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Abstract

Multiscale video transformers have been explored in a
wide variety of vision tasks. To date, however, the multiscale
processing has been confined to the encoder or decoder
alone. We present a unified multiscale encoder-decoder
transformer that is focused on dense prediction tasks in
videos. Multiscale representation at both encoder and de-
coder yields key benefits of implicit extraction of spatiotem-
poral features (i.e. without reliance on input optical flow)
as well as temporal consistency at encoding and coarse-
to-fine detection for high-level (e.g. object) semantics to
guide precise localization at decoding. Moreover, we pro-
pose a transductive learning scheme through many-to-many
label propagation to provide temporally consistent predic-
tions. We showcase our Multiscale Encoder-Decoder Video
Transformer (MED-VT) on Automatic Video Object Seg-
mentation (AVOS) and actor/action segmentation, where we
outperform state-of-the-art approaches on multiple bench-
marks using only raw images, without using optical flow.

1. Introduction

Transformers have been applied to a wide range of image
and video understanding tasks as well as other areas [13].
The ability of such architectures to establish data relation-
ships across space and time without the local biases in-
herent in convolutional and other similarly constrained ap-
proaches arguably is key to the success. Multiscale process-
ing has potential to enhance further the learning abilities of
transformers through cross-scale learning [4, 6, 8, 19, 43].
A gap exists, however, as no approach has emerged that
makes full use of multiscale processing during both encod-
ing and decoding in video transformers. Recent work has
focused on multiscale transformer encoding [8,19], yet does
not incorporate multiscale processing in the transformer de-
coder. Other work has proposed multiscale transformer de-
coding [6], yet was designed mainly for single images and
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Figure 1. Comparison of state-of-the-art multiscale video trans-
formers and our approach. Video transformers take an input clip
and feed features to a transformer encoder-decoder, with alterna-
tive approaches using multiscale processing only in the encoder or
decoder. We present a unified multiscale encoder-decoder video
transformer (MED-VT), while predicting temporally consistent
segmentations through transductive learning. We showcase MED-
VT on two tasks, video object and actor/action segmentation.

did not consider the structured prediction nature inherent to
video tasks, i.e. the importance of temporal consistency.

In response, we present the first Multiscale Encoder
Decoder Video Transformer (MED-VT). At encoding, its
within and between-scale attention mechanisms allow it to
capture both spatial, temporal and integrated spatiotemporal
information. At decoding, it introduces learnable coarse-to-
fine queries that allow for precise target delineation, while
enforcing temporal consistency among the predicted masks
through transductive learning [38,52].

We primarily illustrate the utility of MED-VT on the task

6323



of Automatic Video Object Segmentation (AVOS). AVOS
separates primary foreground object(s) from background in
a video without any supervision, i.e. without information on
the objects of interest [53]. This task is important and chal-
lenging, as it is a key enabler of many subsequent visually-
guided operations, e.g., autonomous driving and augmented
reality. AVOS shares challenges common to any VOS task
(e.g., object deformation and clutter). Notably, however, the
requirement of complete automaticity imposes extra chal-
lenges to AVOS, as it does not benefit from any per video
initialization. Lacking prior information, solutions must ex-
ploit appearance (e.g., colour and shape) as well as motion
to garner as much information as possible.

MED-VT responds to these challenges. Its within and
between scale attention mechanisms capture both appear-
ance and motion information as well as yield temporal con-
sistency. Its learnable coarse-to-fine queries allow seman-
tically laden information at deeper layers to guide finer
scale features for precise object delineation. Its transductive
learning through many-to-many label propagation ensures
temporally consistent predictions. To showcase our model
beyond AVOS, we also apply it to actor/action segmenta-
tion. Figure 1 overviews MED-VT compared to others.

2. Related work

Video dense prediction tasks. We focus on two im-
portant aspects of video dense prediction: the multiscale
nature of objects and temporally consistent spatial localiza-
tion for per pixel classification, as well as operation with-
out the expense of optical flow. For tasks, we consider two
dense prediction tasks, Automatic Video Object Segmen-
tation (AVOS) [53] and actor/action segmentation, while
leaving extensions to instance-aware AVOS [24, 40] and
tracking [28, 45] for future work. Dominant approaches to
AVOS rely on both colour images and optical flow as input
[10,32,34,54]. Other approaches consider attention [23,4 1]
to capture recurring objects in a video via simple mecha-
nisms, e.g. co-attention. Similarly, dominant approaches to
actor/action segmentation depend on optical flow [7, 12].

Multiscale processing. Multiscale processing is an es-
tablished technique across computer vision. Some repre-
sentative examples in the era of convolutional networks in-
clude edge detection [46], image segmentation [33], ob-
ject detection [20] as well as AVOS [10, 32, 54]. Recently,
multiscale processing has been applied with transformers
to assist the understanding of single images (e.g. classifica-
tion [43], detection [4, 55] and panoptic segmentation [6])
and videos (e.g. action recognition [8, 19]). However, such
transformers are limited by lack of unified multiscale pro-
cessing (i.e. restricted to the encoding phase) or not readily
applicable to video understanding (i.e. primarily used for
static images [43]), in general, and dense video predictions,
in particular. In contrast, while our work exploits multiscale

information, it makes fuller use in its multiscale encoder-
decoder via Within and Between scale attention.

Temporal consistency. AVOS models typically benefit
from leveraging the principle of global consistency across
multiple frames. Early efforts sought such consistency on
the feature level by fusing the appearance (e.g. RGB im-
ages) and motion information (e.g. optical flow) of given
videos [10, 32, 54]. However, these required additional
effort on high-quality flow estimation. Other work fo-
cused on enforcing consistency between features computed
across time using co-attention [23]. A limitation of this ap-
proach is its excessive computational overhead, because of
its need for multiple inference iterations to yield good re-
sults. Recent advances in semi-automatic VOS have de-
vised a lightweight yet efficient counterpart: A prediction-
level label propagator that explicitly exploits frame-wise
semantic consistency, which was proposed in a transduc-
tive inference setting [25, 50]. Nonetheless, their propaga-
tor was confined to a single frame at a time. We present a
label propagator that extends the existing approach by con-
sidering many-to-many propagation, to effectively capture
temporal dependency within an entire input clip for AVOS.

Contributions. In the light of previous work, our con-
tributions are threefold. (1) We present the first end-to-
end multiscale transformer for video understanding dense
prediction relying solely on raw images without optical
flow input. (2) Our model is the first to intergrate multi-
scale transformer encoder and decoder in any video under-
standing task. The encoder enables our model to capture
spatiotemporal information across scales, while the multi-
scale decoder provides precise localization. (3) We present
the first many-to-many label propagation scheme within a
transductive learning paradigm to ensure temporally con-
sistent predictions across an entire input clip. Our approach
outperforms the state of the art on multiple AVOS and ac-
tor/action segmentation datasets. Our code is available at:
rkyuca.github.io/medvt.

3. MED-Video Transformer (MED-VT)
3.1. Overview

MED-VT is an end-to-end video transformer that inputs
a clip and provides dense segmentation predictions without
the need of explicit optical flow. Processing unfolds in five
main stages; see Fig. 2. (i) A feature pyramid is extracted
using a backbone network. (ii) The extracted stacks of fea-
ture pyramids are processed by a transformer encoder and
(iii) decoder. (iv) A task specific head produces initial pre-
dictions. (v) A many-to-many temporal label propagator
refines the initial predictions by enforcing temporal consis-
tency. Our architecture is unique in its unified approach to
encoding and decoding at multiple scales, as well as its use
of many-to-many label propagation.
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Figure 2. Detailed (MED-VT) architecture with unified multiscale encoder-decoder transformer, illustrated with application to Automatic
Video Object Segmentation (AVOS). The model has five functionally distinct components. (i) Backbone feature extractor to extract per
frame features, f,, at multiple scales, s € {1, ce ,smam}. (ii) Multiscale transformer encoder consisting of spatiotemporal within and

between scale attention with resulting features, 2V and fSB , Tesp;

the multihead attention transformation, (1b), is used for both. (iii)

Multiscale transformer decoder consisting of pixel decoding, which produces decoded features, f7, and a series of mulitscale query
learning decoder blocks, D¢, for the corresponding *" iteration and scale s, each of which entail self and cross attention, again using the
multihead attention transformation, (1b). The input to the blocks are the decoded features f7 and the query resulting from the previous
block, with a randomized query, Q", initialization; the output is a final object query, Q°. The decoder applies an affinity, (6), between Q°
and the finest scale decoded features, f, to yield an object attention map, which is concatenated with the finest scale decoded features for
final decoder output, F”. (iv) A task specific head, #, that inputs F” to produce initial predictions. (v) Many-to-many label propagation
that inputs the initial predictions as values, V, as well as F* as queries, Q, and keys, K, to yield temporally consistent segmentation final
masks, Y. Our key innovations, outlined in bold boxes, lie in the unified multiscale encoder-decoder and label propagator.

Feature extraction is standard. Given a video clip, we
first extract a set of multiscale features, F' = {f; : s € S},
where f, € RT*HsxWsxCs represent features extracted at
scale s, S = {1, .., Syas | indexes the scale stages from fine
to coarse and {T, Hy, W, C,} are the clip length, height,
width and channel dimension at scale s, resp. Prior to subse-
quent processing, backbone features are down projected to
d dimensions, f, = ¢(f,) € RTHsW:xd where ¢ is a simple
1x 1 convolutional layer, followed by flattening. Our model
is not specific to a particular backbone feature extractor; in-
deed, we illustrate with multiple in Sec. 5. Moreover, our
model is not specific to a particular task head and we also
illustrate with multiple in Sec. 5. The rest of this section,
details our novel encoder-decoder and label propagator.

3.2. Multiscale transformer encoder

Transformer encoders built on spatiotemporal self-
attention mechanisms can capture long range object repre-
sentation relationships across both space and time for video
recognition tasks [2, 3, 8]. They thereby naturally support
learning of both spatial and temporal features as well as in-
tegrated spatiotemporal features. Notably, however, stan-
dard encoders that operate over only coarse scale feature
maps limit the ability to capture fine grained pattern struc-
ture as well as fail to support precise localization [44]. To

overcome these limitations, our encoder encompasses two
main operations of within and between-scale spatiotempo-
ral attention on multiple feature abstraction levels with dif-
ferent resolutions that are extracted from a backbone con-
volutional network, as discussed in Sec. 3.1.

We formulate the operations of within and between scale
attention via standard multihead attention, M, defined as

1

Ar(Q, K, V) = Softmax (\/E

ng(wvﬁf) VWY, (la)

M(Q,K,V) = Concat)”, (An(Q,K,V))W?,  (Ib)

where Q, K and V are query, key and value, resp., while
WZ,W’; and W} are their corresponding learned weight
matrices for head h, d is feature dimension and W¢ is the
weight matrix for the final multiheaded output.

Within scale attention. We formulate multihead VVithin
scale attention by instantiating multihead attention, (1b), as

W(?syps) :M(Fs+psan+psa?S)7 (2)

with py € RTHsWsxd per scale positional encodings to pre-
serve location information, c¢f. [44]. W is applied succes-
sively across multiple encoder layers. We compute the final
encoded feature maps, F?V = {fV : s € S}, for each
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corresponding scale, to capture globally consistent repre-
sentation of objects of interest. Successive application of
spatiotemporal within scale attention yields globally coher-
ent representation, otherwise limited by local convolutions.

Between scale attention. For Between-scale attention,
B, we apply attention on the encoded features, F'*Y. Coarse
scale feature maps capture rich semantics by virtue of hav-
ing gone through multiple abstraction layers. Correspond-
ingly, the feature map from a coarser scale, s, i.e. )V, is
used to affect the immediately finer scale feature map, FSVL,
based on between-scale attention affinity. To achieve this
goal, we again use multihead attention, (1b), now as

B(F;/Xh ps—lvﬂ/\;a ps) = M(Fsvﬁl + pS—l7F;/V + pSaF;/V)
3)
where ps and ps_; are positional embeddings. This op-
eration enhances between-scale communication to promote
globally consistent, semantically rich feature maps and is
conducted between each pair of adjacent scales. We de-

note the output features from between-scale attention, B, as
FB={f8.5¢c S}

3.3. Multiscale transformer decoder

Our multiscale encoder’s between-scale attention pro-
motes spatiotemporal consistency across scales, while the
decoder promotes multiscale query learning to localize
object-level properties. Our decoder works in two steps: (i)
pixel decoding, which propagates coarse scale semantics to
fine scale localization and (ii) transformer decoding, which
generates adaptive queries.

Pixel decoding. In pixel decoding we seek to propagate
semantics of coarse scale features to finer scales. For this
purpose, we use a Feature Pyramid Network (FPN) [20].
The FPN works top down from coarse features with highest
abstraction to fine features by injecting coarser scale infor-
mation into each finer scale. It thereby allows for better
communication from high level to low level semantics with
finer details preserved before queries are generated in the
actual transformer decoder. The FPN inputs the between-
scale attention features, F'5, and outputs a feature pyramid
FP = {fF : s € S}. See supplement for details.

Decoding and adaptive queries. Improved object
queries, Q°, are learned via multiscale coarse-to-fine pro-
cessing, where the queries adapt to the input features for
object localization. This multiscale processing enriches the
learnable queries so they work better on the finest resolu-
tion. These adaptive queries, Q° € RN«*< with N, the
number of queries, are learned jointly from the multiscale
feature maps, FP, using a series of transformer decoder
blocks, D¢ operating coarse-to-fine across scales, s, and
with multiple iterations, i; see Fig. 3. Each transformer
decoder block, Di, inputs pixel decoded features fP ata

s g s

particular scale, s. At each iteration, ¢, the blocks operate,
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Figure 3. The decoder stacked coarse-to-fine processing. Our mul-
tiscale decoder inputs a multiscale feature pyramid, £, and ran-
domly initialized queries, Q", and outputs final object queries, Q°.
The input is processed coarse-to-fine and iteratively through mul-
tiple decoder blocks, D%, with s indicating input feature scale and
¢ indicating iteration. For simplicity, we show s = 3 scales and
1 = 3 iterations, with f- denoting features from each level of the
pyramid, F'”, where corresponding dimensions of the three levels
are, ' HsWs3 x d, THyW> x d, TH W1 x d, resp.

coarse-to-fine, with queries output from the previous serv-
ing as input (along with decoded features from F7) to the
next. The process iterates N4 times, as notated by super-
scripts i on the blocks, Di, i.e. i € {1...Ng}. The entire
process starts with a randomly initialized query, Q" and cul-
minates in the final adaptive object queries, Q°. The adap-
tive queries serve to compactly represent the foreground ob-
ject with its different appearance changes and deformation
within the input clip.

In each decoder block both self and cross attention op-
erates, as in encoding attention, Sec. 3.2. To define Self
attention, we instantiate multihead attention, (1b), as

S(QLpY) = M(QL+p2, QL +p2, QY. @

with Q’, the input query to block D? and p® € R™a*4 Jearn-
able query positional embeddings. To define Cross atten-
tion, we instead instantiate (1b) as

)
with p;, € RTHWsxd foature positional embeddings and
p7 € RTHsW:xd derived from learnable scale embeddings,
p7 € R4 after being repeated across T, H,, W; this op-
eration allows cross attention to be scale sensitive, cf. [6].

After all decoder blocks have produced the query, Q°, a
final cross attention block is used to establish affinity be-
tween the query and finest scale features, f], and thereby
generate an object attention map, FA. Since only the query
and features are considered, a two argument affinity is used,
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FA = AP(Q,K)
1 (©)

Vd

with Q = Q°,K = ?f , N}, the number of heads and WZ,
Wﬁ being learnable parameters for head h. The final de-
coder output, FP. is formed as the concatenation of the
finest scale features, ff , with the attention maps, FA ie.
FP = FA o fP, with © channel-wise concatenation. This
augmentation further enhances localization precision.

= Concaxth]\f;1 {Softmax ( QWZ(KW’;)TH

3.4. Many-to-many temporal label propagation

Label propagation is a standard technique that can be
used in transductive reasoning [52]. In semi-supervised
VOS, it was proposed to train an end-to-end model to prop-
agate the labels from many/all previous frames, {--- ,t—1},
to a single current frame, ¢, hence causal many-to-one prop-
agation within a transductive setting [25]. This operation
provides structured prediction across frames instead of in-
dependent predictions per frame. We extend this idea by
allowing label propagation from all other frames, {--- ,¢ —
1,¢ + 1,---}, in a clip to each frame, ¢, hence many-to-
many label propagation. This extended operation enforces
structured prediction across all frames in a clip.

Our many-to-many label propagator three operators, se-
quentially applied: (i) a label encoder, £;,, (ii) a spatiotem-
poral affinity based label propagator using masked atten-
tion, M™, and (iii) a label decoder, Dy. The input to the
encoder is an initial prediction, Y’ = H(FP), generated by
a task head, H, from the output of the previous decoding,
FP. The label encoder then generates an encoding of di-
mension D from the initial predictions, Y’, and flattens it,
Y = EL(Y') € RTH:WAXD " of [05], The label propagator
extends the encoded labels temporally in a many-to-many
fashion. The label decoder, Dy, takes these propagated en-
coded labels and generates the final class-wise predictions.
The label encoder, £, is a similar CNN to that used else-
where [25]. The label decoder, Dy, is a three-layer CNN.

We devise the label propagator as a masked attention
module [36, 39] to capture the long-distance dependen-
cies between labels while preserving efficiency. The mask,
M € RTHIWAXTHiW1 - regtricts attention to regions cen-
tered around the predicted data point, akin to the notion of
clique in conditional random fields [16] or, more generally,
graph theory. The mask can be defined to promote commu-
nication between data points in a wide variety of fashions
(e.g. within frame, between frames, many-to-one, many-to-
many) [16]. We use this mechanism for temporal many-to-
many propagation to encourage information sharing among
different frames. The mask of two arbitrary positions is set
to, M;; = —oo0, if they are in the same frame, otherwise as
zero. Formally, the mask is defined as

if (i) = 7(4)
otherwise.

(7

—00
My =3
e

where 7(-) returns the frame index of given data points.
Masked attention is then defined by augmenting the stan-
dard multihead attention, (1b), to become

A?(Qa K,V, M) -
1

Vd

(8a)

Softmax ( QWY (KWH)T + M) VWY,

M™(Q,K,V, M) = Concat,”, (AT (Q, K, V,M))W°,
(8b)
where Q, K,V, M are the queries, keys, values and mask
resp., while WY, Wﬁ, W} are learnable parameters for head
h and W is the final weighting for combining heads. Our
label propagator instantiates masked attention, (8b), as

Y = M™(FP,FP, Y, M), )

where FP € RTH1Wix(d+Nn) ig the flattened decoded fea-
tures. As defined, this operation propagates labels across
all data points in the entire clip, both spatial position and
frames, unlike previous efforts that were limited to propa-
gating to the current frame only [25].

Finally, the overall class-wise predictions, ?, are pro-
duced by combining the propagated label decodings,
D1 (Y), and the initial predictions from the segmentation
head, Y’ according to

V= (DY) +Y). (10)

We combine the initial predictions per frame and the prop-
agated predictions from all other frames because while la-
bel propagation enforces temporal consistency, it also can
sacrifice boundary precision due to the smoothing it incurs.
The final combination, (10), provides both temporal con-
sistency and precise boundaries. The supplement explores
theoretical connections between our label propagation ap-
proach and spectral clustering.

4. Learning scheme

For both the AVOS and actor/action segmentation cases,
we train the model using a combination of distribution-
and region-based losses. In particular, we combine the
distribution-based focal [2 1] and the region-based Dice [26]
losses. Notably, this combination ameliorates the challenge
of class imbalance [21,26], as in both our tasks, background
pixels are more frequent than other classes. To support
many-to-many label propagation in AVOS we use the en-
tire clip groundtruth to compute the loss. However, for the
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actor/action segmentation dataset, we only have a ground-
truth label for the centre frame; so, it is not directly appli-
cable to perform many-to-many label propagation. Thus, in
actor/action segmentation we initially train our model with-
out label propagation and compute pseudo-labels for unla-
belled frames. Then the groundtruth of the centered frame
and pseudolabels for the rest of the frames within the clip
are used to train our model with label propagation to enforce
the many-to-many label consistency across the clip. Further
details on the learning scheme are in the supplement.

5. Empirical evaluation
5.1. Experiment design

Implementation details. We present results from two
backbones, ResNet-101 [9] and Video-Swin [22], to extract
multiscale feature pyramid, F', from a clip of 7' = 6 frames
by taking features, fs, from successive stages. For the mul-
tiscale transformer encoder, we use it on the two coarsest
scale features for memory efficiency reasons; we use six
and one encoder blocks for the two smallest scale features.
In the transformer decoder, we use three feature scales and
three iterations, N; = 3, resulting in nine decoding lay-
ers. All multihead attention operations and the attention
block, AP, have, N}, = 8, attention heads and use a chan-
nel of dimension d = 384. The final segmentation head, H,
is a three-layer convolutional module. The final decoding
layer of ‘H is defined according to the segmentation task to
match the number of categories, i.e., foreground vs. back-
ground for AVOS and 43 to encompass the classes in the
actor/action dataset. Additional architecture and training
details are provided in the supplement.

Inference, datasets and evaluation protocols. For in-
ference we use the same clip length as in training, 7' = 6,
in a sliding window with the predicted logits upsampled to
the original image size. Each temporal window of frames
serves as input to our model to predict the segmentation of
its centre frame. For the DAVIS’16 dataset only, we use
multiscale inference postprocessing wherein inference is
conducted at multiple scales and subsequently averaged [5],
as it is standard with that dataset to present results with and
without postprocessing; although, the postprocessing meth-
ods vary. The supplement details our multiscale inference
postprocessing.

For AVOS, we test on three standard datasets: DAVIS’16
[29], YouTube-Objects [30] and MoCA (Moving Camou-
flaged Animals) [17]. DAVIS’16 is a widely adopted AVOS
benchmark, while YouTube-Objects is another large-scale
VOS dataset. MoCA is the most challenging motion seg-
mentation dataset available, as in the absence of motion the
camouflaged animals are almost indistinguishable from the
background by appearance alone (i.e. colour and texture).
For actor/action segmentation, we use the A2D dataset [47].

For all datasets we use its standard evaluation protocol. Fur-
ther dataset details are provided in the supplement.

5.2. Comparison to the state-of-the-art

MoCA. Table 1 shows MoCA results, with compari-
son to the previous state of the art. Since the dataset pro-
vides only bounding box annotations, following standard
protocol, we compare maximum bounding box of our seg-
mentation mask to compute region similarity. It is evi-
dent that MED-VT outperforms all others by a notable mar-
gin when using the same backbone (i.e. ResNet-101) as
the previous state of the art [32, 54]. Moreover, MED-VT
performance improves even further when using the recent
attention-based Video-Swin backbone. Interestingly, even
though our model does not use optical flow, it succeeds on
this dataset where motion is the primary cue to segmenta-
tion due to the camouflaged nature of the animals. This fact
supports the claim that our encoder is able to learn rich spa-
tiotemporal features, even without flow input.

DAVIS. Table 2 shows DAVIS’16 results, with and
without postprocessing. With the Video-Swin backbone,
MED-VT outperforms all alternatives in mean/recall F-
measure, F, and mean/recall IoU, J. When reverting to the
ResNet101 backbone: Among approaches working directly
on video frames (i.e. RGB without optical flow), MED-VT
outperforms all alternatives on mean F-measure and mloU.
For the recall and decay measures we are comparable with
all others. Additionally, our model without optical flow is
on-par or even outperforms approaches that explicitly rely
on optical flow, except for the recent RTNet [32]; although,
even there we have a 1.1% advantage on F-measure before
postprocessing. Notably, our MED-VT relies only on RGB
frames while other state-of-the-art approaches use optical
flow as an additional input to exploit object motion. More-
over, most of the DAVIS’16 results include CRF postpro-
cessing [16]. In contrast, we do not employ such complex
postprocessing; rather, we follow a simpler multiscale infer-
ence strategy similar to that used by another approach [51].

There is evidence that success on DAVIS’16 is largely
driven by the ability to capitalize on single frame/static ap-
pearance information (e.g. colour, texture), rather than dy-
namic (e.g. motion) information [ 15]. Unlike our MED-VT,
RTNet [32], uses extra pre-training on a saliency segmenta-
tion dataset, which aligns with success on DAVIS’16 be-
ing tied to single frame information. Nevertheless, not only
can MED-VT be competitive with RTNet (e.g. on mean
F-measure without postprocessing) when using the same
ResNet101 backbone, but by switching MED-VT to use
the Video-Swin backbone we are able to yield better per-
formance in boundary accuracy and also slightly better per-
formance in mIoU, without an extra dataset or optical flow.

YouTube-Objects. Table 3 shows YouTube-Objects
results. It is seen that our approach once again outper-
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Measures Uses RGB+Flow Uses RGB only

COD (two-stream) [17] MATNet [54] RTNet [32] | COSNet [23] Ours Oursf

J Mean 1 55.3 64.2 60.7 50.7 69.4 77.9
7=0.5 0.602 0.712 0.679 0.588 0.762  0.874

7=0.6 0.523 0.670 0.624 0.534 0.716  0.834

Success Rate | T=0.7 0.413 0.599 0.536 0.457 0.657  0.777
7=0.8 0.267 0.492 0.434 0.337 0.560  0.685

7=0.9 0.088 0.246 0.239 0.167 0.369  0.440

SRiean 0.379 0.544 0.502 0.417 0.613  0.722

Table 1. Results of moving camouflaged object segmentation on MoCA dataset with best overall results in bold. Results shown as mean
Intersection over Union (mlIoU) and localization success rate for various thresholds, 7. Our results are reported with ResNet101 backbone,
as used in the state of the art, as well as Video-Swin backbone, labelled with §.

Measures Uses RGB + Optical Flow Uses RGB only
EPO+[1] MATNet [54] RTNet[32] FSNet [I11] | AGS[42] COSNet[23] AGNN[41] ADNet[48] DFNet[51]  Ours Ourst
Mean 1 -/80.6 -/182.4 84.3/85.6 82.1/83.4 -/79.7 -/80.5 78.9/80.7 78.26/81.7 -/83.4 83.0/83.5 84.2/85.9
J  Recall T -/95.2 -/94.5 -/96.1 -91.1 -/94.0 -/94.0 - - 93.5/93.1 95.8/96.3
Decay | -/0.02 -/5.5 - - -/0.0 -10.0 -/0.03 - - 0.05/0.05  0.05/0.05
Mean 1 -/75.5 -/80.7 83.0/84.7 83.0/83.1 -/77.4 -179.4 -/79.1 77.1/80.5 -/81.8 84.1/83.6  86.4/86.6
F  Recall T -/187.9 -/90.2 -/93.8 -/85.8 -/90.4 -/90.5 - - 93.6/93.5 94.9/95.1
Decay | | -/0.02 -/14.5 - -/0.0 -/0.0 -/0.03 - - 0.03/0.03  0.03/0.03
Table 2. Results on DAVIS’16 validation set. For those using post processing (e.g. conditional random fields [1,11,23,32,41,42,51,54],

instance pruning [48, 51], multiscale inference [51]), results shown as x/y, with x and y results without and with post processing, resp.
F-measure, 7, and mean Intersection over Union (mIoU), 7 are shown. We show our results with the standard ResNet-101 backbone and
Video-Swin backbone, indicated by 1. Best results highlighted in bold.

Method Input mloU Decoder MS Encoder MS | Label Propagation | DAVIS’16 | YouTube Objects | MoCA | A2D

- 79.5 73.9 67.5 50.0
FSEG [10] 68.4 v : 815 742 677 | 509
LVO [37] . 67.5 v v - 822 744 69.1 | 516
MATNet [54] RGB + Optical Flow 69.0 v v v 83.0 752 69.4 | 526
RTNet [32] 71.0
PDB [35] 65.4 Table 5. Multiscale encoder-decoder and label propagation abla-
AGS [42] 69:7 tions reporting mloU. Best results highlighted in bold.
COSNet [23] RGB 70.5 . .
AGNN [41] 70.8 A2D: Actor/Action Segmentation. Table 4 compares
MED-VT (Ours) 752 our approach on actor/action segmentation to a number of
MED-VT (Ourst) RGB 78.5 alternatives, which typically use optical flow as an extra in-

put, across different feature backbones. Our results are con-
sistently better or on par with the alternatives, even when
we operate under the simplest setting, i.e. one input modal-
ity (RGB images) and weaker features, i.e. ResNet101 vs.
I3D used by the previous state-of-the-art (SSA2D). When

Table 3. YouTube-Objects results given as mean Intersection
over Union (mloU); best results bolded. Our results shown with
ResNet-101 backbone and Video-Swin backbone, indicated by .

Method Input Backbone  mloU - : . .

Tietal [12] ResNet-101_ 36.9 Fralned and tes?ed with a s.tronger backbone (yet maintain-

Dang et al. [7] RGB + Optical Flow  ResNet-101  38.6 ing only RGB input), the improvements are even more no-

SSAZD [31] 3D 395 table, e.g., we outperform the previous best (SSA2D [31])

MED-VT (Ours) RGB ResNet-101 39.5 by more than 10% with Video-Swin features [22].
Video-Swin  52.6

5.3. Ablation study

Table 4. State-of-the-art comparisons for actor/action segmenta-
tion on A2D dataset; best results in bold. Results given as mean
Intersection over Union (mloU).

The previous section documented the overall strength
of MED-VT, with an integral part of that presentation be-
ing a confirmation of our first contribution: state-of-the-
art performance without extra optical flow input. In this
section we conduct ablation experiments on both, AVOS
(DAVIS’16) and actor/action segmentation (A2D), to in-
vestigate the two remaining contributions of our work: the
multiscale encoder-decoder video transformer and many-to-

forms all others by a considerable margin when using the
standard ResNet-101 backbone and further improves using
Video-Swin. Per object category results are reported in the
supplement, as standard for this dataset.
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Figure 4. Qualitative segmentation results (red masks) comparing MED-VT to groundtruth and baseline algorithm. Left: Three frames of
DAVIS’ 16 dance-twirl. Right: Three frames of MoCA flounder-6. MED-VT segments with fine precision and temporal consistency, even
in the presence of severe camouflage. MoCA groundtruth only specified as bounding boxes; although, MED-VT goes further to delineate
actual object shape. Supplemental video provides visualization especially useful for appreciating the camouflage example.

Method | DAVIS’16 | YouTube Objects | MoCA |

- 82.2 74.4 69.1
Mtol 81.7 74.5 68.6
MtoM 83.0 75.2 69.4

Table 6. Ablation on Many-to-One (Mtol) vs our Many-to-Many
(MtoM) label propagation. Best results highlighted in bold.

many label propagation. To facilitate this study, we created
a baseline model with a single scale transformer encoder
and decoder working only on the top layer feature map of
the backbone feature extractor, i.e. coarsest scale. Subse-
quently, we incrementally add the multiscale decoder, mul-
tiscale encoder and label propagation.

Table 5 shows that the multiscale decoder immediately
improves over the baseline for both AVOS and actor/action
segmentation. Addition of the multiscale encoder fur-
ther improves the results to demonstrate their complemen-
tarity and the importance of unified multiscale encoding-
decoding. Moreover, addition of many-to-many label prop-
agation to the unified encoder-decoder consistently leads to
the best overall performance. This enhancement can be
traced to the label propagation yielding more temporally
consistent predictions. Finally, we do a direct analysis of
the benefits of our many-to-many label propagation vs. an
alternative many-to-one label propagation technique, where
many-to-one only propagates from previous frames to the
current. Table 6 shows consistent improvement with many-
to-many label propagation over the many-to-one alternative.

5.4. Qualitative results
Figure 4 shows qualitative results on two AVOS videos.

The dancer on the left side exhibits complex, deforming
motion and requires fine localization precision to delineate

limbs. MED-VT deals with both challenges in a tempo-
rally consistent fashion, with consistency from the encoder
as well as label propagator and localization from the de-
coder; in comparison, the baseline inconsistently captures
the limbs, if at all. The fish on the right side is almost im-
possible to detect in a single frame due to its strong cam-
ouflage. MED-VT defeats the camouflage to precisely and
consistently delineate the body as the encoder consistently
abstracts critical motion, while the baseline largely fails;
this example is best viewed in the supplemental video to
reveal the input camouflaged fish. The supplemental video
also has qualitative results for actor/action segmentation.

6. Conclusion

A novel Multiscale Encoder-Decoder Video Transformer
(MED-VT) has been introduced. MED-VT is the first video
transformer to unify multiscale encoding and decoding.
Moreover, it is the first to apply many-to-many label prop-
agation in a video transformer. The benefits of these inno-
vations have been motivated and empirically validated. En-
coding yields rich and temporally consistent spatiotemporal
features derived from only RGB input (i.e. without optical
flow). Decoding yields yields semantically informed, pre-
cise localization. Label propagation promotes consistency
across an entire input clip. MED-VT has been instantiated
on two video prediction tasks to yield state-of-the-art per-
formance on multiple datasets. The generality of MED-VT
also makes it suitable for other video-based dense predic-
tion tasks where there may be little known a priori about
the objects of interest, yet precise delineation is desired
(e.g. anomalous behaviour detection in video [14, 27, 49]
and multimodal video representation learning [18,36]).
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