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Figure 1. Our Color Style Transfer Results. (a) State-of-the-art methods PhotoNAS [1] and PhotoWCT2 [6] produce distort textures
(e.g., text in green box) and dissonant colors (e.g., content in orange box). Besides, they have long inference time even on the latest Nvidia
RTX3090 GPU (red numbers in brackets). In contrast, our method avoids artifacts and is ∼28× faster. (b) Our method can produce faithful
results on 8K images, but both PhotoNAS and PhotoWCT2 run into the out-of-memory problem. Zoom in for better visualization.

Abstract

In this paper, we present a Neural Preset technique to
address the limitations of existing color style transfer meth-
ods, including visual artifacts, vast memory requirement,
and slow style switching speed. Our method is based on two
core designs. First, we propose Deterministic Neural Color
Mapping (DNCM) to consistently operate on each pixel via
an image-adaptive color mapping matrix, avoiding artifacts
and supporting high-resolution inputs with a small memory
footprint. Second, we develop a two-stage pipeline by divid-
ing the task into color normalization and stylization, which
allows efficient style switching by extracting color styles as
presets and reusing them on normalized input images. Due
to the unavailability of pairwise datasets, we describe how
to train Neural Preset via a self-supervised strategy. Vari-
ous advantages of Neural Preset over existing methods are
demonstrated through comprehensive evaluations. Besides,
we show that our trained model can naturally support mul-
tiple applications without fine-tuning, including low-light
image enhancement, underwater image correction, image
dehazing, and image harmonization. The project page is:
https://ZHKKKe.github.io/NeuralPreset.

1. Introduction

With the popularity of social media (e.g., Instagram and
Facebook), people are increasingly willing to share pho-
tos in public. Before sharing, color retouching becomes
an indispensable operation to help express the story cap-
tured in images more vividly and leave a good first impres-
sion. Photo editing tools usually provide color style presets,
such as image filters or Look-Up Tables (LUTs), to help
users explore efficiently. However, these filters/LUTs are
handcrafted with pre-defined parameters, and are not able
to generate consistent color styles for images with diverse
appearances. Therefore, careful adjustments by the users is
still necessary. To address this problem, color style trans-
fer techniques have been introduced to automatically map
the color style from a well-retouched image (i.e., the style
image) to another (i.e., the input image).

Earlier color style transfer methods [41–43, 49] focus
on retouching the input image according to low-level fea-
ture statistics of the style image. They disregard high-level
information, resulting in unexpected changes in image in-
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herent colors. Although recent deep learning based mod-
els [1,6,19,34,36,54] give promising results, they typically
suffer from three obvious limitations in practice (Fig. 1 (a)).
First, they produce unrealistic artifacts (e.g., distorted tex-
tures or inharmonious colors) in the stylized image since
they perform color mapping based on convolutional mod-
els, which operate on image patches and may have incon-
sistent outputs for pixels with the same value. Although
some auxiliary constraints [36] or post-processing strate-
gies [34] have been proposed, they still fail to prevent ar-
tifacts robustly. Second, they cannot handle high-resolution
(e.g., 8K) images due to their huge runtime memory foot-
print. Even using a GPU with 24GB of memory, most recent
models suffer from the out-of-memory problem when pro-
cessing 4K images. Third, they are inefficient in switching
styles because they carry out color style transfer as a single-
stage process, requiring to run the whole model every time.

In this work, we present a Neural Preset technique with
two core designs to overcome the above limitations:

(1) Neural Preset leverages Deterministic Neural Color
Mapping (DNCM) as an alternative to the color mapping
process based on convolutional models. By multiplying
an image-adaptive color mapping matrix, DNCM converts
pixels of the same color to a specific color, avoiding un-
realistic artifacts effectively. Besides, DNCM operates on
each pixel independently with a small memory footprint,
supporting very high-resolution inputs. Unlike adaptive 3D
LUTs [7, 55] that need to regress tens of thousands of pa-
rameters or automatic filters [23, 27] that perform particu-
lar color mappings, DNCM can model arbitrary color map-
pings with only a few hundred learnable parameters.

(2) Neural Preset carries out color style transfer in two
stages to enable fast style switching. Specifically, the first
stage builds a nDNCM from the input image for color nor-
malization, which maps the input image to a normalized
color style space representing the “image content”; the sec-
ond stage builds a sDNCM from the style image for color
stylization, which transfers the normalized image to the tar-
get color style. Such a design has two advantages in terms
of efficiency: the parameters of sDNCM can be stored as
color style presets and reused by different input images,
while the input image can be stylized by diverse color style
presets after normalized once with nDNCM.

In addition, since there are no pairwise datasets avail-
able, we propose a new self-supervised strategy for Neu-
ral Preset to be trainable. Our comprehensive evaluations
demonstrate that Neural Preset outperforms state-of-the-art
methods significantly in various aspects. Notably, Neural
Preset can produce faithful results for 8K images (Fig. 1 (b))
and can provide consistent color style transfer results across
video frames without post-processing. Compared to re-
cent deep learning based models, Neural Preset achieves
∼28× speedup on a Nvidia RTX3090 GPU, supporting

real-time performances at 4K resolution. Finally, we show
that our trained model can be applied to other color map-
ping tasks without fine-tuning, including low-light image
enhancement [30], underwater image correction [52], im-
age dehazing [16], and image harmonization [37].

2. Related Works

Color Style Transfer. Unlike artistic style transfer [2, 5,
9–11, 20, 21, 24, 26, 31, 32] that alters both textures and
colors of images, color style transfer (aka photorealistic
style transfer) aims to shift only the colors from one im-
age to another. Traditional methods [41–43, 49] mostly
match the statistics of low-level features, such as the mean
and variance of images [43] or the histograms of filter re-
sponses [41]. However, these methods often transfer un-
wanted colors if the style and input images have large ap-
pearance differences. Recently, many methods exploiting
convolutional neural networks (CNNs) [1, 6, 19, 34, 36, 54]
are proposed for color style transfer. For example, Yoo et
al. [54] introduce a model with wavelet pooling/unpooling
to reduce distortions. An et al. [1] use network architec-
ture search to explore a more effective asymmetric model.
Chiu et al. [6] propose to obtain a more compact model
by block-wise training with a coarse-to-fine transforma-
tion. To address the limitations (i.e., visual artifacts, huge
memory consumption, and inefficient in switching styles) of
the aforementioned methods as stated in Sec. 1, we present
Neural Preset that supports artifact-free color style transfer
with only a small memory footprint, via DNCM, and en-
ables fast style switching, via a two-stage pipeline.

Deterministic Color Mapping with CNNs. Filters and
LUTs avoid artifacts as they perform deterministic color
mapping to produce consistent outputs for the same input
pixel values. Some recent image enhancement and harmo-
nization methods [7, 23, 27, 55] have attempted to imple-
ment color mapping using filters/LUTs with image-adaptive
parameters predicted by CNNs. However, combining fil-
ters/LUTs with CNNs for color mapping has clear draw-
backs. Filter-based methods [23, 27] integrate a finite num-
ber of image filters, and can only handle basic color ad-
justments, e.g., brightness and contrast. LUT-based meth-
ods [7, 55] need to predict coefficients to linearly merge
several template LUTs, because LUTs have a large num-
ber of learnable parameters that are difficult to optimize via
CNNs. Although the affine bilateral grid [12] may model
complex color mapping with fewer learnable parameters, it
cannot provide deterministic color mapping. Applying it to
color style transfer [50] may lead to inharmonious colors
in different regions of the image. Instead of adopting the
aforementioned schemes, we propose DNCM that has only
a few hundred learnable parameters but can model arbitrary
deterministic color mappings.
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Self-Supervised Learning (SSL). SSL has been widely
explored for pre-training [3, 4, 13, 15, 17, 18, 38–40]. Some
works also solve specific vision tasks via SSL [22, 25, 29].
Since it is expensive to annotate ground truths for color
style transfer, most methods either minimize perceptual
losses [2, 11, 24, 36] or match the statistics of image fea-
tures [6, 33, 34, 54]. However, such weak constraints usu-
ally result in severe visual artifacts. Yim et al. [53] and
Ho et al. [19] suggest imposing stronger constraints by
reconstructing perturbed images, but their trained models
can only transfer color styles to images with natural ap-
pearances, e.g., images taken by a camera without post-
processing. To this end, we present a new SSL strategy
for Neural Preset, which not only learns from reconstruct-
ing perturbed images but also enables the trained models to
transfer color styles between arbitrary images.

3. Method
Our Neural Preset performs color style transfer through

a two-stage pipeline, where both stages employ DNCM for
color mapping. In this section, we first introduce DNCM
in details (Sec. 3.1). We then present the two-stage DNCM-
based color style transfer pipeline (Sec. 3.2). Finally, we
describe our self-supervised learning strategy for training
Neural Preset (Sec. 3.3).

3.1. Deterministic Neural Color Mapping (DNCM)

A straightforward idea to model deterministic color map-
ping that can adapt to different images is to combine fil-
ters/LUTs with the image-adaptive parameters predicted by
CNNs. However, each image filter can only provide a sin-
gle color mapping. Integrating a finite number of filters can
only cover a limited range of color mappings. Besides, as
a common 32-level 3D LUT has ∼10K parameters, it is in-
feasible to regress image-specific 3D LUTs. The approach
based on predicting coefficients to merge template LUTs
still needs to optimize tens of thousands of parameters to
build template LUTs.

Here, we propose DNCM to model arbitrary determin-
istic color mapping with much fewer learnable parameters.
As shown in Fig. 2, given an input image I of size (h,w, 3),
we downsample it to obtain a thumbnail Ĩ, which pro-
vides image-adaptive color mapping matrix T for DNCM.
Specifically, we feed Ĩ into an encoder E to predict T of
size (k × k), and then reshape it to a size of (k, k), as:

T(k×k) = E( Ĩ ), T(k×k) → T(k,k), (1)

where → denotes the reshape operation, and k is empiri-
cally set to a small value (e.g., 16). With matrix T(k,k), we
form DNCM to alter the colors of I. In DNCM, we first
unfold I as a 2D matrix of size (h× w, 3). We then embed
each pixel in I into a k-dimensional vector by a projection

I
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(h×w, 3)(h,w,3)I

Y

P
(3,k)
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r
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Figure 2. Illustration of DNCM. The DNCM parameters con-
sist of two color projection matrices (P, Q) and image-adaptive
parameters T predicted by an encoder E. Here, we obtain Ĩ by
downsampling I. DNCM maps the input image I to output image
Y by multiplying I with P, T, and Q sequentially.

matrix P(3,k). After that, we multiply the embedded vec-
tors by T(k,k). Finally, we apply another projection matrix
Q(k,3) to convert the embedded vectors back to the RGB
color space and reshape pixels to output Y with new colors.
Note that both P and Q are learnable matrices shared by all
images. Formally, DNCM can be defined as:

Y = DNCM(I, T) = I(h×w,3)·P(3,k)·T(k,k)·Q(k,3), (2)

where · denotes matrix multiplication. We omit the reshape
operations in Eq. 2 for simplicity. Besides, for DNCM to
be a non-linear transformation, we add a tanh function after
each multiplication operation, except the last one.

Implementing color mapping as Eq. 2 brings three main
benefits. First, it effectively avoids visual artifacts as pixels
of the same color in I will still have the same color after be-
ing mapped to Y. Second, it requires only a small memory
footprint since each pixel is processed independently with
efficient matrix multiplications. Third, it makes E() easy to
optimize as only k × k image-adaptive parameters (i.e., T)
should be regressed.

3.2. Two-Stage Color Style Transfer Pipeline

Recent methods implicitly embed the color style transfer
process into CNNs to form single-stage pipelines. There-
fore, they must run the whole pipeline every time to com-
pute the color mapping between two images, which is in-
efficient when applying diverse color styles to an image or
transferring a color style to multiple images.

In contrast, we design an explicit two-stage pipeline
based on DNCM. The key insight behind our pipeline is
that if we can separate the color style of an image from its
“image content”, we can effectively transfer different color
styles to the “image content”. However, to achieve this, we
need to answer two questions. First, how to remove or add
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Figure 3. Overview of Our Pipeline. Our pipeline consists of two stages: (a) in the first stage, the input image Ic is converted to an image
Zc in the normalized color style space via nDNCM with parameters dc; (b) in the second stage, the color style parameters rs are extracted
from the style image Is for sDNCM to map Zc to Ys, which will then have the same color style as Is. Besides, the design of our pipeline
supports fast style switching: in (c), the preset color style parameters r1/r2 can be reused by sDNCM to stylize Zc to obtain Y1/Y2.

color styles? Since we need to alter the image color style
but preserve the “image content”, we propose to utilize a
pair of nDNCM and sDNCM. While nDNCM converts the
input image to a space that contains only the “image con-
tent”, sDNCM transfers the “image content” to the target
color style, using parameters extracted from the style im-
age. Second, how to represent “image content”? Since this
concept is difficult to define through hand-crafted features,
we propose to learn a normalized color style space repre-
senting the “image content” by back-propagation. In such
a normalized color style space, images of the same content
but with different color styles should have a consistent ap-
pearance, i.e., the same normalized color style.

As shown in Fig. 3 (a)(b), we modify the encoder E to
output d and r, which are applied as the parameters of nD-
NCM and sDNCM, respectively. Suppose that we want to
transfer the color style of a style image Is to an input image
Ic. In the first stage, we convert Ic to Zc in the normalized
color space via nDNCM with dc predicted from Ĩc, as:

Zc = nDNCM(Ic, dc), where {dc, rc} = E(̃Ic). (3)

In the second stage, we extract rs, i.e., the parameters con-
taining the color style of Is, to transfer Zc to the stylized
image Ys via sDNCM, as:

Ys = sDNCM(Zc, rs), where {ds, rs} = E(̃Is). (4)

E() used in Eq. 3 and 4 have shared weights. nDNCM and
sDNCM have different projection matrices P and Q.

By storing color style parameters (e.g., rs) as presets and
reusing them to construct sDNCM, our pipeline can support
fast style switching using color style presets – we only need
to normalize the color style of the input image once, and can

Lrec

LrecnDNCM w/ di sDNCM w/ rj

nDNCM w/ dj sDNCM w/ ri

Lcon

Ij

IiZj YiIj

I

Zi YjIi

Figure 4. Our Self-Supervised Training Strategy. Both Ii/Ij are
generated from I via random color perturbations. We constrain
Zi/Zj to be the same via a consistency loss Lcon and learn style
transfer results Yi/Yj via a reconstruction loss Lrec.

then quickly retouch it to diverse color styles by sDNCM
with the stored presets (e.g., rs). For example, in Fig. 3 (c),
we apply presets r1 and r2 on Zc to obtain Y1 and Y2.

3.3. Self-Supervised Training Strategy

We develop a self-supervised strategy to train Neural
Preset, as shown in Fig. 4. Since no ground truth stylized
images are available, we create pseudo stylized images from
the input image I. Specifically, we add perturbations on I to
obtain two augmented samples with different color styles,
which are denoted as Ii and Ij . The perturbations we use
involve operations that only change image colors, e.g., ran-
dom image filters or LUTs.

The first stage of our pipeline aims to normalize the color
style of input images, which means that input images with
the same content but different color styles should be consis-
tent in the normalized color style space. Hence, we apply a
L2 consistency loss between the outputs of this stage. For-
mally, we predict the nDNCM parameters di/dj to transfer
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Ii/Ij to Zi/Zj , and we constrain Zi/Zj by:

Lcon = ||Zi − Zj ||2
= ||nDNCM(Ii, di)− nDNCM(Ij , dj)||2.

(5)

The second stage of our pipeline aims to stylize the normal-
ized images. To convert the input images to new styles, we
swap the predicted sDNCM parameters r to stylize the two
samples, i.e., Zi will be stylized by rj while Zj by ri, as:

Yi = sDNCM(Zj , ri), Yj = sDNCM(Zi, rj). (6)

We apply a L1 reconstruction loss between I and Y to learn
color style transfer, as:

Lrec = ||Yi − Ii||1 + ||Yj − Ij ||1. (7)

The final loss is a combination of Eq. 5 and 7, as:

L = Lrec + λLcon, (8)

where λ is a controllable weight. Refer to the analysis in
Supplemental A on how to derive our training constraints
from the fundamental color style transfer objective.

4. Experiments
In this section, we first introduce our experimental set-

ting, including datasets, implementation, and quantitative
metrics. We then extensively compare Neural Preset with
existing color style transfer methods (Sec. 4.1). We fur-
ther analyze the components and hyper-parameters of Neu-
ral Preset through ablation experiments (Sec. 4.2).

Datasets. Following recent color style transfer meth-
ods [1, 34, 54], we train our model on the images from the
MS COCO [35] dataset. We use about 5,000 LUT files,
along with the random image filter adjustment strategy [27],
as input color perturbations during training. We collect 50
images with diverse color styles and pair each two of them
to build a validation set consisting of 2,500 samples.

Implementation. We adopt EfficientNet-B0 [47] as the
encoder E in Neural Preset. We fix the input size of E to
256× 256. We set the parameter dimension k in DNCM to
16, so the number of parameters predicted by E is only 256
for each image. We train Neural Preset by the Adam [28]
optimizer for 32 epochs. With a batch size of 24, the ini-
tial learning rate is 3e−4 and is multiplied by 0.1 after 24
epochs. We set the loss weight λ to 10.

Quantitative Metrics. We follow prior works [1, 50, 54]
to quantitatively evaluate color style transfer quality in
terms of style similarity (between the output and the refer-
ence style image) and content similarity (between the output
and the input image). However, we observe from our exper-
iments that the metrics used by prior works cannot reflect

color style transfer quality precisely. Therefore, we propose
improved style/content similarity measures as our quantita-
tive metrics. For style similarity measure, prior works use
the VGG [45] features learned from ImageNet [8] to com-
pute the Gram metric. Since the VGG features are not de-
signed for comparing color styles and contain semantic in-
formation, the style similarity that they produce may not
be accurate due to semantic bias. Instead, we train a dis-
criminator [14] model on an annotated dataset (containing
700 + color style categories, each with 6-10 images of the
same color style retouched by human experts) to accurately
predict the color style similarity score (in [0, 1]) of two im-
ages. For content similarity measure, prior works com-
pute the SSIM metric based on image edges extracted by an
edge detection model HED [51]. However, HED only pre-
dicts rough edges and is often incorrect. Hence, we replace
HED with a recent model LDC [46], which can output fine
and correct edges for SSIM calculation, providing a reliable
content similarity score (in [0, 1]). Refer to Supplemental B
for more details on our improved metrics.

4.1. Comparisons

We compare Neural Preset with deep learning based
methods (PhotoWCT [34], WCT2 [54], PhotoNAS [1],
PhotoWCT2 [6], and Deep Preset [19]) as well as a tradi-
tional method (CT [43]). We evaluate the pre-trained mod-
els released by their authors. We do not compare with meth-
ods whose codes, models, and demos are all unavailable.

Qualitative Results. Fig. 5 shows the superiority of our
qualitative results. First, Neural Preset produces more nat-
ural stylized images (e.g., the colors of the car and wall in
Fig. 5 (a)). Second, Neural Preset can preserve fine textures
with target color styles (e.g., the enlarged text in Fig. 5 (b)).
Third, Neural Preset is better at maintaining the inherent
object colors (e.g., the human hair and clothing regions in
Fig. 5 (c)). Fourth, the outputs of Neural Preset have more
consistent color properties with the style images (e.g., the
brightness and contrast in Fig. 5 (d)). The results of Pho-
toWCT are omitted in Fig. 5 as its visual results are sim-
ilar to PhotoWCT2. Refer to Supplemental C.1 for more
visual results of Neural Preset. Refer to Supplemental C.2
for video stylization results of Neural Preset.

Quantitative Results. Fig. 6 shows that our Neural Preset
comes closest to the “Ideal” stylization quality. Although
PhotoWCT2 has high style similarity scores in Fig. 6, we
can observe from Fig. 5 that it tends to overfit the color
styles of the reference images, which however leads to
worse visual results. Deep Preset has high content similar-
ity scores in Fig. 6 since it often fails to alter the color style
of input images, as shown in Fig. 5. Besides, both scores for
CT are low as it sometimes produces very erratic results.

User Study. We further conduct a user study to evaluate
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Figure 5. Qualitative Comparison. Our method has advantages in (a) producing natural stylized images, (b) preserving image textures,
(c) maintaining object inherent colors, and (d) providing color properties more consistent with the style images.

Method CT [43] PhotoWCT [34] WCT2 [54] PhotoNAS [1] PhotoWCT2 [6] Deep Preset [19] Ours

Average Ranking ↓ 4.97 5.75 2.67 3.39 4.11 5.30 1.81

Table 1. Average Ranking of Different Methods in the User Study. The lower the number, the better the human subjective evaluation.
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Figure 6. Quantitative Comparison. The higher the content sim-
ilarity and the style similarity, the better the stylization quality.
“Ideal” refers to the best possible quality. The points on the blue
dashed curve have equal distance from “Ideal” as our method, i.e.,
have equivalent color style transfer quality as our method.

the subjective quality of different methods. We invite 58
users and show them 20 image sets randomly selected from
our validation set, with each image set consisting of an in-
put image, a reference style image, and 7 randomly shuffled
color style transfer results. For each image set, the users
are required to rank the overall stylization quality of the 7
results by considering the style/content similarity and the
photorealism of the results as well as whether the color style
of the results is visually pleasing. After collected 1,160
(58×20) results, we compute the average ranking of each

method. Table 1 shows that results from our method are
largely preferred by the users. Note that the second-ranked
WCT2 can only handle images of FHD resolution (see Ta-
ble 2). We provide Top1-Top3 ratios in Supplemental C.4.

Inference Efficiency and Model Size. As shown in Ta-
ble 2, Neural Preset achieves nearly 28× speedup compared
to the fastest state-of-the-art method (i.e., PhotoWCT2 [6])
on 2K images. Neural Preset also enables real-time infer-
ence (about 52 fps) at 4K resolution, and can handle 8K
resolution images at over 16 fps. Refer to Supplemental C.6
for the inference time on CPU. Table 2 also shows that ex-
isting methods require large amounts of memory for infer-
ence. Using even a GPU with 24GB memory, many of them
still have the out-of-memory problem at 4K resolution, and
all of them fail at 8K resolution. In contrast, Neural Preset
requires only 1.96GB of memory, irrespective of the im-
age resolution. This is because nDNCM/sDNCM in Neural
Preset operate on each pixel independently, allowing us to
save memory via splitting high-resolution images into small
patches for processing. Besides, Neural Preset also has the
lowest number of parameters.

Comparing Neural Preset with Filters and Luts. After
manually retouching an image by a photo editing tool (e.g.,
Lightroom), we export the editing parameters as a preset
in the filters/LUTs format to process a set of images auto-
matically. Meanwhile, we transfer the color style of the re-
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Method
GPU Inference Time ↓ / Memory ↓ Model Size ↓

FHD
(1920 × 1080)

2K
(2560 × 1440)

4K
(3840 × 2160)

8K
(7680 × 4320)

Number of
Parameters

PhotoWCT [34] 0.599 s / 10.00 GB 1.002 s / 16.41 GB OOM OOM 8.35 M
WCT2 [54] 0.557 s / 18.75 GB OOM OOM OOM 10.12 M
PhotoNAS [1] 0.580 s / 15.60 GB 0.988 s / 23.87 GB OOM OOM 40.24 M
Deep Preset [19] 0.344 s / 8.81 GB 0.459 s / 13.21 GB 1.128 s / 22.68 GB OOM 267.77 M
PhotoWCT2 [6] 0.291 s / 14.09 GB 0.447 s / 19.75 GB 1.036 s / 23.79 GB OOM 7.05 M
Ours 0.013 s / 1.96 GB 0.016 s / 1.96 GB 0.019 s / 1.96 GB 0.061 s / 1.96 GB 5.15 M

Table 2. Comparison on GPU Inference Time / Memory, and Model Size. All evaluations are conducted with Float32 model precision
on a Nvidia RTX3090 GPU (24GB memory). The values in parentheses under the resolutions are the exact image width and height. The
units “s”, “GB”, and “M” mean seconds, gigabytes, and millions, respectively. “OOM” means having the out-of-memory issue.
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Figure 7. Comparing Neural Preset with Filters/LUTs. (c) The
results of Neural Preset have more consistent color styles than (b)
the results of filters/LUTs.

touched image to other images via Neural Preset. As shown
in Fig. 7, filters/LUTs fail to convert images with diverse
color styles to a consistent color style (Fig. 7 (b)). For exam-
ple, after applying filters/LUTs, bright images will be over-
exposed while dark images still remain dark. In contrast,
with the color style parameters extracted from the retouched
image, Neural Preset provides results with more consistent
color styles (Fig. 7 (c)). Refer to Supplemental C.3 for more
results of applying the same color style to different input
images via Neural Preset.

4.2. Ablation Studies

Input Patch Size for DNCM. The input patch size used
for DNCM can affect the inference time and memory foot-
print of Neural Preset. Intuitively, processing a large num-
ber of pixels in parallel (i.e., using a larger patch size) will
give a lower inference time but at the cost of a higher mem-
ory consumption. From Table 3, setting a patch size > 512
brings a limited speed improvement on a Nvidia RTX3090
GPU but a significant increase in memory usage. This is

At 8K Resolution (7680 × 4320)

Patch Size Total Patches GPU Inference Time ↓ / Memory ↓

256 507 0.1026 s / 1.83 GB
512 127 0.0613 s / 1.96 GB
1024 32 0.0590 s / 2.14 GB
2048 8 0.0582 s / 2.79 GB
4096 2 0.0575 s / 5.38 GB
8092 1 0.0569 s / 8.77 GB

Table 3. Effects of Different DNCM Input Patch Sizes. We
validate the inference time and memory cost of Neural Preset with
different DNCM input patch sizes on 8K images. In Table 2, we
use a patch size of 512 (the underlined row).

Is Zc YsIc YsZc
(a) Input/Style Pair (b) Results w/o DNCM (c) Results w/ DNCM

Figure 8. Ablation of DNCM in Our Pipeline. Building our two-
stage pipeline via two CNNs, e.g., two autoencoders [44], causes
our SSL training to converge to a trivial solution, where the first
stage can be any function, and the second stage is an identity func-
tion w.r.t. the style image (see (b)). Applying DNCM can help
avoid such a trivial solution (see (c)). Symbols are from Fig. 3.

because the 512 patch size already uses up all GPU cores.

DNCM vs. CNN Color Mapping. We experiment with
constructing the proposed two-stage color style transfer
pipeline using two CNNs, e.g., two autoencoders [44], with
all other settings unchanged. The results in Fig. 8 visual-
ize our analysis in Supplemental A: using DNCM instead of
CNN for color mapping prevents our self-supervised train-
ing strategy from converging to a trivial solution.

Parameter Dimension k in DNCM. Table 4 shows that
setting k < 16 significantly decreases style similarity but
has small effect on content similarity, while setting k > 16
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k 2 4 8 16 32

Style Similarity ↑ 0.128 0.510 0.636 0.746 0.769
Content Similarity ↑ 0.765 0.823 0.781 0.771 0.764

Table 4. Results of Neural Preset with Different Values of k.
The hyper-parameter k has a huge impact on style similarity. Other
figures and tables are based on k = 16 (the underlined column).

Input Style

k = 2 k = 4 k = 8 k = 32k = 16

Results w/ Different k

Figure 9. Results of Neural Preset with Different Values of k.
These visual results are consistent with those in Table 4.

Figure 10. Impact of Lcon. We show the RGB color histogram of
each image at the top. Applying Lcon can provide a more consis-
tent Z, i.e., a better representation of the “image content”, for two
images with the same content but different color styles.

leads to better performances but also requires longer infer-
ence time. Hence, we use k = 16, which provides a good
balance of speed and performance. Fig. 9 displays the re-
sults with different values of k, demonstrating that k also
has a huge impact on qualitative results.

Effectiveness of Lcon. We visualize the “image content”
output by the first stage of our pipeline in Fig. 10. Applying
Lcon provides a more consistent Z to represent the “image
content”. Besides, our experiments also show that learning
Neural Preset with Lcon can yield better results, i.e., Lcon

helps the pipeline converge better.

5. Applications
With the proposed self-supervised strategy, Neural Pre-

set is able to learn general knowledge of color style transfer
from large-scale data. As a result, given a reference image,
our trained model can be naturally applied to other color
mapping tasks without fine-tuning. We evaluate four tasks:
low-light image enhancement [30], underwater image cor-
rection [52], image dehazing [16], and image harmoniza-
tion [37]. These tasks are challenging for universal color
style transfer models as the input images typically come
from highly degraded domains. The qualitative results in
Supplemental C.5 show that Neural Preset significantly out-
performs prior color style transfer methods on all four tasks.

Figure 11. Limitations of Neural Preset. For (a) and (b), the
top-left corner shows the style image. (a) JPEG artifacts may be
amplified (see red arrows) if the input image has a high compres-
sion ratio. (b) Results may be unsatisfactory if some colors in
the input image (e.g., green color) do not exist in the style image.
(c) Our method fails to map blue sky/water in an image to differ-
ent colors separately. Although prior methods may handle blue
sky/water separately, they typically cause heavy artifacts.

We notice that our DNCM effectively avoids heavy visual
artifacts produced by other methods, and our color normal-
ization stage successfully decouples color styles from de-
graded input images.

Besides, training DNCM (Fig. 2) for color mapping tasks
using pairwise data is straightforward. We experiment with
DNCM on the pairwise datasets of image harmonization [7,
27, 48] and image color enhancement [12, 23, 55]. Without
whistles and bells, we get top-level performances on both
tasks. Refer to Supplemental D for details and results.

6. Conclusion

In this paper, we have presented a simple but effective
Neural Preset technique for color style transfer. Benefited
by the proposed DNCM and two-stage pipeline, Neural Pre-
set has shown significant improvements over existing state-
of-the-art methods in various aspects. In addition, we have
also explored several applications of our method. For exam-
ple, directly applying Neural Preset to other color mapping
tasks without fine-tuning.

Nonetheless, Neural Preset does have limitations. First,
if the input is compressed by JPEG with a high compres-
sion ratio, the existing JPEG artifacts may be amplified in
the output (Fig.11 (a)). Second, it may fail to transfer color
styles between images with very different inherent colors
(Fig.11 (b)). Third, it cannot perform local-adaptive color
mapping to transfer the same color in an image to differ-
ent colors (Fig.11 (c)). A possible future work is to address
these limitations. For example, developing auxiliary reg-
ularization to alleviate the effects of JPEG artifacts or in-
corporating appropriate user interactions for complex cases
that involve changing image inherent colors.

14180



References
[1] Jie An, Haoyi Xiong, Jun Huan, and Jiebo Luo. Ultrafast

photorealistic style transfer via neural architecture search. In
AAAI, 2020. 1, 2, 5, 6, 7

[2] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang
Hua. Stylebank: An explicit representation for neural image
style transfer. In CVPR, 2017. 2, 3

[3] Mark Chen, Alec Radford, Jeff Wu, Heewoo Jun, Prafulla
Dhariwal, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In ICML, 2020. 3

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020. 3

[5] Jiaxin Cheng, Ayush Jaiswal, Yue Wu, Pradeep Natarajan,
and Prem Natarajan. Style-aware normalized loss for im-
proving arbitrary style transfer. In CVPR, 2021. 2

[6] Tai-Yin Chiu and Danna Gurari. Photowct2: Compact
autoencoder for photorealistic style transfer resulting from
blockwise training and skip connections of high-frequency
residuals. In WACV, 2022. 1, 2, 3, 5, 6, 7

[7] Wenyan Cong, Xinhao Tao, Li Niu, Jing Liang, Xuesong
Gao, Qihao Sun, and Liqing Zhang. High-resolution im-
age harmonization via collaborative dual transformations. In
CVPR, 2022. 2, 8

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 5

[9] Yingying Deng, Fan Tang, Weiming Dong, Chongyang Ma,
Xingjia Pan, Lei Wang, and Changsheng Xu. Stytr2: Image
style transfer with transformers. In CVPR, 2022. 2

[10] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.
A learned representation for artistic style. In ICLR, 2017. 2

[11] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
Image style transfer using convolutional neural networks. In
CVPR, 2016. 2, 3
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Zitnick. Microsoft coco: Common objects in context. in eu-
ropean conference on computer vision. In ECCV, 2014. 5

[36] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala.
Deep photo style transfer. In CVPR, 2017. 2, 3

[37] Li Niu, Wenyan Cong, Liu Liu, Yan Hong, Bo Zhang, Jing
Liang, and Liqing Zhang. Making images real again: A
comprehensive survey on deep image composition. Preprint,
2021. 2, 8

[38] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In ECCV,
2016. 3

[39] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell,
and Bharath Hariharan. Learning features by watching ob-
jects move. In CVPR, 2017. 3

[40] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor
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