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Abstract

Autonomous driving systems rely heavily on the underly-
ing perception module which needs to be both performant
and efficient to allow precise decisions in real-time. Avoid-
ing collisions with pedestrians is of topmost priority in any
autonomous driving system. Therefore, pedestrian detec-
tion is one of the core parts of such systems’ perception
modules. Current state-of-the-art pedestrian detectors have
two major issues. Firstly, they have long inference times
which affect the efficiency of the whole perception module,
and secondly, their performance in the case of small and
heavily occluded pedestrians is poor. We propose Local-
ized Semantic Feature Mixers (LSFM), a novel, anchor-free
pedestrian detection architecture. It uses our novel Super
Pixel Pyramid Pooling module instead of the, computation-
ally costly, Feature Pyramid Networks for feature encod-
ing. Moreover, our MLPMixer-based Dense Focal Detec-
tion Network is used as a light detection head, reducing
computational effort and inference time compared to ex-
isting approaches. To boost the performance of the pro-
posed architecture, we adapt and use mixup augmentation
which improves the performance, especially in small and
heavily occluded cases. We benchmark LSFM against the
state-of-the-art on well-established traffic scene pedestrian
datasets. The proposed LSFM achieves state-of-the-art per-
formance in Caltech, City Persons, Euro City Persons, and
TJU-Traffic-Pedestrian datasets while reducing the infer-
ence time on average by 55%. Further, LSFM beats the
human baseline for the first time in the history of pedestrian
detection. Finally, we conducted a cross-dataset evaluation
which proved that our proposed LSFM generalizes well to
unseen data.

1. Introduction

Autonomous driving is currently under the spotlight in
the computer vision community [3, 20]. Detecting and
avoiding collisions with pedestrians is one of the numer-
ous challenges of autonomous driving. Pedestrian detectors
for autonomous driving not only have to be performant but
efficient as well, since rapid perception is required to make
timely decisions. Furthermore, these systems need to ful-
fill additional constraints such as good portability and low
computational footprint, as compute-intensive systems can
have a heavy impact on the milage of autonomous vehicles.

Pedestrian detection for autonomous driving aims to pro-
vide the autonomous vehicle with a timely perception of
all pedestrians in its surroundings. The problem becomes
more challenging as most of the pedestrians are occluded
either by other pedestrians or by other objects [5,48]. Addi-
tionally, the camera stream is introduced with motion blur
since it is coming from the camera mounted on a moving
vehicle [15]. The motion blur problem further intensifies
when the vehicle moves faster. Dealing with motion blur
and occlusion is vital for a pedestrian detector to perform
well. Another major challenge for pedestrian detectors is
the scale variance in pedestrians. Since the camera images
are subject to perspective distortion the pedestrian scales
vary from a few pixels large to almost equal to the height of
the image frame. Small-scale pedestrians (far or short) are
the bottleneck of scale variance problem [5]. The pedestrian
detector needs to sufficiently understand the core visual fea-
tures of a pedestrian and use them to detect pedestrians ir-
respective of their scales.

Furthermore, domain generalization is critical for a
pedestrian detector as it is expected to perform in all cir-
cumstances e.g., all kinds of weather, lighting, and traffic
densities, which might or might not be part of the training
data [14, 15]. Therefore, pedestrian detectors should per-
form well on unseen data to be reliable under real-world
circumstances.
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Figure 1. Performance of pedestrian detectors in different settings and their evolution over the years. Both figures contain data on three
different pedestrian detection datasets namely, City Persons [48] (Green), Euro City Persons [1] (Pink), and Caltech Pedestrians [10]
(Yellow). Y-axis values are % based in both (a, b). The proposed LSFM beats the human baseline on the Caltech dataset [47].

Recent research focuses on improving pedestrian detec-
tors in terms of accuracy while ignoring their computational
costs [5]. The performance of pedestrian detectors has im-
proved a lot recently. However, there is still room for im-
provement, especially in heavy occlusion and small cases
[14,15,20,24]. Fig. 1 shows the performance improvements
in pedestrian detection over the last decade. Further, an im-
provement in accuracy usually comes with an increase in
inference time [5], especially in the case of methods based
on Vision-Transformers (ViT) [6, 9, 30]. A similar trade-
off can be observed when using multi-modal sensor fusion.
The accuracy improves while bearing heavy computational
costs. A major component of ViT is self-attention, which
has a complexity ofO(n2) and does not scale well for high-
resolution images [41]. Researchers have proposed alterna-
tives to self-attention to avoid heavy computational costs,
one of which is MLPMixers [37]. MLPMixer alternates
between the channel and token dimension, thus maximiz-
ing cache efficiency, and achieving almost similar perfor-
mance to transformers in image classification. However,
when the image resolution is high, the MLPMixer feature
map sizes increase quadratically, making it memory and
compute-intensive backbones for downstream tasks. Also,
the fully-connected nature of the MLP-based networks pre-
vents them from being resolution independent like convolu-
tions, as the number of parameters needs to be predefined.

We propose a novel pedestrian detection network that in-
cludes a Multi Layer Perceptron (MLP) based neck and a
patched MLP mixer-based object detection head [37]. The
proposed neck efficiently extracts and enriches key features
from different stages of the backbone, and the detection
head enables the dense connections between high-level se-
mantic features. Together, when combined with a back-

bone, they constitute a lightweight, cache-efficient, and yet
performant pedestrian detector. To train our network to be
immune to motion blur and occlusion, we used hard mixup
augmentation, which provides our network with data for
soft occlusion and motion blur-like effects. Also, the hard
mixup augmentation generates additional data for small de-
tection cases to help the network absorb the key features
which work across all scales.

We conduct an exhaustive evaluation of the proposed
network on renowned pedestrian datasets to test it against
the existing state-of-the-art methods in terms of both per-
formance and efficiency. We conduct a cross dataset eval-
uation to test the domain generalization capabilities of the
proposed network. Further, we perform the ablation study
to check the effectiveness of different components of the
proposed network. Major contributions of this work are as
follows:

• We propose Super Pixel Pyramid Pooling (SP3), a
MLP-based feature pyramid network.

• We propose Dense Focal Detection Network (DFDN),
a lightweight head to allow denser connections.

• We pre-trained a deep but not wide ConvMLP [21]
based backbone, ConvMLP Pin, for the proposed net-
work to reduce inference time.

• We propose pedestrian detectors with backbones of
different sizes to enable applications in resource-
constrained environments.

• Our proposed model beats the human baseline [47] for
the first time in the history of pedestrian detection.
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2. Related Work
RCNN Model Family: Ross Girschick et al. proposed

Region-based Convolutional Neural Networks (RCNNs)
[13] as an early deep learning based solution to object detec-
tion using neural networks while utilizing selected search
[40] to generate region proposals. Fast RCNN [12] pro-
posed a single-stage pipeline that used the region of interest
(RoI) pooling layer to share convolutions across all region
proposals, hence sharing a lot of computation and decreas-
ing inference times. Followed by Fast RCNN, Faster RCNN
[34] enabled end-to-end training by proposing a novel deep
learning based region proposal network to generate region
proposals. He et al. proposed Mask R-CNN [16] as a pow-
erful baseline system for instance segmentation, thereby im-
proving the baseline for object detection based on Faster R-
CNN. Cascade R-CNN [4] was proposed to address prob-
lems with degrading performance with increased Intersec-
tion over Union (IoU) thresholds. Cai et al. introduced Cas-
cade Mask R-CNN, which extends Cascade R-CNN to in-
stance segmentation by incorporating a mask head [4].

Vision Transformers for Object Detection: Since their
introduction, Transformers [41] have gained popularity and
found various applications in natural language process-
ing and computer vision. Dosovitskiy et al. [11] pro-
posed Vision Transformers (ViT) as a powerful alternative
to convolution-based networks that reshapes images into
patches for feature extraction. DEIT [39] introduces an
attention-based distillation method along with data augmen-
tation to improve performance without pretraining. DETR
[6] makes use of transformers as a foundational block to
handle object detection achieving better results compared to
models such as Faster R-CNN [34] on the standard COCO
object detection dataset. Most recently, UViT [7] was pro-
posed as a single-scale Transformer for object detection,
which omits the hierarchical pyramid designs used in ear-
lier detectors and improves performance on COCO object
detection as well as instance segmentation.

MLP Mixer Based Architectures: Tolstikhin et al. pro-
posed MLP-Mixer [37], a non-convolutional object detec-
tion architecture that is solely built on multi-layer percep-
trons (MLPs) applied over either spatial locations or fea-
ture channels. ResMLP [38] proposed a deeper architecture
compared to MLP-Mixer while simplifying the token mixer
and achieving better performance. gMLP [25] proposed a
Spatial Gating Unit to process spatial features, improving
the efficacy of the token-mixing MLPs.

Anchor Free Pedestrian Detectors: Anchor-free
pedestrian detectors skip region proposal networks and di-
rectly predict pedestrians in a high-level semantic feature
fashion using fully connected CNNs. CSP [29] detects
pedestrians by predicting the center and scale map to re-
construct the bounding boxes. Adaptive center and scale
prediction ACSP [43] makes use of switchable normaliza-

tion during training on various batch sizes for better con-
vergence and improved recall. F2DNet [20] improves the
performance by introducing a second stage to the anchor-
free detectors i.e., the fast suppression head.

3. Localized Semantic Feature Mixers
Inspired by their efficiency, we aim to develop a pedes-

trian detection model based on MLPMixers [37]. In order
to enable our model to process variable-sized input, we use
a ConvMLP-based backbone [21] and an MLPMixer-based
detection head, which works with patches containing local
information. To keep our network light, we avoid using a
feature pyramid network and deploy novel, cache-efficient
SP3. We use the center and scale representation of pedestri-
ans which is considered a high-level semantic features rep-
resentation [29] and therefore, call our network Localized
Semantic Feature Mixers. Fig. 2 shows the detailed archi-
tecture of the components of LSFM. In the rest of the sec-
tion, we will go through each component in detail.

3.1. Super Pixel Pyramid Pooling

Feature Pyramid Network (FPN) [22] enables the detec-
tion network to detect objects at different scales and fully
utilize the different levels of features extracted from the
backbone. The first step of FPN is to merge the feature maps
from different backbone stages into a single, uniform-sized
feature map array for further processing. Since concatena-
tion is only possible for feature maps of the same spatial
dimension, upscaling and downscaling operations are re-
quired to scale feature maps to a uniform size. Commonly
used upscaling methods used in feature pyramid networks
are transposed convolutions and interpolation [4, 29]. Both
transposed convolution and interpolation have heavy com-
putational and memory costs, although these layers do not
contribute directly to the learning aspect of the network.

We propose Super Pixel Pyramid Pooling (SP3), a novel
neck for our pedestrian detector, which takes a rather direct
approach by applying a linear layer to filter and enrich fea-
tures coming from the different stages of the backbone in a
single operation. All feature maps of varying sizes are split
into an equal number of patches with different resolutions.
This is done by reducing patch size with the reducing size of
feature-maps per stage i.e. 8× 8 for the first stage, 4× 4 for
the second, and so on. Patches across the feature maps are
then grouped based on the spatial location they correspond
to, flattened in spatial and channel dimensions, and concate-
nated to form a single feature vector representing a spatial
region across all stages of the backbone. We call this rep-
resentation Super Pixel Form. These super pixels are then
passed through a linear layer to achieve the desired number
of features while filtering and enriching them. Finally, the
resultant filtered super pixels get reshaped into patches for
further processing. In this way, SP3 achieves its purpose of
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Figure 2. Shows the architecture of the Super Pixel Pyramid Pooling (SP3) neck followed by the Dense Focal Detection Network (DFDN),
along with their components i.e., MLP and MLP Mixer.

feature enrichment efficiently. The detailed architecture of
SP3 is shown in Fig. 2.

3.2. Dense Focal Detection Network

The role of an object detection head is to convert the fi-
nal feature embedding into objects. Since features received
at the detection head have a larger spatial context, intro-
ducing further local spatial connections helps to extend it,
which can further refine detections. In the detection heads
of anchor-free approaches, detection attributes are predicted
per pixel using convolutional layers. We propose the Dense
Focal Detection Network (DFDN), a novel detection head
entirely composed of MLPMixer layers [37]. The MLP-
Mixer layers enable the efficient use of cache to boost the
inference of the network. The DFDN works on patches in-
stead of entire images and refines the detections based on lo-
cal context information. This way, the complexity of MLP-
Mixer layers becomes independent of input resolution re-
sulting in scalability to higher resolutions.

Similar to [20], we use the center and scale representa-
tion of pedestrians, classify each pixel into the center of a
pedestrian or not and regress the height and width of the
pedestrian centered at that pixel. We follow the loss set-
tings of the Focal Detection Network in F2DNet [20] and
use offset maps for precise pedestrian centers. We use
three MLPMixer blocks with 2 as the MLP expansion ra-
tio in our DFDN to achieve better performance. Fig. 2
shows the detailed architecture of the DFDN. Further, we
use SmoothL1 [12] loss for offset regression, V anilaL1
loss with log scaled height and width values for scale re-
gression, and α-balanced Focal Loss [23] for center predic-
tion with 10−1, 5 × 10−2 and 10−2 as their respective loss
weights. The following shows the formulation of the center

loss,

Lcenter =
1

K

∑
t

FL(pt, yt), (1)

where

FL(pt) =− αt(1− pt)γ log(pt) ,

αt =

{
1 if yt = 1

(1−Mt)
β otherwise.

(2)

In the above-mentioned equation, α is the balancing or
penalty reduction factor based on Mt which is a gaussian
kernel around the true positives. The values of β and γ are
kept same as in [20] i.e., β = 4 and γ = 2.

3.3. ConvMLP Backbone

ConvMLP proposed by Li et al. uses convolution lay-
ers in between MLP layers to enable spatial connections
[21]. It is independent of the input resolution and re-
quires comparatively low computational effort. Due to their
linear memory footprint, MLP layers achieve high cache
efficiency and have significantly higher inference speeds.
Therefore, we choose ConvMLP [21] as a faster and more
efficient backbone. Since we use semantic feature represen-
tations of pedestrians (the centers and scale representation),
a deeper network is required to learn such complex func-
tions precisely. Therefore, we design a deeper but not wide
ConvMLP-based backbone and call it ConvMLP-Pin.

The first stage of ConvMLP-Pin contains a tokenizer
and a residual bottleneck block to extract conventional fea-
tures [17, 21]. The remaining three stages contain several
ConvMLP blocks followed by downsampling at the end of
each stage. We chose 4, 8, and 4 as the number of blocks
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Figure 3. Feature maps of ConvMLP-Pin stages and SP3.

for the second, third and fourth stages respectively. With
the abovementioned setting, the backbone becomes deeper;
we set the MLP hidden dimension ratio to 2, to keep it
light as well. We pretrain our ConvMLP-Pin backbone on
the ImageNet-1000 dataset for 100 epochs and use it for
pedestrian detection. Fig. 3 shows activation maps of the
ConvMLP-Pin backbone and Super Pixel Pyramid Pooling
(SP3). Where first four rows show the activation maps of
different stages of the backbone and the last row shows the
results of the SP3 layer, which combines features from all
stages into single-sized, stacked feature maps.

3.4. Hard Mixup Augmentation

Autonomous driving datasets like [1, 10, 31, 48] were
recorded using a camera mounted on a moving vehicle. Due
to the setup, the images exhibit motion blur, which is hard to
treat and hinders the training of deep learning models [15].
Also, a low number of heavily occluded cases gives the
model only a glimpse of the occlusion phenomenon during
training, but not enough to understand occlusions properly.
Further object-aware augmentations like Cutmix [44] and
Erase [49] can add undesired gradient artifacts to the im-
age. Mixup augmentation [45] is an image-aware augmen-
tation technique, widely used in training robust image clas-
sifiers. We applied a new variation of mixup augmentation
for pedestrian detection by training the network with mixed-
up samples and hard labels. Unlike mixup augmentation for
classification, we do not use soft labels but keep all anno-
tations with their original labels instead. Hard mixup aug-
mentation provides the model with soft occluded samples
for training and makes it robust to motion blur. We used
mixup ratios in the range (0.4, 0.6) so that all the objects
still have enough information to be detected. However, go-
ing beyond this ratio requires the definition of a threshold

Table 1. Summary of the pedestrian detection datasets.

Dataset Images Density Time Resolution
Caltech Ped. 42,782 0.32 day 640 × 480
City Persons 2,975 6.47 day 2048 × 1024
ECP 21,795 9.2 day, night 1920 × 1024
TJU-Ped-Traffic 13,858 2.0 day, night 1624 × 1200

Table 2. Evaluation settings for pedestrian datasets.

Setting
CP, Caltech, TJU-Traffic-Ped.
Visibility Height

Euro City Persons
Visibility Height

Reasonable [0.65,∞] [50,∞] [0.6,∞] [40,∞]
Small [0.65,∞] [50, 75] [0.6,∞] [30, 60]
Heavy Occ. [0.2, 0.65] [50. ∞] [0.2, 0.6] [40. ∞]
All [0.2,∞] [20. ∞] [0.2,∞] [20. ∞]

that designates annotations to keep.

3.5. Mean Teacher Knowledge Distillation

Averaging the weights of the network during training re-
sults in a generalized network which is good for domain
adaptation, as it prevents the network from overfitting [18].
Mean Teacher [36] takes the running mean of a network’s
checkpoints while training and saves them as teacher check-
points. Unless indicated otherwise, we report the results of
the proposed models based on mean teacher checkpoints.

4. Experimental Setup
This section contains the details of our experimental

setup including datasets, evaluation metric, evaluation set-
tings, and finally inference time calculation setup.

Datasets: Since the proposed model is specific to au-
tonomous driving, only datasets containing traffic scenes
were used for training. The recently published Euro City
Persons dataset [1] contains 47,300 images encompassing
scenes from 31 different cities of Europe. The dataset
is vast, and captures different weather and lighting condi-
tions [1]. The Euro City Persons dataset [1] contains both
day and night scenes. However, only daytime scenes were
used for training and testing in this work. The City Persons
dataset [48] contains day scenes from 27 different cities in
Germany. The image dimensions are almost the same as
Euro City Persons images [1]. However, the City Persons
[48] dataset is sparser compared to Euro City Persons [1]
dataset. The Caltech Pedestrian dataset [10] has been used
for a long time in pedestrian detection. It has much lower
pedestrian density and low image resolution compared to
the City Persons [48] and Euro City Persons datasets [1].
For training and evaluation on the Caltech dataset [10] we
used the corrected annotation proposed by [47]. The TJU-
DHD-Traffic [31] dataset contains traffic scenes with illu-
mination and weather variance which increases the robust-
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Figure 4. Qualitative comparison of LSFM and F2DNet [20].
Cyan marks the true positives and red marks the false negatives.

ness of pedestrian detectors when used for training. Tab. 1
shows details of all datasets used in this work.

Evaluation Measure: The evaluation measure used in
this work is MR−2. MR−2 represents the area under the
log average miss rate over the fppi curve by taking the
mean of miss rates at nine different fppi thresholds equally
divided in the log space from (10−2, 100). All MR−2 re-
sults reported in this work are % based.

Evaluation Settings: Different evaluation settings have
been proposed in previous works to judge the performance
of pedestrian detectors in different scenarios. In this work,
the evaluation settings proposed with the Caltech pedestrian
dataset [10] are used. These settings divide pedestrian de-
tections into four overlapping subgroups based on the visi-
bility ratio and pixel height of each detection, namely rea-
sonable, small, heavy occlusion, and all. Visibility and
height thresholds are different for the Euro City Persons
dataset [1] while both City Persons and Caltech Pedes-
trian [10] datasets use the same thresholds proposed with
the Caltech Pedestrian dataset [10]. Tab. 2 shows the dif-
ferent evaluation settings used in this work in detail. Un-
less mentioned otherwise, the results presented in this work
are based on the evaluation of validation sets in the case
of the City Persons [48], Euro City Person [1] and TJU-
DHD-Pedestrian [31] datasets and the test set in case of the
Caltech dataset [10].

Inference Time Calculation: To be consistent with ex-
isting pedestrian detectors on inference time calculation we
used a GTX 1080Ti [20, 28, 35, 46]. The inference is done
with a single image per batch on the original resolution.

5. Results
In this section, we discuss benchmarking results of

LSFM. The listed results for LSFM are with two backbones
i.e., ConvMLP-Pin, HRNet [42]. LSFM indicates results
with HRNet backbone [42] while LSFM P indicates re-
sults where ConvMLP-Pin was used. To save FLOPS and
parameters, we only used the first three stages of HRNet
since it contains fusion layers that aggregate information
of the fourth stage to all other layers [42]. Tab. 3 shows
benchmarking results of LSFM with previous state-of-the-
art methods in a single dataset setting.

Table 3. Comparison with the state-of-the-art models shows that
the LSFM performs significantly better in most settings while hav-
ing the least inference times.

Method Reasonable Small Heavy Inference
City Persons [48]

Pedestron [14] 11.2 14.0 37.0 0.73s
CSP [14, 29] 11.0 16.0 49.3 0.33s
PRNet [35] 10.8 - 42.0 0.22s
APD [46] 8.8 - 46.6 0.16s
F2DNet [20] 8.7 11.3 32.6 0.44s
LSFM P (ours) 8.7 8.7 32.4 0.13s
LSFM (ours) 8.5 8.8 31.9 0.18s

Caltech [10]
Pedestron [14] 6.2 7.4 55.3 0.20s
ALFNet [28] 6.1 7.9 51.0 0.05s
AR-Ped [2] 4.4 - 48.8 0.09s
F2DNet [20] 2.2 2.5 38.7 0.14s
LSFM P (ours) 3.9 4.2 37.6 0.03s
LSFM (ours) 3.1 3.4 35.8 0.09s

Euro City Persons [1]
YOLOv3 [33] 8.5 17.8 37.0 -
FRCNN [34] 7.3 16.6 52.0 -
Pedestron [14] 6.6 13.6 33.3 0.44s
F2DNet [20] 6.1 10.7 28.2 0.41s
LSFM P (ours) 7.0 13.5 30.0 0.13s
LSFM (ours) 4.7 9.9 23.8 0.17s

TJU-Pedestrian-Traffic [31]
F2DNet [20] 21.6 26.3 62.6 0.40s
CrowdDet [8] 20.8 - 61.2 -
EGCL [24] 19.7 - 60.1 0.76s
Pedestron [14] 18.9 24.0 56.3 0.40s
LSFM P (ours) 19.7 25.8 60.1 0.13s
LSFM (ours) 18.7 24.9 56.2 0.18s

5.1. Qualitative Comparison

Fig. 4 shows a qualitative comparison of F2DNet [20]
and LSFM on City Persons [48] and Caltech [10] datasets
where images with diverging results are shown. It is evident
that LSFM performs better especially in small and heavy
occlusion cases however, there are a few cases of extreme
occlusion where LSFM fails as well. Also, we found some
rare cases where a pedestrian is detected by F2DNet [20]
but missed by LSFM.

5.2. Inference Time

Tab. 3 shows single image inference times of different
pedestrian detectors. LSFM successfully achieves the low-
est inference time among other pedestrian detectors. On the
Caltech Pedestrian dataset [10] LSFM P achieved 33ms in-
ference time, resulting in 30 fps, which is considered real-
time and it is almost 1

4 of the inference time of the previous
state-of-the-art F2DNet [20]. On average, LSFM P achieves
∼71% lesser inference time while LSFM achieves ∼55%
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Table 4. Cross dataset evaluation results. LSFM shows simi-
lar generalizability patterns compared to the state-of-the-art. All
listed methods use HRNet [42] backbone.

Method Train Test Reasonable Small Heavy
CSP [14, 29] ECP CP 11.5 16.6 38.2
Pedestron [14] ECP CP 10.9 11.4 40.9
F2DNet ECP CP 10.1 12.1 36.4
LSFM (ours) ECP CP 9.4 11.1 37.8

LSFM (ours) CP Caltech 11.7 15.6 37.4
F2DNet CP Caltech 11.3 13.7 32.6
CSP [14, 29] CP Caltech 10.1 13.3 34.4
Pedestron [14] CP Caltech 8.8 9.8 28.8

F2DNet ECP Caltech 16.9 21.5 41.3
LSFM (ours) ECP Caltech 13.1 16.3 33.1
CSP [14, 29] ECP Caltech 10.4 13.7 31.3
Pedestron [14] ECP Caltech 8.1 9.6 29.9

CSP [14, 29] CP ECP 19.6 51.0 56.4
Pedestron [14] CP ECP 17.4 40.5 49.3
LSFM (ours) CP ECP 17.0 42.1 49.6
F2DNet CP ECP 11.6 14.7 40.0

Table 5. Results of the progressive fine-tuning show that LSFM
models beat the state-of-the-art across all datasets. TJU and CT in-
dicate TJU-Traffic-Pedestrian [31] and Caltech [10] datasets. The
presented results are based on models retrained from scratch.

Method Training Strategy Reas. Small Heavy Infe.
Pedestron [14] TJU→ ECP→ CP 8.9 10.6 29.6 0.73s
F2DNet [20] TJU→ ECP→ CP 6.8 9.0 26.0 0.44s
LSFM P (ours) TJU→ ECP→ CP 7.0 7.1 28.0 0.13s
LSFM (ours) TJU→ ECP→ CP 6.7 6.7 23.5 0.18s

Pedestron [14] ECP→ CT 2.6 2.8 24.4 0.20s
F2DNet [20] ECP→ CT 1.2 1.4 19.6 0.14s
LSFM P (ours) ECP→ CT 1.6 0.7 22.9 0.03s
LSFM (ours) ECP→ CT 1.0 0.2 19.5 0.09s

F2DNet [20] TJU→ ECP 6.0 11.1 29.1 0.41s
Pedestron [14] TJU→ ECP 4.7 10.2 24.7 0.44s
LSFM P (ours) TJU→ ECP 5.5 11.6 26.0 0.13s
LSFM (ours) TJU→ ECP 4.1 9.5 20.9 0.17s

lesser inference time, compared with F2DNet [20].

5.3. Comparison With The State-Of-The-Art

Tab. 3 compares LSFM with the state-of-the-art in sin-
gle dataset settings. LSFM shows overall better perfor-
mance compared to the state-of-the-art with on average
∼1% MR−2 reduction. However, LSFM P shows slightly
higherMR−2 compared to the state-of-the-art in most cases
which, given its lowest inference time, is a better option
for systems with limited resources. Overall, LSFM mod-
els perform well with superior performance compared to
F2DNet [20] and present better tradeoffs.

Table 6. Comparison with human baseline shows LSFM beats hu-
man baseline on Caltech dataset [47].

Method Reasonable Inference
Pedestron [14] 1.75 0.20s
F2DNet [20] 1.21 0.14s
Human Bl. [47] 0.88 -
LSFM (ours) 0.87 0.09s

Table 7. Performance on the test set of City Persons. LSFM estab-
lishes a new state-of-the-art.

Method Reasonable Small Heavy Inference
FRCNN [48] 13.0 37.2 50.5 -
Cascade R-CNN [4] 11.6 13.6 47.1 0.73s
AdaptiveNMS [26] 11.4 13.6 47.0 -
MGAN [32] 9.3 11.4 41.0 -
APD-Pretrain [46] 7.3 10.8 28.1 -
Pedestron [15] 7.7 9.2 27.1 0.73s
LSFM (ours) 6.4 7.9 24.7 0.18s

Table 8. Performance on the test set of Euro City Persons. LSFM
performs slightly inferior compared to SPNet [19]. * marks infer-
ence times calculated on Nvidia V100 GPU.

Method Reasonable Small Heavy Inference
SSD [27] 13.1 23.5 46.0 -
Faster R-CNN [34] 10.1 19.6 38.1 -
YOLOv3 [33] 9.7 18.6 40.1 -
APD [46] 5.3 12.4 26.8 -
Pedestron [15] 5.1 11.2 25.4 0.44s
LSFM (ours) 4.4 10.6 22.9 0.17s
SPNet [19] 4.2 9.5 21.6 0.27s*

5.4. Cross Dataset Generalization

Furthermore, we conduct a cross-dataset evaluation
study to test the generalizability of LSFM models to un-
seen data. The experiments involve evaluating models on
datasets other than the one used for training. In this way, the
results of the cross-dataset evaluation give insights into the
networks’ ability to successfully transfer features learned on
one dataset, onto another. Tab. 4 shows the cross-validation
results of LSFM models in comparison with the state-of-
the-art models. LSFM models show comparable cross-
dataset validation results which prove that LSFM models
generalize well to unseen data.

5.5. Progressive Fine-tuning

To test the performance of the LSFM on large datasets
and how they scale with increasing dataset size, we conduct
a progressive fine-tuning study. In progressive fine-tuning,
the model is first trained on larger and more diverse datasets
and gradually fine-tuned toward the target dataset. Tab. 5
shows detailed progressive fine-tuning results where A →
B indicates training on dataset A followed by fine-tuning
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Table 9. Ablation study on the components of LSFM and Hard Mixup Augmentation (H. Mix.).

Backbone FSH H. Mix. M. Tea. SP3 DFDN Reasonable Small Heavy Inference Parameters Flops
HRNet [42] 9.5 14.5 35.4 0.44s 40.31M 1774.3G
HRNet [42] X 9.9 15.2 35.9 0.28s 29.5M 350.8G
HRNet [42] X X 9.5 13.5 33.9 0.18s 32.5M 347.1G
HRNet [42] X X X 9.2 10.8 32.7 0.18s 32.5M 347.1G
HRNet [42] X X X X 8.8 8.6 32.7 0.18s 32.5M 347.1G
HRNet [42] X X X X X 8.5 8.8 31.9 0.18s 34.9M 348.0G

ConvMLP-Pin X X 10.5 16.7 37.7 0.13s 20.1M 174.9G
ConvMLP-Pin X X X 9.8 10.8 34.8 0.13s 20.1M 174.9G
ConvMLP-Pin X X X X 8.7 9.1 34.3 0.13s 20.1M 174.9G
ConvMLP-Pin X X X X X 8.7 8.7 32.4 0.13s 22.5M 175.8G

on B. The proposed LSFM models beat the state-of-the-art
with a significant margin while taking significantly less time
for inference in comparison. Tab. 6 shows a comparison
of LSFM models with the human baseline on the Caltech
dataset [47]. The proposed LSFM beats the human baseline
for the first time in the history of pedestrian detection.

We also evaluate the proposed model on test sets of City
Persons [48] and Euro City Persons [1]. Tabs. 7 and 8 show
the performance of LSFM on the test set of the City Per-
sons [48] and Euro City Persons datasets, respectively. The
evaluation was done on the official servers of the datasets as
annotations of these sets are withheld. LSFM outperforms
previous state-of-the-art methods on the test set of City Per-
sons [48], establishing a new state-of-the-art. However,
the performance on the test set of Euro City Persons [1]
is slightly inferior to the current state-of-the-art.

5.6. Ablation Study

In this section, the effects of individual parts of LSFM
on the performance and inference time are examined. For
the purpose of the ablation study, we used the City Persons
dataset [48] only. Tab. 9 sums up the results of the abla-
tion study. The study includes experiments on two different
backbones i.e., ConvMLP-Pin and HRNetW32 [42]. The
first row of Tab. 9 shows the results of our baseline which is
F2DNet without suppression head [20].

Dense Focal Detection Network (DFDN) is a
lightweight detection head compared to Focal Detection
Head [20]. The first two rows of Tab. 9 show pedestrian de-
tection results of the model without DFDN and with DFDN,
respectively. It is evident that using the DFDN reduces over-
all parameters and FLOPs resulting in lesser inference time
with a slight drop in performance compared to the baseline.

Super Pixel Pyramid Pooling (SP3) enables efficient
feature enrichment and pooling of features. Tab. 9 shows
that although the number of parameters and FLOPs increase
when using the SP3, the inference time still drops signifi-
cantly along with notable performance improvements. This
proves that SP3 is the more efficient, yet more performant
alternative of Feature Pyramid Network.

Mean Teacher (M. Tea.) knowledge distillation keeps
the running mean of a network’s checkpoints to avoid over-
fitting. The resulting model is, therefore, more general and
performant, as it is evident from Tab. 9.

Hard Mixup Augmentation (H. Mix.) provides LSFM
with extra data and soft occlusions. The second last row
for each backbone in Tab. 9 shows the results when using
mixup augmentation. It is evident that the extra data is es-
pecially helpful in small pedestrian cases. Also, the artifi-
cial soft occlusions created by the hard mixup augmentation
help LSFM to learn occlusions, ultimately resulting in bet-
ter performance in heavily occluded cases.

Fast Suppression Head (FSH) [20] suppresses false
positives, improving the quality of the final detections even
further. Tab. 9 shows significant improvements in perfor-
mance when using FSH, with a barely notable increase in
inference time and model parameters.

6. Conclusion
This work presents a novel anchor-free pedestrian de-

tection architecture with efficient components. The novel
architecture uses MLPMixers and fully connected layers
for denser connections and cache efficiency. This design
achieves better performance with significantly reduced in-
ference time. Further, the proposed models beat state-of-
the-art pedestrian detectors on all mentioned datasets as
well as the human baseline for the first time in the history of
pedestrian detection. Since this work focuses on pedestrian
detection in day scenes, an extension will be to study the
scalability of the proposed models to night scenes. Also, it
will be interesting to explore the potential of the proposed
models to adapt to non-traffic scenarios, as this study solely
focuses on pedestrian detection in traffic scenes.
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