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Figure 1. Teleidoscopic Imaging System. (a) We propose a novel system for microscale 3D imaging using an imaging setup that consists

of a camera, a kaleidoscopic multi-facet mirror with a monocentric front lens, and a projector. (b) Our system realizes a dense close-up

surrounding multi-view capture of the target. (c) Our method enables fuller and dense reconstruction of microscale objects.

Abstract

This paper proposes a practical method of microscale

3D shape capturing by a teleidoscopic imaging system. The

main challenge in microscale 3D shape reconstruction is

to capture the target from multiple viewpoints with a large

enough depth-of-field. Our idea is to employ a teleidoscopic

measurement system consisting of three planar mirrors and

monocentric lens. The planar mirrors virtually define mul-

tiple viewpoints by multiple reflections, and the monocen-

tric lens realizes a high magnification with less blurry and

surround view even in closeup imaging. Our contributions

include, a structured ray-pixel camera model which han-

dles refractive and reflective projection rays efficiently, an-

alytical evaluations of depth of field of our teleidoscopic

imaging system, and a practical calibration algorithm of

the teleidoscopic imaging system. Evaluations with real im-

ages prove the concept of our measurement system.

1. Introduction

Microscale 3D reconstruction has found profound appli-

cations in a wide range of domains including medical imag-

ing, life science, and aquaculture, due to its non-constrained

and non-invasive measurements. The main challenges in

image-based microscopic 3D shape measurement is its shal-

low depth of field and camera arrangement in the closeup

scenario. Applying conventional multiple camera system

designed for human-size capture [14, 30] cannot be a feasi-

ble solution due to limitations on camera placement. Con-

ventional multiple mirror system [33] also have difficulties

inevitably in depth-of-focus due to differences in their opti-

cal path lengths with varying numbers of bounces.

In this paper, we show that the fuller 3D shape of a mi-

croscale object can be recovered. Our key idea is to employ

a catadioptric imaging system which realizes a practical

closeup multi-view imaging. The point of our design is that

the system has a monocentric front lens like a teleidoscope,

instead of using microscopic system in the camera side.

That is, as shown in Fig. 1(a), we introduce a kaleidoscopic

multi-facet mirror between the front lens and the camera,

where the design realizes a deeper depth-of-field and results

in less blurring imaging. Unlike conventional microscopic

imaging system such as differential phase contrast (DPC)

microscopy [4, 34] and multi-focus approaches [15, 24, 26],

our method realizes a multi-view capture of the target from

a single physical viewpoint which can contribute to free-

viewpoint rendering, 3D shape reconstruction, and reflec-

tion analysis. Our system also has an advantage over ex-

isting imaging systems that build multiple views behind the

main lens [7, 21] in a closeup environment. The wide FoV

with a monocentric main lens and virtual multiple views

with mirrors allow closeup and surrounding view capturing

in focus.

We call our system teleidoscopic imaging system and

show that the system can be compactly modeled by a struc-

tured ray-pixel camera model [11], which handles refractive

and reflective projection rays efficiently. Based on our ray-

pixel camera model, we derive a practical calibration algo-
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rithm that estimates the positions of the monocentric lens

and multi-facet mirror w.r.t. the camera by using a single

reference planar pattern (i.e., a checkerboard). Given the

calibration parameters, a scene point can then be linearly

triangulated from its teleidoscopic projection in a direct lin-

ear transform (DLT) manner [13].

We implement our method with an imaging system

consisting of a camera, three planar mirrors, a monocen-

tric lens, and a projector placed outside the mirrors for

structured-light casting. We quantitatively evaluate the

computation cost of numerical projections, the robustness

of the calibration, and the depth of field of our teleido-

scopic imaging system. We also validate the effectiveness

of our method qualitatively on a number of real-world mi-

croscale objects. These results demonstrate that our method

enables holistic and dense reconstruction of microscale ob-

jects. We believe our method expands the avenues of three-

dimensional analysis of microscale objects and scenes in

real world scenarios.

2. Related Work

Our teleidoscopic imaging system is a catadioptric sys-

tem consisting of a monocentric lens and kaleidoscopic mir-

rors (Fig. 1(a)). While catadioptric system has a wide vari-

ety of applications such as omnidirectional observation and

panoramic stereo [1,10,25,27], this section reviews studies

with multiple flat mirrors and monocentric lenses.

2.1. Imaging with Multiple Flat Mirrors

A fundamental motivation of introducing mirrors in ob-

servation system is to increase the number of viewpoints

without installing additional cameras for multi-view cap-

ture of a target [3, 8, 20, 28, 32, 33]. Takahashi et al. [33]

have proposed a kaleidoscopic imaging system and demon-

strated a 3D shape reconstruction using multiple reflections.

Tagawa et al. [32] have proposed a multi-facet imaging sys-

tem that observes a target from an equally distributed virtual

cameras for reflectance analysis.

2.2. Imaging with Monocentric Lens

In the context of imaging system, the monocentric lens is

often used to obtain a wide field-of-view [17, 35], in partic-

ular for endoscopes, as a short focal length lens. The mono-

centric lens, however, has additional useful characteristics:

its symmetric structure and magnifying power. Cossairt et

al. [5] have proposed a camera array which captures a same

scene through a single monocentric lens so that the images

can be stitched into a single high-resolution image. Simi-

larly, Dansereau et al. [6] have proposed a lightfield camera

which captures omnidirectional lightfield images through a

single monocentric lens with a camera orbiting around it.

A typical use of the monocentric lens as a magnifier can

be found in the Leeuwenhoek’s microscope in the 17th cen-
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Figure 2. Measurement through Monocentric Lens. The segments

of projection path ℓo-ℓg-ℓi have an axially symmetric structure

around the axis which directs to the monocentric lens center oD .

tury. It utilizes a single monocentric lens and realized over

100× magnifications [9].

2.3. Ray­pixel Camera Model

In order to handle light paths captured via complex imag-

ing system such as reflection and refraction, Grossberg and

Nayar [11] have proposed a ray-pixel (or raxel) camera

model which describes the projection by end-to-end map-

pings between the pixels and their corresponding emergent

rays. While this pixel-wise representation has a great flexi-

bility to describe complicated projections [22, 31], it is also

possible to exploit a structure of the rays to simplify the

model [16, 22, 36–38]. Kawahara et al. [16] have proposed

a ray-pixel camera model for cameras observing the scene

through flat surfaces. Compared with analytical forward

projections through flat surfaces which requires solving a

high order equation [2], it realized a practical numerical for-

ward projection computation by exploiting the axially sym-

metric structure of the rays.

3. Ray-Pixel Camera Model for Teleidoscopic

Imaging System

In our teleidoscopic system, the cameras mirrored by the

kaleidoscopic multi-facet mirrors observe the scene through

the single monocentric lens (Fig. 1(a)) as done in [5,6], and

each of the monocentric lens and the camera pairs form a

microscope capturing the object from a different direction.

In this section, we show that this design realizes a mi-

croscale multi-view capturing with a deep depth-of-field,

and that the projections by the teleidoscopic imaging sys-

tem can be modeled compactly by ray-pixel cameras.

3.1. Measurement through Monocentric Lens

As illustrated in Fig. 2, suppose a perspective camera

whose camera center is located at o0 observes the scene

through a monocentric lens located at oD. Here the per-

spective camera can be assumed to be directed to the center
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of the monocentric lens oD without loss of generality, since

we can calibrate the rotation to align the optical axis of the

camera to the line oD − o0 as described later. We denote

this normalized camera by Cn.

Obviously, the rays backprojected through pixels of Cn

have an axially symmetric structure around the optical axis,

and an incident ray ℓi through a pixel pp and its refraction ℓg
and emergent ray ℓo are on a single plane-of-refraction [2].

Therefore, we can describe the ray through a single pixel by

a 2D (r, z)⊤ coordinate system centered at o0.

Hereafter, let rα and zα denote the r and z elements of

the vector α in general. For example, point pp is described

as pp = (rpp
, zpp

)⊤. Also let vX = (rvX
, zvX

)⊤ denote

the direction vector of line ℓX towards the scene from the

camera, where X = {i, g, o} represents the label of the light

path segment.

Consider the projection path ℓo-ℓg-ℓi from o0 through

the point pp. The incident point pi on the sphere is de-

scribed as a function of θp = tan−1(rpp
/fc) as

zpi
=

dD−
√

d2
D
−(1+tan2 θp)(d2

D
−r2

D
)

1+tan2 θp
,

rpi
= zpi

tan θp ,
(1)

where dD and rD are the distances to the monocentric lens

and the lens radius.

The refraction angle θg is then given by Snell’s law with

assuming the refractive indices of the air µa and the lens µg

are known:

µg sin θg = µa sin(θp + θDi) ,

⇔ sin θg =
µa

µg

dDrpi
rD
√

r2pi
+z2

pi

,
(2)

where θDi
is the angle of o0-oD-pi.

The point of emergence po is the intersection of the path

ℓg and the sphere. It is also obtained as the mirror of the

point pi because of the symmetrical relationship between

incident path ℓi and outgoing ℓo w.r.t. the monocentric lens.

As shown in Fig. 2, ℓi and ℓo are in line symmetry to the

line that is perpendicular to the vector np through the point

oD. That is, given the point pi, its reflection po is described

as

po = Hppi + tp ,

⇔ po =
(

I − 2npn
⊤
p

)

pi + 2(o⊤
Dnp)np ,

(3)

where Hp is the Householder matrix and tp denotes the cen-

ter of reflection. Besides, the direction np is given as

np =

[

cos(π/2 + θDi − θg)
sin(π/2 + θDi − θg)

]

=

[

− sin(θDi − θg)
cos(θDi − θg)

]

, (4)
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Figure 3. 3D-2D Projection. The black line ℓo is the correct pro-

jection path that intersects with the optical axis at the camera cen-

ter o0. Our 3D-2D projection hypothesizes a line ℓλ as an initial

guess of projection, and then optimizes it by verifying if the point

and the angle of intersection with the optical axis is consistent with

the ray-pixel mapping ⟨θq, fq⟩.

therefore Hp and tp are rewritten to

Hp =

[

cos 2(θDi − θg) sin 2(θDi − θg)
sin 2(θDi − θg) − cos 2(θDi − θg)

]

,

tp =

[

−dD sin 2(θDi − θg)
dD cos 2(θDi − θg) + dD

]

.

(5)

The direction vo is also given by Householder matrix as

vo = Hpvi . (6)

As a result, the intersection ofq = (0, fq)
⊤ of the ray ℓo

and the optical axis is given as follows:

ofq = tovo + po , (7)

⇔ to = − rpo

rvo
, fq = zpo

+
(

−rvo

zvo

)−1

rpo
. (8)

This equation describes the ray ℓo backprojecting from

the pixel pp as a function of θp. Inversely, the forward pro-

jection can be obtained for a given 3D point in front of the

monocentric lens. The analytical 3D-2D projection, how-

ever, requires solving a 10th-degree equation [2]. The next

section introduces a ray-pixel camera which exploits the ax-

ial symmetric structure of the rays to provide an efficient

numerical 3D-2D projection.

3.1.1 Spherical Refraction Ray-Pixel Camera Model

Up to this point, we observed that the rays emitted from a

perspective camera through a monocentric lens show an ax-

ially symmetric structure around the line from the camera to

the lens center. As illustrated in Fig. 2, given a pixel pp by

specifying θp, the corresponding ray ℓo can be determined

uniquely by Eq. (8). This section introduces our spherical

refraction ray-pixel camera model by representing the ray-

pixel mapping as follows.

Fig. 3 illustrates the light path from a pixel pp on the

plane-of-refraction. Suppose the emergent ray ℓo intersects
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Table 1. The Pixel-Ray Mapping in Spherical Refraction Ray-

Pixel Camera. A virtual pixel parameterized by θq is associated

with a pixel-wise focal length fq(θq) ∈ R. The derivative
dfq(θq)

dθq

is also stored for our numerical 3D-2D projection.

pixel θq0 θq1 · · · θqN
ray fq(θq0) fq(θq1) · · · fq(θqN )

dfq(θq)
dθq

f ′
q(θq0) f ′

q(θq1) · · · f ′
q(θqN )

with the optical axis at ofq = (0, fq)
⊤ with angle θq . Ob-

viously, changing the position of pp in r direction results

in changing the corresponding ⟨fq, θq⟩ pair. That is, since

the mapping between the pixel pp i.e., ℓi, and the ray ℓo,

i.e., ⟨fq, θq⟩ is bijective because of the reversibility of light,

representing the light paths from the pixels in r space is

identical to knowing all possible ⟨fq, θq⟩ pairs. In other

words, the system of Fig. 3 as a whole can be seen as a

pixel-wise varifocal camera which changes the focal length

fq for each virtual pixel parameterized by θq . In fact, the

mapping θq 7→ fq is a monotonic function due to the spher-

ical structure of the lens.

Table 1 shows our ray-pixel mapping. Due to the spheri-

cal structure of the lens, this is a discretization of the mono-

tonic function θq 7→ fq by θq . In practice, we sample θq
so that their interval results in a sub-pixel sampling in the

original image domain. Notice that the derivative
dfq(θq)

dθq
is

also stored for our numerical 3D-2D projection as described

below.

3.1.2 3D-2D Projection

Instead of the analytical forward projection which requires

solving a 10th-degree equation [2], this section introduces a

numerical forward projection using our ray-pixel mapping

table (Tab. 1). The key idea of our numerical forward pro-

jection is to hypothesize a projection line ℓλ in Fig. 3 first,

and check if it intersects with the optical axis at the identi-

cal virtual focal length stored in the ray-pixel mapping ta-

ble (Tab. 1). If the focal lengths are not identical, then ℓλ,

i.e., the virtual pixel θq equivalently, is refined to minimize

the difference. We can formulate this process as a Gauss-

Newton optimization as follows.

Gauss-Newton Method As shown in Fig. 3, let us con-

sider the ray ℓλ from a 3D point to be projected. By hy-

pothesizing that ℓλ intersects the optical axis at an angle

θq , i.e., by hypothesizing that the 3D point is projected to a

virtual pixel θq , we can compute the intersection Λq(θq) =
(0, λq(θq))

⊤ of ℓλ and the optical axis. If λq is equal to the

virtual focal length fq(θq) stored in the ray-pixel mapping,

the ray ℓλ is identical to ℓo, and hence that can intersect with

the optical axis at the camera center o0.

That is, the numerical 3D-2D projection can be achieved
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Figure 4. Kaleidoscopic Imaging. (a) Mirrored Cameras. (b)

Chambers in the real camera image. The label i of Ci and u
(i)

denote the reflections of C and u by the ith mirror respectively.

by solving the following optimization:

θq = argmin
θq

G(θq) = argmin
θq

(fq(θq)− λq(θq)) . (9)

Here G(θq) is a monotonic function and hence we can

refine θq iteratively by Gauss-Newton method as

θ(k+1)
q = θ(k)q −G

∆θq
∆G

= θ(k)q − fq(θ
(k)
q )−λq(θ

(k)
q )

f ′

q(θ
(k)
q )−λ′

q(θ
(k)
q )

,
(10)

where θ
(k)
q denotes θq of the k-th iteration.

Therefore, if we compute the derivative f ′
q beforehand as

shown in the third row of Tab. 1, then this 3D-2D projection

can be computed efficiently.

3.2. Multifacet Mirror

As is well known, observing the scene via a multi-facet

mirror or a kaleidoscope is identical to observing the scene

by virtual multi-view cameras, and in particular, kaleido-

scopes with three mirrors are known to be reasonable in

terms of less overlaps of mirrored images called discontinu-

ities [29,33]. In our teleidoscopic imaging system, we use a

three-facet mirror which defines reflections of the spherical

refraction ray-pixel camera introduced in Sec. 3.1.1.

The reflection p′ of a 3D point p by a mirror of normal

ni and distance d is given by

p′ = Hip+ ti

⇔ p′ =
(

I − 2nin
⊤
i

)

p+ 2dini ,
(11)

where Hi the Householder transformation matrix.

In the case of kaleidoscopic imaging, the mirrors gener-

ate bouncing reflections as shown in Fig. 4. The reflection

of p′ by another mirror of normal nj and distance d is given

simply by

p′′ = Hijp+ tij

= HjHip+ 2djnj + 2Hjdini .
(12)
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Figure 5. Depth-of-Field with Monocentric Lens. DF and DN

denote the depth-of-field of the camera itself without the mono-

centric lens. The effective depth-of-field of the entire system LF

and LN can be obtained by projecting DN and DF through the

monocentric lens (the red and blue dashed lines).

As a result, our teleidoscopic imaging system can be

modeled as multi-view spherical refraction ray-pixel cam-

eras. They share the single monocentric lens, and the pose

of each virtual cameras can be computed by Eq. (12) if the

mirror parameters are given. The later section describes our

calibration algorithm to estimate such parameters.

4. Depth-of-Field of Teleidoscopic Imaging

System

This section describes analytical evaluations on the

depth-of-field of our teleidoscopic imaging system. We first

review the depth-of-field of monocentric lens.

4.1. Depth­of­Field with Monocentric Lens

As shown in Fig. 5, depth-of-field with a monocentric

lens can be simply defined as an extension of the path of

the thin lens camera (cf . supplemental material). This is be-

cause the points in the near and the far depth-of-field DN

and DF of thin lens are projected within the permissible

circle-of-confusion even though the monocentric lens itself

introduces the spherical aberration. Hence, we define the

depth-of-field with a monocentric lens LN and LF as the

intersection of the backprojection path through the edge of

aperture (the red and blue dash lines in Fig. 5) and the back-

projection path through the lens center o0.

Because of the symmetric structure of the monocentric

lens, the depth-of-field LN + LF can be deeper than the

original depth-of-field DN +DF if the subject distance of

the monocentric lens sD−rD is larger than its focal distance

tD − rD. That is, there is a trade-off between magnification

and depth-of-field even in a monocentric lens. The reason

for the deep depth-of-field is due to the significant contri-

bution of the monocentric lens to the far depth of field LF ,

and thus imaging with less blurring even when designed for

high magnification (cf . Sec. 6.3).

4.2. Depth­of­Field of Teleidoscopic Imaging Sys­
tem

Fig. 6 illustrates the near and the far depth-of-fields of a

virtual camera Ci defined as a mirror of the original camera.

n

d

pw

oD

dD

rD

C i

i

Φ

o0

Φ

C

i

LF LN

DF DN

(i)(i)

sc

Figure 6. Depth of Field of Teleidoscopic Imaging System. DN

and DF denote the near and far depth-of-field of the thin lens cam-

era C respectively. All the points once imaged within DN -DF

should be originally emitted from the points within LN -LF .

Due to the aperture, the near and the far depth-of-fields form

a curve respectively (the red and the blue dashed lines).

Since the teleidoscopic imaging system has multiple vir-

tual cameras as shown in Fig. 4, each of them has a dif-

ferent depth-of-field according to their relative pose to the

monocentric lens. That is, the intersections of such depth-

of-fields can be used for multi-view stereo reconstruction.

5. Calibration of Teleidoscopic Imaging Sys-

tem

This section introduces our calibration algorithm of telei-

doscopic imaging system which requires capturing a single

reference planar patterns. Fig. 7 shows the measurement

model where the real camera C observes reference points

pw such as chessboard corners on a reference board Π via

a monocentric lens and three mirrors. Our calibration es-

timates the mirror normals ni, their distances di from the

camera, and the position and the radius of the monocentric

lens, with assuming that the 2D positions of the reference

points pw on the reference plane Π, the intrinsic parameters

of the camera, and the refraction index of the lens are given

beforehand.

A challenge in this calibration is the fact that the mirrors

require observing 3D points and their reflections to estimate

their poses [33], while the observation in the teleidoscopic

system does not include such mirrored points that follow

Eq. (12) due to the refraction by the monocentric lens. Sim-

ilarly, the rays reflected and then refracted through the pro-

jection in teleidoscopic imaging system do not satisfy the

coplanarity constraint. In addition, as mentioned in [2],

the estimation of the monocentric lens parameters requires

multiple viewpoints or multiple monocentric lenses. These

points result in a chicken-and-egg problem.

To solve this problem, we utilize the fact that the posi-

tions of the centers of the monocentric lens and its mirrors
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Figure 7. Calibration of Teleidoscopic Imaging System. Cyan

lines denote the light paths for a mirrored camera. The calibration

can be conducted by capturing reference points on a plane of a

known geometry through the monocentric lens.

are always captured without refraction by definition, and

satisfy Eq. (12). Therefore, we start by estimating the center

of the monocentric lens from the captured reference points.

In what follows, p
(0)
p denotes the real image of a ref-

erence point pw in the camera C. Similarly p
(i)
p (i =

{1, 2, 3}) denotes the image of its first reflection by the mir-

ror i, and p
(ij)
p (ij = {12, 13, 21, 23, 31, 32}) denotes its

second reflection by the mirrors i and j.

Axis of Monocentric Lens The axis to the center of

monocentric lens a
(0)
v from the camera C can be estimated

by pw-p
(0)
p correspondences. Similarly to [2], we estimate

a
(0)
v by the coplanarity constraint of the three vectors a

(0)
v ,

p
(0)
p , and pw on a single plane-of-refraction:

p(0)⊤
p

(

a(0)
v × (RΠpw + tΠ)

)

= 0 ,

⇔ p(0)⊤
p (EΠpw + sΠ)) = 0 ,

(13)

where RΠ, tΠ are the pose of the reference plane in the cam-

era coordinate system and EΠ = a
(0)
v × RΠ and sΠ =

a
(0)
v × tΠ. Since this is a linear equation with 9 unknown

parameters of EΠ and sΠ, we can obtain EΠ and sΠ up to

scale by observing at least 8 points on the reference plane.

Using the estimated EΠ, the axis a
(0)
v is given by

a(0)
v = EΠ(:,1)×EΠ(:,2)

||EΠ(:,1)×EΠ(:,2)|| . (14)

Similarly, the axis to the center of the mirrored monocen-

tric lens a
(i)
v can be obtained by the mirrored points p

(i)
p .

Mirror Normals The axis to the center of the monocen-

tric lens a
(0)
v = (x

(0)
av , y

(0)
av , z

(0)
av )

⊤ and its mirror a
(i)
v =

(x
(i)
av , y

(i)
av , z

(i)
av )

⊤ satisfies

a(0)⊤
v [ni]×a

(i)
v = 0 , (15)

where [ni]× denotes the skew-symmetric matrix defined by

the normal ni = (xni
, yni

, zni
)⊤ of the mirror i.

The same constraint holds for each of the first-second

reflection pairs a
(i)
v -a

(ij)
v about the same mirror normal ni

[33]. Therefore ni can be obtained linearly only from the

axes to the centers of the monocentric lenses.

Mirror Distances Once the mirror normals are estimated,

we can utilize the kaleidoscopic triangulation [33] to ob-

tain linear constraints on the mirror distances di (See supp.

Sec. 2 for details).

Pose of Reference Plane Similarly to Eq. (13), the plane-

of-refraction constraint holds for the mirrored cameras Ci:

(p(i)
p )⊤

(

a(i)
v × (Hi(RΠpw + tΠ) + ti)

)

= 0 . (16)

This constraint allows us estimating the pose of the refer-

ence plane RΠ and tΠ linearly.

Monocentric Lens Parameters The calibration algo-

rithm up to this point does not require the monocentric lens

parameters dD, rD, and µg . We estimate these parameters

by the coplanarity constraint of the ray through p
(i)
p of Ci:

v(i)
o × (p(i)

w − p(i)
o ) = 0 . (17)

This is a nonlinear constraint for the monocentric lens pa-

rameters as described in Sec. 3.1 and we solve this as a non-

linear optimization problem with assuming their rough esti-

mates are available in practice.

Bundle Adjustment The last step of our calibration is to

refine the parameters a
(0)
v , dD, rD, µg,ni, di, RΠ, tΠ (i =

1, 2, 3) by minimizing the reprojection errors of the refer-

ence points pw as a nonlinear optimization problem. Here

the forward projection is computed using the method de-

scribed in Sec. 3.1.2.

Once the teleidoscopic imaging system parameters are

calibrated, a scene point can be linearly triangulated in a

DLT manner [13] from its teleidoscopic projections (See

supp. Sec. 3 for details).

6. Evaluation

This section provides quantitative evaluations of the pro-

posed numerical 3D-2D projections, the robustness of the

calibration, and the depth of field of our teleidoscopic imag-

ing system. We also demonstrate the effectiveness of our

method by reconstructing real-world microscale objects.

6.1. Computational Efficiency of 3D­2D Projection

The average computation cost of a single forward pro-

jection by our method and by the analytical solution solving

a 10th-degree equation for each projection [2] are 0.62 ms

and 3.93 ms respectively. These runtime costs are the aver-

age values of 100 trials of 10K points forward projections
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Figure 8. Teleidoscopic System for Quantitative Evaluation. (a)

Simulated measurement environment. (b) Reprojection errors at

different noise levels. The bars denote the standard deviation of

the errors.
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Figure 9. Calibration Errors. From left to right, the upper figures

show the (a) angular error of the axis to the monocentric lens cen-

ter (degree), (b) angular error of the mirror normal (degree), and

(c) rotation error (Riemannian distance) of reference plane. The

lower ones are the distance errors normalized by the ground truth.

Here the distance of the monocentric lens is only estimated in a

nonlinear manner (Sec. 5).

run in Matlab on an Intel Core-i7 2.6GHz PC. This result

clearly verifies that our numerical forward projection based

on our ray-pixel model can realize an efficient projection.

6.2. Calibration

6.2.1 Quantitative Evaluation using Synthesized Data

Fig. 8(a) shows the measurement environment which simu-

lates the real capture system used in Sec. 6.2.2. The system

has a kaleidoscope with three 10 × 30mm mirrors in front of

the camera C. The mirrors are at slightly off-perpendicular

angle of 1.4◦ to the camera image plane so that the mirrors

define virtual cameras around the target with less overlaps

of the mirrored images. The system also has a monocen-

tric lens of 10mm diameter in front of the mirrors, at 40mm

distance from the camera. The refraction index µg is set to

2.0. The system captures 48 reference points (blue dots in

Fig. 8(a)) to calibrate its parameters. By injecting Gaussian

(a) (b)

Figure 10. Experimental Setup and Calibration. (a) Our telei-

doscopic imaging system consists of a camera, a projector, three

mirrors (10 × 30mm), and a monocentric lens (5mm radius, re-

fraction index µg = 2.0). (b) Input image for calibration.
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Figure 11. Changes in Depth-of-Field by the Monocentric Lens.

(a), (b) and (c) show the total, near, and far depth-of-field with

a monocentric lens. The red and blue plots indicate the results

with and without the monocentric lens respectively. The green

lines indicate the subject distance where the subject and the focal

distances of the monocentric lens itself are same.

noise of different standard deviations σ to the 2D positions

of their projections, we evaluate the robustness of our cali-

bration procedure. Fig. 8(b) shows average reprojection er-

rors in pixel of 100 trials at each pixel noise level σ. We can

observe that the reprojection errors increase linearly against

the pixel noise level.

Fig. 9 shows the estimation errors of the monocentric

lens parameters, the mirror parameters, and the reference

plane parameters respectively. These results indicate that

our calibration algorithm performs reasonably under realis-

tic observation noise.

6.2.2 Quantitative Evaluation using Real Data

Fig. 10(a) shows an overview of our teleidoscopic imag-

ing system. The system consists of a FLIR Blackfly BFS-

U3-89S6C-C camera (4096×2160 resolution, pixel size

3.45µm) with a f=4mm / F8 lens, three 10 × 30mm mir-

rors, a monocentric lens of 10mm diameter whose refrac-

tion index is µg = 2.0, and a LED projector ASUS E1-

R for casting Gray code patterns onto the target surface to

identify corresponding points [12, 23]. Note that the effec-

tive resolution of each “virtual camera” image is approxi-

mately 300×200 (16 “virtual cameras” in total), which is

calculated from the area inside the base chamber with one

horizontal edge of the triangle and inside the spherical lens.

We used a single image (Fig. 10(b)) capturing 5×8 cor-

ners of a checkerboard for calibration, and used up to sec-

ond reflections in the image. The average reprojection er-
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Figure 12. Evaluation with a sphere (radius: 3mm). (a) Ground

truth. (b) Recovered 3D shape. The colors visualize the z-

coordinate of the reconstructed shape. (c) Error map. Ed is the

mean absolute error in millimeter.

ror is 0.62px, and the average distance error of the triangu-

lated 3D points to their ground truth positions was 0.17mm.

The size of reference checkerboard is around 15mm width,

hence the relative error of the triangulation is around 1%.

These result shows our method provide a practical calibra-

tion and the valid scale of the target object also depends on

size of the checkerboard.

6.3. Depth­of­Field

Fig. 11 shows the changes in the depth-of-field by the

monocentric lens capturing an object of 0.5mm height at

the same magnification given the configuration same as the

real capture in Sec. 6.2.2. Fig. 11(a) shows the total depth-

of-field with and without the monocentric lens LN + LF

(red and blue respectively). Fig. 11(b) and (c) show LN

and LF in the same manner. In these figures, the horizontal

axis indicates the apparent size of the target in pixel, with

assuming the measurement model used in Sec. 6.2. These

plots clearly indicate that the monocentric lens contributes

to increase the depth-of-field successfully.

6.4. Teleidoscopic 3D Shape Reconstruction

To validate the proposed teleidoscopic system as a multi-

view camera system for 3D shape reconstruction, this sec-

tion demonstrates 3D reconstruction of small objects of ap-

proximately 6mm size.

We used the system calibrated in Sec. 6.2.2. Fig. 12 visu-

alizes our 3D reconstruction of the front side of a real sphere

of 3mm radius with the ground-truth and the error map. The

mean absolute error Ed of the estimated depth is 0.097mm.

Compared with its size, the relative error is about 1.6%.

Fig. 13 shows additional 3D reconstructions. The 1st and

the 2nd rows demonstrate that our imaging system has the

ability to recover complex shapes. The proposed imaging

system well recovers the complex bumpy parts of the shell

and the sharp edges and corners of the object. The 2nd and

the 3rd rows compare “with” and “w/o” the monocentric

lens cases. As the input image (b) shows, the monocentric

lens creates a surrounding view while preserving the area of

each chamber, resulting in a fuller and more accurate geom-

etry, as shown in (c). We can verify this quantitatively by

comparing the numbers of pixels covering the object area in

the captured image (145,217 vs. 12,730) and the numbers

(a) (b) (c)

w/o monocentric lens

145,217 px cover
the object area

12,730 px cover
the object area

40,639 pts recovered

8,264 pts recovered

Figure 13. Results of 3D Shape Estimation. The second and

the third row compares “with” and “w/o” the monocentric lens.

(a) Room-light appearance. (b) Teleidoscopic image. (c) Recon-

structed 3D shapes.

of triangulated 3D points using the ground-truth correspon-

dences as shown in the figure (40,639 vs. 8,264). See the

supplementary material for more results.

Limitations The major limitations of our method are

twofold. The monocentric lens has a relatively large spher-

ical aberration, and the optical resolution of the entire sys-

tem is limited by such aberrations. One possible solution

is to introduce nested concentric glass spheres with dif-

ferent refractive indices for the monocentric lens [6, 35].

The other limitation is the trade-off between the number

of virtual viewpoints and the effective resolution of each

view because the use of a kaleidoscope requires zooming-

out to capture the reflected images. While larger number of

the cameras contributes to robustify the triangulation, it in-

evitably reduces the resolution of the reconstruction as the

number of pixels per view decreases.

7. Conclusion

This paper proposed the concept of image-based 3D

measurement by a teleidoscopic imaging system for mi-

croscale objects. By combining a monocentric lens with a

kaleidoscope, our system realized a closeup and surround-

ing multi-view capture of the target. Our contributions are

twofold. We proposed a ray-pixel camera model that real-

ized an efficient numerical 3D-2D projection computation,

and also proposed a calibration method for the teleidoscopic

imaging system. Our future work includes aberration and

diffraction blur handling such as the inverse filter proposed

in [5], and also refraction/attenuation modeling in the case

of capturing objects in water [18, 19].
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