing performance via learning with large-scale datasets com-
posed of image-text pairs. Existing algorithms often rep-
resent each image with a sequence of discrete tokens and
learn autoregressive [6, 8, 17, 27, 35] or bidirectional [18]
transformers to generate high-resolution images given text
inputs. Recently, the introduction of diffusion models [5,
11–13] has paved the way to learn large-scale T2I models
and generate high-quality images conditioned on text.

For training T2I models without captions describing im-
ages, previous approaches [1, 34, 38] typically exploit the
pretrained CLIP [25] to approximate missing text captions.
Specifically, CLIP-GEN [34] assumes that a CLIP image
embedding is perfectly aligned with the corresponding text
embedding, and utilizes the image embedding as a proxy of
its text embedding for T2I generation. On the other hand,
LAFITE [38] adds a Gaussian random noise to the image
embedding for estimating the unknown true text embed-
ding. However, these algorithms fail to consider the un-
derlying structure of the text embeddings, which eventu-
ally results in the imprecise approximation of text embed-
ding. Retrieval-based approaches [1, 2] employ image fea-
tures similar to CLIP-GEN [34] for text conditions while k-
nearest image embeddings are additionally utilized for the
construction of the conditions; note that these approaches

(a) Training (b) Inference

Figure 1. Probabilistic graphical models of the proposed method,
where shaded nodes represent observable random variables while
unshaded nodes represent hidden random variables.

are orthogonal to our method and can be combined with
the proposed method to further enhance generation perfor-
mance.

On the other hand, we propose a principled framework
relying on a variational inference to effectively reduce the
discrepancy between the true embedding employed during
inference and the approximated one drawn by the varia-
tional distribution used for training.

3. Main Framework
This section presents the existing unsupervised training

approaches for T2I models. Then, we formulate our vari-
ational inference framework for unsupervised training that
effectively reduces the discrepancy between true and esti-
mated text embeddings. Figure 1 illustrates the graphical
model of the data generating process in our approach.

3.1. Unsupervised Training of T2I Models

Unsupervised training of T2I models learns to generate
images without textual annotations while the model gener-
ates high-quality images based on given captions at infer-
ence time. Conventional supervised training of T2I models
exploits both an image, ximg, and its textual caption, xtxt, to
estimate a conditional distribution p(ximg|xtxt). However,
unsupervised training assumes that the text condition xtxt is
unavailable during training. Existing approaches estimate a
latent text representation ztxt and formulate the T2I model
as a task to derive the conditional distribution p(ximg|ztxt).
In other words, an encoder E(·) approximates the text con-
dition, i.e., ẑtxt = E(ximg), during training and ẑtxt is re-
placed with a representation of a given text sentence xtxt at
inference time.

The previous studies commonly incorporate the pre-
trained CLIP model [25], which consists of two separated
encoders for images fimg(·) and texts ftxt(·). The vision-
language model is learned to make a pair of image and
text embeddings, denoted respectively by fimg(ximg) and
ftxt(xtxt), have a high cosine similarity. CLIP-GEN [34] and
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retrieval-based models [1,2] approximate the text condition
using the CLIP image embedding, ẑtxt ≈ fimg(ximg), during
training. Since the two embeddings are not exactly aligned,
LAFITE [38] additionally adds a perturbation to the CLIP
image embedding and approximates the text condition ztxt
as

ẑtxt ≈ Normalize(fimg(ximg) + ξ∥fimg(ximg)∥ϵ/∥ϵ∥), (1)

where ∥ · ∥ and Normalize(·) are the Euclidean norm and an
operator to divide the input by its magnitude while ξ is a hy-
perparameter and ϵ is a random noise drawn from the Gaus-
sian distribution, N (0, I). Although the previous methods
are proposed to approximate the absent text condition, we
observe that they are insufficient to reduce the gap between
the training and the inference environments of T2I models.

3.2. Variational Inference for Training T2I Models

We aim to formulate a variational inference framework
for unsupervised training of T2I models to reduce the dis-
crepancy between training and inference while improving
the performance of T2I models. Given CLIP image and text
embeddings, zimg = fimg(ximg) and ztxt = ftxt(xtxt), our
T2I generation model is defined as

pθximg (ximg|zimg, ztxt), (2)

where θximg is a set of parameters in the T2I model. Note
that the text representation ztxt is unavailable during train-
ing while the image embedding zimg is absent for inference
as illustrated in Figure 1. Thus, the challenges lie in the
precise approximation of the text embedding ẑtxt based on
zimg during training while approximating ẑimg given ztxt at
inference.

Our approach naturally maximizes the marginal log-
likelihood log pθ(ximg) with respect to θ, a set of parameters
of our data generating process, without the observation of
the text embedding ztxt during training. The log-likelihood
log pθ(ximg) is computed by marginalizing out ztxt as

log pθ(ximg) = log pθ(ximg, zimg)

= log

∫
pθ(ximg, zimg, ztxt)dztxt. (3)

Unfortunately, it is intractable to compute the marginal
log-likelihood either directly or through the estimation of
the posterior, pθ(ztxt|ximg, zimg). Hence, we employ a
variational inference technique that approximates the true
posterior pθ(ztxt|ximg, zimg) using a variational distribution
qϕztxt (ztxt|zimg) parametrized by ϕztxt under the assumption
of qϕztxt (ztxt|ximg, zimg) = qϕztxt (ztxt|zimg).

To learn the true posterior distribution via the variational
posterior, we equivalently maximize the lower bound on the

log-likelihood, which is given by

log pθ(ximg, zimg)

≥ Eqϕztxt (ztxt|zimg)

[
log

pθ(ximg, zimg, ztxt)

qϕztxt (ztxt|zimg)

]
, (4)

where the lower bound in (4) is defined as LELBO. We
achieve the tight lower bound when the variational distri-
bution is exactly same as the true posterior.

ELBO By factorizing pθ(ximg, zimg, ztxt) into the prod-
uct of pθximg (ximg|zimg, ztxt), pθzimg (zimg|ztxt), and p(ztxt) ac-
cording to the probabilistic graphical model in Figure 1,
LELBO is decomposed as follows:

LELBO = −DKL(qϕztxt (ztxt|zimg)||p(ztxt))

+ Eqϕztxt (ztxt|zimg)[log pθzimg (zimg|ztxt)]

+ Eqϕztxt (ztxt|zimg)[log pθximg (ximg|zimg, ztxt)]. (5)

We reformulate our task as the maximization of LELBO,
which involves the optimization of the T2I model in (2) un-
der the unsupervised setting. Specifically, the maximiza-
tion of the first term in (5) encourages the estimated sam-
ple ẑtxt drawn from qϕztxt (ztxt|zimg) to lie on the structure
of ztxt by minimizing the KL divergence. Also, the sec-
ond term learns pθzimg (zimg|ztxt) to reconstruct zimg based on
the given ztxt from qϕztxt (ztxt|zimg), where pθzimg (zimg|ztxt)
is employed to estimate zimg in (2) at inference. Finally,
the third term implies training T2I models without text cap-
tions, where qϕztxt (ztxt|zimg) estimates the absent text em-
bedding ztxt based on zimg. The details about how to opti-
mize the model parameters are discussed in the next section.

To maximize LELBO of (5) in practice, we employ the
following two-stage optimization procedure:

1. Fix {θximg} and optimize θzimg and ϕztxt .
With the parameter {θximg} fixed, maximize the objec-
tive in (5) with respect to θzimg and ϕztxt .

2. Fix {θzimg , ϕztxt} and optimize θximg .
With the parameters {θzimg , ϕztxt} fixed, maximize the
objective in (5) with respect to θximg .

In other words, we first train the generative and variational
parameters to approximate zimg and ztxt, and then train a
T2I model under the unsupervised setting. We present the
detailed description of the first and second stages in Sec-
tion 4 and 5, respectively.

4. Variational Distribution Learning
This section describes the first stage of our algorithm

based on variational distribution learning (VDL). VDL ap-
proximates the posterior of text features given image em-
beddings, qϕztxt (ztxt|zimg), via an adversarial training and
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reconstructs the image embeddings given the text features
using pθzimg (zimg|ztxt).

4.1. Sampling

We first discuss the sampling procedure in VDL that in-
volves the sampling of ẑtxt for training to estimate the text
embeddings and the sampling of ẑimg for inference to obtain
the image embeddings. Also, we describe the sampling pro-
cess of the text prior z′txt, which is only required for training.

4.1.1 Generating Samples for Text Embedding

Let G(·) with parameters of ϕztxt be an encoder imple-
mented with a multilayer perceptron, Using the encoder,
we draw a sample ẑtxt from an implicitly defined variational
distribution qϕztxt (ztxt|zimg) as follows:

ẑtxt ∼ SVDL(zimg, G, r)

:= Normalize
(
zimg + r ·

G(zimg)

∥G(zimg)∥

)
, (6)

where SVDL(·, ·, ·) denotes our sampling strategy and r ≥ 0
is a hyperparameter. The following proposition validates
the high cosine similarity between the estimated text sam-
ple ẑtxt and the image feature zimg that has a similar repre-
sentation with the unknown text embedding ztxt.

Proposition 1. Let ẑtxt be a sample obtained by the pro-
posed sampling strategy SVDL defined in (6) based on zimg.
Then, the following inequality always holds for G(·;ϕztxt)
with arbitrary values of its parameter ϕztxt :

ẑTtxtzimg ≥
√
1− r2,

where r < 1.

We provide the proof of this proposition in the supplemen-
tary document. Proposition 1 implies that a sample ẑtxt
drawn by (6) is guaranteed to be close to zimg by setting r
to a sufficiently small number in [0, 1]. The proposed sam-
pling strategy also results in the acceleration of the opti-
mization procedure by constraining the search space of the
variational distribution. Thanks to the optimization proce-
dure, ẑtxt is expected to achieve high cosine similarity with
ztxt, which is also empirically confirmed in Section 6.

4.1.2 Generating Samples for Image Embedding

During training, we reconstruct the image embedding sam-
ples to compute the second expectation in (5) while we ob-
tain the embeddings to synthesize the images during infer-
ence. Similar to the sampling process of q(ztxt|zimg), we
reconstruct the image embedding based on the text feature

ztxt via the sampling process of p(zimg|ztxt) using a decoder
F (·) with θzimg , which is given by

ẑimg ∼ SVDL(ztxt, F, r)

= Normalize
(
ztxt + r · F (ztxt)

∥F (ztxt)∥

)
, (7)

where ẑimg is a reconstructed image embedding. According
to Proposition 1, ẑimg is also expected to have a high cosine
similarity with ztxt.

4.1.3 Generating Prior Samples for Text Embedding

For the first stage of training, we require samples from the
prior to minimize the difference between the variational and
text prior distributions with respect to the parameters in the
encoder G(·). Refer to Section 4.2 for the detailed opti-
mization procedure. We draw a sample z′txt from the prior
distribution using a text corpus, which is available online.
Note that we do not employ an additional dataset consist-
ing of image-text pairs, but randomly choose a sentence x′

txt
from the text corpus. Using the sampled sentence, the rep-
resentation of the prior sample is obtained by

z′txt = ftxt(x
′
txt). (8)

In our framework, the pretrained CLIP encoder is fixed to
reduce the computational burden.

4.2. Training

4.2.1 Robust Objective

The optimization of (5) with respect to θzimg and ϕztxt is
equivalent to solve the following minimization problem be-
cause log pθximg (ximg|zimg, ztxt) is irrelevant. Hence, the ob-
jective function for the first stage is given by

min
θ
zimg ,ϕztxt

DKL(qϕztxt (ztxt|zimg)||p(ztxt))

−Eqϕztxt (ztxt|zimg)[log pθzimg (zimg|ztxt)]. (9)

However, the KL divergence is generally intractable unless
the two distributions belong to specific families of probabil-
ity distributions, e.g., Gaussian distribution. Such restricted
distributions are different from the true distributions of the
CLIP features, which only have non-zero densities at the
surface of the unit hypersphere in the feature space. There-
fore, the use of the restricted distributions for modeling the
variational and prior distributions would cause high approx-
imation errors [4]. To reduce the distribution gap, the von
Mises-Fisher distribution can be employed but this proba-
bility density involves the Bessel function, which also leads
to the intractable KL divergence.

To address the issue, we alternatively minimize the dif-
ference between the two distributions using the Jensen-
Shannon (JS) divergence that also enforces the two distri-
butions to become identical via its minimization. Contrary
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(a) First Stage Training (b) Second Stage Training

Encoder

(c) Inference

Figure 2. Overview of the proposed method. We illustrate the first and second stage training procedures and then depict the inference step.

to the KL divergence, the JS divergence is always bounded
and free from density assumption, which allows us to use
implicit generative networks for flexible modeling of the
two distributions. We observe that replacing the KL diver-
gence with the JS divergence is more effective, which will
be empirically validated in Section 6.6.1. By using the prop-
erty discussed in [9,22], the objective is reformulated as the
following minimax game, which is given by

min
θ
zimg ,ϕztxt

max
ρD

Ep(ztxt)[logD(ztxt)]

+Eqϕztxt (ztxt|zimg) [log(1−D(ztxt))]

−Eqϕztxt (ztxt|zimg) [log pθzimg (zimg|ztxt)] , (10)

where D(·) is a discriminator parametrized by ρD. The last
term of (10) denoted by Lrecon is expressed as

Lrecon : = Eqϕztxt (ztxt|zimg) [− log pθzimg (zimg|ztxt)]

=
1

2σ2
Eqϕztxt (ztxt|zimg)

[
∥zimg − ẑimg)∥2

]
, (11)

where we employ the ℓ2 loss for reducing the negative log-
likelihood with a balancing factor σ.

4.2.2 Relational Representation Transfer

In addition, we encourage the approximate text samples ẑtxt
to mimic the correlation of the observed image embedding
samples zimg in order to mitigate the challenge posed by the
lack of supervision. The intuition behind this strategy is that
the structural relation of text embeddings will resemble that
of image representations. For example, the two text embed-
dings should be located close if the image representations
are similar, and vice versa. To impose the constraint on the
text embedding samples, we employ a relational knowledge
distillation framework [23], which makes a student mimic
the relations among data embeddings given by a teacher. In

our framework, we view image embeddings as teacher sam-
ples while text embeddings are regarded as student ones.
Therefore, we additionally minimize the relational distilla-
tion loss, which is given by

Lrkd := E[ℓδ(ψA(z
i
img, z

j
img, z

k
img)−ψA(ẑ

i
txt, ẑ

j
txt, ẑ

k
txt))],

(12)
where the expectation is taken over any triplet image em-
beddings (ziimg, z

j
img, z

k
img) and the corresponding samples

drawn by the variational distribution over (ẑitxt, ẑ
j
txt, ẑ

k
txt). In

the above equation, ℓδ(·) and ψA(·, ·, ·) are defined as

ℓδ(a) :=

{
1
2a

2, for ∥a∥ ≤ δ,

δ · (∥a∥ − 1
2δ), otherwise,

(13)

ψA(z
i, zj , zk) := sim(zi − zj , zi − zk), (14)

where sim(·, ·) denotes the cosine similarity between two
vectors. We set the hyperparameter δ of the Huber loss ℓδ(·)
to 1 instead of searching for it.

4.2.3 Total Objective

In summary, the final objective function of the first stage is
given by

min
θ
zimg ,ϕztxt

max
ϕD

Ladv + Lrecon + λrkdLrkd, (15)

where λrkd is a hyperparameter and Ladv denotes the first
two terms of (10) constituting the adversarial loss. Figure 2a
illustrates the optimization procedure of the first stage. In
the case of the semi-supervised setting, we additionally em-
ploy the reconstruction loss for labeled examples, Lsemi,
which enforces the variational text samples to mimic the
true ones. The reconstruction loss is formally given by

Lsemi := Eqϕztxt (ẑtxt|zimg) [∥ẑtxt − ztxt∥1] , (16)

where ∥ · ∥1 indicates the ℓ1-norm.
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Table 1. Results of unsupervised text-to-image generation on the MS-COCO [19] and Conceptual Captions 3M [31] datasets using Style-
GAN2 [14]. Captioning indicates a text-to-image generation baseline method relying on a state-of-the-art image captioning algorithm [37],
where the results of the baselines are retrieved from [38]. Methods with asterisks * report the results of our reproduction. A bold-faced
number denotes the best performance in each column while ‘–’ indicates that the number is unavailable.

T2I Model Dataset Method IS (↑) FID (↓) Simtxt (↑) Simimg (↑)

StyleGAN2 [14]

MS-COCO [19]

Captioning [37] 15.83 56.36 - -
CLIP-GEN* [34] 16.94 58.63 0.3042 -

LAFITE [38] 27.20 18.04 0.0965 -
VDL (Ours) 30.30 13.22 0.6104 0.7655

Conceptual Captions 3M [31]
CLIP-GEN* [34] 7.88 84.16 0.2896 -

LAFITE∗ [38] 16.06 22.95 0.0912 -
VDL (Ours) 23.66 17.37 0.6237 0.7105

5. Text-to-Image Generative Models
After training the first stage of VDL, we leverage

the approximate posterior distribution of text features,
qϕztxt (ztxt|zimg), for the unsupervised training of T2I mod-
els. For a T2I generation model with trainable parameters
θximg , we maximize (5) with respect to θximg , which is equiv-
alent to solve the following problem:

max
θ
ximg

Eqϕztxt (ztxt|zimg)[log pθximg (ximg|zimg, ztxt)], (17)

where pθximg (ximg|zimg, ztxt) is a T2I generative model. Fig-
ure 2b and 2c illustrate the inference procedures for training
and testing, respectively.

Contrary to the existing methods such as CLIP-GEN [34]
and LAFITE [38], which rely only on ztxt for conditional
image generation, our approach utilizes zimg as well as
ztxt for conditioning, resulting in better generalization per-
formance thanks to the additional information for the im-
age. In our framework, ẑimg is reconstructed by the learned
model, pθzimg (zimg|ztxt), during inference, and then an im-
age ximg is finally obtained from the optimized generator,
pθximg (ximg|ẑimg, ztxt).

For a T2I model, we employ StyleGAN2 [14] while La-
tent Diffusion Model (LDM) [28] is also adopted, where
the experimental results of LDM are provided in the sup-
plementary material. When the StyleGAN2 synthesizes im-
ages conditioned on text, we replace each style vector su

with its conditional counterpart sc following [38], which is
formally given by

sc = h([su; g([ztxt; zimg])]), (18)

where h(·) denotes an affine transform, g(·) is a neural net-
work with two fully-connected layers, and [·; ·] is the con-
catenation operator.

6. Experiments
This section compares the proposed method referred to

as VDL with existing approaches on the standard datasets

under unsupervised and semi-supervised text-to-image gen-
eration settings, and analyzes the proposed components.

6.1. Datasets

We employ MS-COCO [19] and Conceptual Captions
3M [31] (CC3M) datasets, which are widely used for the
evaluation of text-to-image generation tasks. As training
and validation datasets, the MS-COCO dataset contains 82k
and 40k images while the CC3M dataset consists of 3.3M
and 16k examples, respectively. As a preprocessing, we re-
size all images to 256×256 pixels for training a T2I net-
work while the images are resized to 224×224 pixels be-
fore feeding them into the CLIP image encoder. As text
corpora, we use text captions in CC3M for MS-COCO and
3 million randomly sampled texts from Conceptual 12M [3]
for CC3M. Note that we do not utilize the image-text pairs
for the proposed algorithm like other unsupervised methods
such as CLIP-GEN [34] and LAFITE [38].

6.2. Evaluation Metrics

We select the Fréchet Inception Distance (FID) [10] and
Inception Score (IS) [30] to evaluate and compare the vi-
sual quality of generated images. We measure the two
metrics following the experimental protocol of previous
works [27, 38, 39] for fair comparisons. Additionally, we
report Simtxt and Simimg using the validation dataset, which
are calculated by the expected cosine similarity between the
true and predicted text features and the similarity between
the image and its inferred embeddings, respectively. Note
that Simimg cannot be measured for the baseline algorithms
since they do not consider reconstructing the image fea-
ture. The discrepancy between the training and inference
becomes lower when each of the similarities is higher.

6.3. Implementation Details

The proposed method is implemented with the official
code of LAFITE1 based on PyTorch [24]. For the encoder

1https://github.com/drboog/Lafite
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Table 2. Results of semi-supervised text-to-image generation on the MS-COCO dataset using StyleGAN2. The ‘Ratio’ column shows the
fractions of the labeled text captions in each dataset.

Model Dataset Method Ratio IS (↑) FID (↓) Simtxt (↑) Simimg (↑)

StyleGAN2 [14] MS-COCO [19]

LAFITE [38] 0.0 27.20 18.04 0.0965 –
LAFITE* [38] 0.1 18.82 20.65 0.8340 –
LAFITE* [38] 0.2 21.19 17.74 0.8373 –
LAFITE* [38] 0.3 21.39 15.76 0.8385 –
VDL (Ours) 0.0 30.30 13.22 0.6237 0.7105
VDL (Ours) 0.1 32.81 11.24 0.7130 0.7536
VDL (Ours) 0.2 33.90 11.24 0.7261 0.7596

G(·), decoder F (·), and discriminator D(·), we adopt net-
works consisting of 10 fully-connected layers with the leaky
ReLU activations, where each hidden layer has 2048 units.
For the discriminator, we add an R1 regularization [20] for
training stability, which suppresses the magnitudes of gra-
dients. We use the Adam optimizer [15] for the three net-
works with an initial learning rate of 0.001 with a batch size
of 512.

During the second training stage, we train a T2I model
using StyleGAN2 [14] to follow the experimental protocol
used in LAFITE [38] for fair comparisons. Specifically, we
optimize StyleGAN2 using the Adam optimizer, and set a
batch size to 64 and an initial learning rate to 2.5 × 10−3.
Also, R1 regularization is also performed for the discrimi-
nator every 16 iterations to save training time.

6.4. Unsupervised Setting Results

Table 1 shows the text-to-image generation results on the
MS-COCO [19] and CC3M [31] datasets under the unsu-
pervised setting, where the image captions are not avail-
able during training. As demonstrated in the table, VDL
achieves the best performance in terms of Simtxt, FID, and
IS by large margins both on the two datasets. Although the
noise injection for text prediction in LAFITE [38] degrades
Simtxt, LAFITE achieves better T2I performance in terms
of FID and IS than CLIP-GEN. This is partly because the
regions corresponding to the noisy text features predicted
by LAFITE are larger than the deterministic point features
given by CLIP-GEN and LAFITE consequently has more
chance to identify accurate text features within the region.

6.5. Semi-Supervised Setting Results

In Table 2, we present the performance of LAFITE [38]
and VDL in semi-supervised learning scenarios on the MS-
COCO dataset [19], where only a fraction of image and text
pairs are accessible; the ratio of 0.0 indicates the unsuper-
vised setting. According to the table, the proposed method
outperforms LAFITE by large margins in terms of FID and
IS. Also, VDL trained even in the unsupervised setting
outperforms LAFITE with the ratio of 0.3, which implies
that the proposed method is more annotation-efficient. As

Table 3. Comparison between the KL divergence with the JS di-
vergence under the unsupervised setting on the MS-COCO dataset
using StyleGAN2. KLD optimizes (9) with the assumption that
the variational distribution follows the Gaussian distribution with
Gaussian mixture models for the prior. DualKLD optimizes the
dual representation of the KL objective in [7].

Method IS (↑) FID (↓) Simtxt (↑) Simimg (↑)

KLD 20.89 34.42 0.1396 0.2833
DualKLD 27.83 15.60 0.6236 0.7440
JSD (VDL) 30.30 13.22 0.6104 0.7655

more text captions become available, VDL obtains higher
IS, Simtxt, and Simimg while FID is unfortunately saturated
at an early stage. In terms of Simtxt under semi-supervised
settings, LAFITE outperforms VDL. That this is partly be-
cause LAFITE trains a learnable network on the paired data
by making the predicted text embeddings close to the true
ones. However, the strategy turns out to be ineffective for
improving FID and even degrades the IS score.

6.6. Analysis

6.6.1 Jensen-Shannon Divergence

We study the effect of using the JS divergence instead of KL
divergence under the unsupervised setting with the Style-
GAN2 architecture on MS-COCO. As reported in Table 3,
our strategy using the JS divergence is more effective than
employing the KL divergence and its variation. Specifi-
cally, we compute the objective in (9) using two different
ways. First, motivated by variational autoencoders [16], we
model the variational and prior distributions with a Gaus-
sian distribution and its mixture, respectively, and this ap-
proach is referred to as KLD. The other method denoted by
DualKLD replaces the KL divergence with its dual form,
the Donsker-Varadhan representation [7], which also per-
forms the minimax optimization. In the case of KLD, the
performance significantly degrades because the Gaussian
assumptions for the variational and prior distributions are
not effective; the Gaussian distribution has a non-zero den-
sity outside the unit-hypersphere, where CLIP text features
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Figure 3. Qualitative results on the MS-COCO and Conceptual Captions 3M datasets using StyleGAN2. VDL generates visually higher-
quality images than LAFITE and CLIP-GEN.

Table 4. Ablation study results on MS-COCO with StyleGAN2
under an unsupervised setting. VDL w/o SVDL directly predicts a
text feature and then normalizes it to locate at the unit-hypersphere
without using SVDL while VDL w/o Lrkd does not employ Lrkd.

Method IS (↑) FID (↓) Simtxt (↑) Simimg (↑)

VDL w/o SVDL 19.86 36.37 0.5498 0.5256
VDL w/o Lrkd 28.45 15.75 0.6128 0.7637
VDL (Ours) 30.30 13.22 0.6104 0.7655

are not located. On the other hand, DualKLD, which is free
from the distribution restriction, outperforms KLD although
it is still worse than our approach. However, we observe that
DualKLD is sensitive to the hyperparameter partly due to its
unbounded property contrary to the JS divergence.

6.6.2 Component analysis

We analyze the contributions of the individual components
in our approach. As presented in Table 4, SVDL is helpful
for improving Simtxt, Simimg, and T2I performance in unsu-
pervised settings. Although Lrkd is conceptually irrelevant
to reduce the discrepancy between the true and predicted
text features, it improves generation performance by learn-
ing relational embeddings between two modalities.

6.6.3 Qualitative Results

Figure 3 visualizes generation results on the MS-COCO and
CC3M datasets using CLIP-GEN [34], LAFITE [38], and

VDL. As illustrated in the figure, the proposed method suc-
cessfully generates images based on given sentences with
enhanced visual quality while the others sometimes fail to
understand the overall meaning of text captions.

7. Conclusion
We presented an annotation-efficient method for text-to-

image generation when image and text caption pairs are
rarely available or text information is completely inacces-
sible. To address the challenge, we employ the off-the-
shelf CLIP model to estimate hidden text features given ob-
servable images, where we rely on the CLIP’s multi-modal
joint embedding quality. To further improve the quality of
text embedding, we approximate its intractable true poste-
rior probability by exploiting the variational inference tech-
nique. Given the inferred features and their image embed-
dings, we learn a conditional generative model to recon-
struct images. Experimental results verify that the proposed
method achieves outstanding performance on the unsuper-
vised and semi-supervised learning environments.
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[33] Aäron Van Den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel Recurrent Neural Networks. In ICML,
2016. 1

[34] Zihao Wang, Wei Liu, Qian He, Xinglong Wu, and Zili
Yi. CLIP-GEN: Language-Free Training of a Text-to-Image
Generator with CLIP. arXiv preprint arXiv:2203.00386,
2022. 1, 2, 6, 8

[35] Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang,
Daxin Jiang, and Nan Duan. N\” uwa: Visual Synthesis Pre-
Training for Neural Visual World Creation. arXiv preprint
arXiv:2111.12417, 2021. 2

[36] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, et al. Scaling Autoregressive
Models for Content-Rich Text-to-Image Generation. arXiv
preprint arXiv:2206.10789, 2022. 1

[37] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang,
Lei Zhang, Lijuan Wang, Yejin Choi, and Jianfeng Gao.
Vinvl: Revisiting visual Representations in Vision-Language
Models. In CVPR, 2021. 6

[38] Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li,
Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, and
Tong Sun. Towards Language-Free Training for Text-to-
Image Generation. In CVPR, 2022. 1, 2, 3, 6, 7, 8

[39] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-
gan: Dynamic memory generative adversarial networks for
text-to-image synthesis. In CVPR, 2019. 6

23389


